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0 Introduction to This Book

0.1 Goals and Essential Questions

Differential equations are perhaps the most central mathematical topic of science and engineering. Our
quest in those areas is to understand and predict the behavior of some sort of “system” consisting of a
collection of “parts” that could be things like electrical or mechanical components, living organisms, or
some part of the natural world. We often wish to construct a mathematical model that describes the
behavior of the system reasonably well; such a model usually consists of one of three things:

• An equation or a set of equations (an analytical model).

• A general but imprecise description or a graph (a qualitative model).

• “Snapshots” of the state of the system at discrete points in time and/or space (a numerical
model).

The problem is that we generally can’t construct directly the equation or equations making up an
analytical model of a system. What we will usually have at our disposal are pieces of information
about how a system is changing and/or how forces are acting on and within the system. Those pieces of
information are combined to form an equation containing the changes or forces, in the form of derivatives.
Such an equation containing derivatives is called a differential equation. Once a differential equation
is obtained, we hope we can use some mathematical technique to extract a model without derivatives
that describes the behavior of the system.

This book is a fairly straightforward introduction to differential equations, with an applied emphasis.
The student should be aware that this is a huge subject, with lifetimes of study possible. Our hope is that
this collection of explanations, examples and exercises will create a solid foundation for understanding
differential equations when they are encountered in subject-specific courses, and for further study of
differential equations themselves.

In the past an introduction to differential equations has usually consisted of learning specific tech-
niques for solving a variety differential equations. It should be no surprise that those techniques are easily
forgotten in short order! We will look at techniques for obtaining solutions - that is an essential part of
the subject. However, we will also attend to the “bigger picture,” in the hopes of giving the student an
overall understanding of the subject that will be more lasting than just a bunch of ‘recipes” for obtaining
solutions. Our study of the subject of differential equations will be guided by some overarching goals,
and essential questions related to those goals.

Goals

Upon completion of his/her study, the student should understand what differential equations, initial
value problems, and boundary value problems are, and what their solutions consist of. For ordinary
differential equations (ODEs) and associated initial value or boundary value problems, the student
should understand

• where such problems come from,

• what their solutions consist of,

• how solutions are obtained,

• how parameters of a system and initial or boundary conditions influence the nature of solutions.

Our pursuit of these goals will take place through the consideration of some related essential questions.
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Essential Questions:

• What are differential equations and why do we need them?

• What is a solution to a differential equation? What do we mean by a family of solutions to a
differential equation?

• What are initial value problems, and what are boundary value problems? How are the two alike
and how are they different?

• What is meant by an analytical solution? A qualitative solution? A numerical solution?

• How do we go about finding solutions to differential equations?

• How do parameters differ from variables? What is the role of parameters in differential equations?

• What is a mathematical model? How do differential equations and their solutions model systems
and their responses?

It has been demonstrated experimentally that retaining the things we learn can be enhanced if those
things are learned through spaced repetition. To that end, I have attempted to write this book like a
novel in which most of the characters are introduced early on, and are then developed and fleshed out
as the plot unfolds. A large number of the important concepts of differential equations (including at
least a little bit about partial differential equations) are first seen in Chapter 1, then taken up again at
later points in the book, where they are reinforced and expanded upon.

Those having prior knowledge of ordinary differential equations (in most cases, the instructor) will
notice that the focus of this book is more on the important concepts related to differential equations
(both ordinary and partial) rather than techniques for solving a broad range of types of equations. This
is based on my conviction that most students will quickly forget the specific procedures for solving
differential equations unless those techniques are used in other courses taken shortly after this one.
However, a person with a good working understanding of differential equations, initial value problems
and boundary value problems should be able to go to any of the many resources available and quickly
remind themselves of techniques previously learned, or even techniques not seen in this course!
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0.2 An Illustrative Example

In this section we will use a simple and perhaps familiar problem to illustrate many of the main ideas of
this book. In the process we will begin our quest to answer the essential questions. Let’s consider the
following situation and question: A rock is fired straight upward with a velocity of 60 feet per second,
from a height of 20 feet off the ground. What will the rock be doing after being fired?

We will begin by offering what we’ll call a qualitative solution
to the problem that was posed. Intuitively, we all know that the
ascent of the rock will slow as time goes on, until at some point
the rock will come to a complete stop at its maximum height. It
will then begin to pick up speed downward, falling until it hits the
ground. Letting h represent the height (above the ground) of the
rock and t represent time, we say the height is a function of the
time, and we could graph this behavior to obtain the graph shown
to the right. Note that the horizontal axis is for the variable of time,
so the graph does not indicate the the trajectory of the projectile.
The trajectory is straight up and then straight down.
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This qualitative solution might be fine for our purposes if all we wish to know is the general behavior
of the rock after being fired. Suppose, though, that we wanted more. We might wish to know how high
the rock was at any time after being fired, or the maximum height it obtains. We can determine those
things by finding what we’ll call an analytical solution to the problem, consisting of an equation that
gives the height of the rock at any time. To obtain such a solution, we will need to recall a few things
from differential calculus and physics:

• When the position of an object is changing, the rate at which its position is changing is its velocity,
given by the first derivative of position with respect to time.

• The rate at which the velocity of an object is changing with respect to time is the acceleration of
the object, which is also the second derivative of position with respect to time.

• F = ma, the force on an object is its mass times its acceleration.

Going back to our rock, its velocity and acceleration at any time are
dh

dt
and

d2h

dt2
. We will

assume that the only force acting on the rock is the force due to gravity. (Later we will consider the
possibility that air resistance applies a force to the rock as well.) The force of gravity on an object of
mass m has been experimentally determined to be mg, where g is the gravitational constant. For
the surface of the earth, that constant has value g = 9.8 m/sec2 or g = 32 ft/sec2. So we know

two things about the force acting on our rock: it is F = ma = m
d2h

dt2
and it is also −mg = −32m.

(Later we will discuss why this is negative.) We set our two expressions for force equal to each other,
then divide both sides by the mass m:

m
d2h

dt2
= −32m =⇒ d2h

dt2
= −32 (1)

Both the equations above are what we call differential equations, which simply means that they are
equations that contain derivatives. (They are equivalent equations, but we’ll use the second because
it is simpler. Note that the mass of the rock will not be needed from here on, and our result will be
independent of the mass.)

Our goal now is to determine an equation for h, in terms of t. We know that if the second
derivative is −32, as stated in (1) above, then the first derivative must be

dh

dt
= −32t+ C1, (2)
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where C1 is some unknown constant. Thus

h = −16t2 + C1t+ C2, (3)

where C2 is yet another unknown constant. This gives us an equation for the height as a function of
time, but it has the problem that it contains two unknown constants. This function is a solution to the
differential equation (1).

Because the highest (and only) derivative in (1) is a second derivative, the differential equation is
called a second order differential equation. What we see in (3) is typical - the solution to a second
order differential equation contains two arbitrary (meaning they can have any value) constants. However,
the differential equation is not the only information we have. We also know that h = 20 when t = 0,

and
dh

dt
= 60 when t = 0. These pieces of information are called initial conditions, and they will

usually be written in the function form

h(0) = 20, h′(0) = 60. (4)

We can substitute the second initial condition into (2) to get

60 = −32(0) + C1,

resulting in C1 = 60. If we substitute that value into (3) along with the first condition of (4), we get

20 = −16(0)2 + 60(0) +C2,

giving us that C2 = 20. Thus
h = −16t2 + 60t+ 20. (5)

This is our analytical solution to the problem, which allows us to compute the height of the projectile
at any time (until it hits the ground), as well as other things like its maximum height.

The solution (5) was determined from three pieces of information, the differential equation and
two initial conditions. Those three things together constitute what we call an initial value problem
consisting of a differential equation and any conditions we know are placed on our solution. In this case
the initial value problem is

d2h

dt2
= −32, h(0) = 20, h′(0) = 60

and its solution is h = −16t2+60t+20. Let’s now come back to the issue of the signs in our differential
equation and its solution, and let’s see if we can interpret what the solution is telling us.

When solving any problem that has a spatial component, we need to begin by establishing a coordi-
nate system. In this case the coordinate system is a vertical number line, with its origin (zero) at ground
level and the positive direction being up. So the fact that the rock starts 20 feet above the ground
means that h is positive 20 at time zero. The signs of velocity and acceleration must be consistent
with the coordinate system. When the rock is going upward its velocity is positive, which is why the
initial velocity of 60 is positive, and when the rock is going downward its velocity is negative. The
acceleration is always negative, because it is caused by gravity. When the rock is travelling upward the
acceleration is working against the velocity, causing the rock to slow down. When the rock is travelling
downward the acceleration is working with the velocity, causing the rock to speed up.

Now think about this: If we had launched the rock from ground level at time zero, and if there
was no gravity, the height of the rock at any time t would be h = 60t (“distance equals rate times
time”). If there was still no gravity, but we want the rock to start at an initial height of 20 feet, we
need to modify our equation to h = 60t+20. Finally, the effect of gravity needs to be added in, which
is where the −16t2 term comes in.
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Section 0.2 Exercises

1. (a) Determine the height of the rock after three seconds. Round your answer to the nearest
tenth, and include units.

(b) Determine when, to the nearest hundredth of a second, the rock is at a height of 50 feet.

2. The solution (5) of the differential equation gives the height of the rock as a function of time.
Although we could determine h values for all real number values of t, that would not make
sense in the context of the problem. Determine the values of t for which it really does make
sense to find values of h. We’ll call the set of all those values the domain of the solution (as
opposed to the domain of the function, which is all real numbers). Give your answer using interval
notation.

3. Determine the maximum height of the rock and when it occurs, both to the nearest tenth. Give
your answer as a complete sentence that includes both pieces of information asked for. (Hint: If
you are not sure how to approach this, read about the qualitative solution again for a hint.)

4. At some time that we’ll call zero you are 380 miles from Klamath Falls, on your way TO Klamath
Falls. You are driving at a constant speed of 58 mph. Let x represent your distance from
Klamath Falls and t the time after time zero.

(a) Draw a graph with time on the horizontal axis and distance from Klamath Falls on the
vertical axis, and draw a graph showing what is happening for you in your car, starting at
time zero.

(b) Write two mathematical statements representing each of the two numerical pieces of infor-
mation given. (One of those statements should contain a derivative, the other won’t.)

(c) The two pieces of information you gave in (a) constitute an initial value problem. (It is first
order, so its solution will only have one constant and only one initial condition is needed in
order to determine that constant.) Solve the initial value problem. That is, find an equation
for the distance x from Klamath Falls as a function of time t.

(d) Your answer to (c) is your analytical solution to the initial value problem. Explain how you
know that this agrees with your qualitative solution from (a). (If it doesn’t agree, fix the
problem and then answer the question.)

(e) What are the units of x and t? Give your answer as a sentence.
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1 Functions and Derivatives, Variables and Parameters

Learning Outcomes:

1. Understand functions and their derivatives, variables and parameters. Un-
derstand differential equations, initial and boundary value problems, and the
nature of their solutions.

Performance Criteria:

(a) Determine the independent and dependent variables for functions mod-
eling physical and biological situations. Give the domain(s) of the inde-
pendent variable(s).

(b) For a given physical or biological situation, sketch a graph showing the
qualitative behavior of the dependent variable over the domain (or part
of the domain, in the case of time) of the independent variable.

(c) Interpret derivatives in physical situations.

(d) Find functions whose derivatives are given constant multiples of the orig-
inal functions.

(e) Identify parameters and variables in functions or differential equations.

(f) Identify initial value problems and boundary value problems. Determine
initial and boundary conditions.

(g) Determine the independent and dependent variables for a given differen-
tial equation.

(h) Determine whether a function is a solution to an ordinary differential
equation (ODE); determine values of constants for which a function is a
solution to an ODE.

(i) Classify differential equations as ordinary or partial; classify ordinary dif-
ferential equations as linear or non-linear. Give the order of a differential
equation.

(j) Identify the functions a0(x), a1(x), ..., an(x) and f(x) for a linear or-
dinary differential equation. Classify linear ordinary differential equations
as homogenous or non-homogeneous.

(k) Write a first order ordinary differential equation in the form
dy

dx
= F (x, y) and identify the function F . Classify first-order

ordinary differential equations as separable or autonomous.

(l) Determine whether a function satisfies an initial value problem (IVP) or
boundary value problem (BVP); determine values of constants for which
a function satisfies an IVP or BVP.

Much of science and engineering is concerned with understanding the relationships between measur-
able, changing quantities that we call variables. Whenever possible we try to make these relationships
precise and compact by expressing them as equations relating variables; often such equations define
functions. In this chapter we begin by looking at ideas you should be familiar with (functions and

7



derivatives), but hopefully you will now see them in a deeper and more illuminating way than you did
in your algebra, trigonometry and calculus courses.

We then go on to introduce the idea of a differential equation, and we will see what we mean by a
solution to a differential equation, initial value problem, or boundary value problem. We will also learn
various classifications of differential equations. This is important in that the method used to solve a
differential equation depends on what type of equation it is.

It is valuable to understand these fundamental concepts before moving on to learning techniques for
solving differential equations, which are addressed in the remainder of the text.
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1.1 Functions and Variables

Performance Criteria:

1. (a) Determine the independent and dependent variables for functions model-
ing physical and biological situations. Give the domain of the independent
variable(s).

(b) For a given physical or biological situation, sketch a graph showing the
qualitative behavior of the dependent variable over the domain (or part
of the domain, in the case of time) of the independent variable.

As scientists and engineers, we are interested in relationships between measurable physical quantities,
like position, time, temperature, numbers or amounts of things, etc. The physical quantities of interest
are usually changing, so are called variables. When one physical quantity (variable) depends on one or
more other quantities (variables), the first quantity is said to be a function of the other variable(s).

⋄ Example 1.1(a): Suppose that a mass is hanging on a spring
that is attached to a ceiling, as shown to the right. If we lift the
mass, or pull it down, and let it go, it will begin to oscillate up
and down. Its height (relative to some fixed reference, like its
height before we lifted it or pulled it down) varies as time goes
on from when we start it in motion. We say that height is a
function of time.

spring

mass

⋄ Example 1.1(b): Consider a beam that extends horizontally
ten feet out from the side of a building, as shown to the right.
The beam will deflect (sag) some, with the distance below hor-
izontal being greater the farther out on the beam one looks.
The amount of deflection at a point on the beam is a function
of how far the point is from the wall the beam is embedded in.

deflection is
exaggerated

⋄ Example 1.1(c): Consider the equation y =
12

x2
. For any number other than zero that we

select for x, there is a corresponding value of y that can be determined by substituting the x
value and computing the resulting value of y. y depends on x, or y is a function of x

⋄ Example 1.1(d): A drumhead with a radius of 5 inches is struck by a drumstick. The drum
head vibrates up and down, with the height of the drumhead at a point determined by the location
of that point on the drumhead and how long it has been since the drumhead was struck. The
height of the drumhead is a function of the two-dimensional location on the drumhead and time.
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⋄ Example 1.1(e): Suppose that we have a tank containing 100 gallons of water with 10 pounds
of salt dissolved in the water, as shown to the left below. At some time we begin pumping a
0.3 pounds salt per gallon (of water) solution into the tank at two gallons per minute, mixing
it thoroughly with the solution in the tank. At the same time the solution in the tank is being
drained out at two gallons per minute as well. See the diagram to the right below.

100 gal
water

10 lbs salt

0.3 lb/gal at 2 gal/min

2 gal/min

100 gal
solution

A lbs salt

Because the rates of flow in and out of the tank are the same, the volume in the tank remains
constant at 100 gallons. The initial concentration of salt in the tank is 10 pounds/100 gallons =
0.1 pounds per gallon. Because the incoming solution has a different concentration, the amount
of salt in the tank will change as time goes on. (The amount will increase, since the concentration
of the incoming solution is higher than the concentration of the solution in the tank.) We can say
that the amount of salt in the tank is a function of time.

⋄ Example 1.1(f): Different points on the surface of a cube of metal one foot on a side are
exposed to different temperatures, with the temperature at each surface point held constant. The
cube eventually attains a temperature equilibrium, where each point on the interior of the cube
reaches some constant temperature. The temperature at any point in the cube is a function of
the three-dimensional location of the point.

In each of the above examples, one quantity (variable) is dependent on (is a function of) one or more
other quantities (variables). The variable that depends on the other variable(s) is called the dependent
variable, and the variable(s) that its value depends on is (are) called the independent variable(s).

⋄ Example 1.1(g): Give the dependent and independent variable(s) for each of Examples 1.1(a)

- (f).

Solution: Example 1.1(a): The dependent variable is the height of the mass, and the independent
variable is time.

Example 1.1(b): The dependent variable is the deflection of the beam at each point, and the
independent variable is the distance of each point from the wall in which the beam is embedded.

Example 1.1(c): The dependent variable is y, and the independent variable is x.

Example 1.1(d): The dependent variable is the height at each point on the drumhead, and the
independent variables are the location (in two-dimensional coordinates) of the point on the drum
head, and time. Thus there are three independent variables.

Example 1.1(e): The dependent variable is the amount of salt in the tank, and the independent
variable is time.
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Example 1.1(f): The dependent variable is the temperature at each point in the cube, and
the independent variables are the three coordinates giving the position of the point, in three
dimensions.

When studying phenomena like those given in Examples 1.1(a), (b), (d), (e) and (f), the first thing
we do after determining the variables is establish coordinate systems for the variables. The purpose for
this is to be able to attach a number (or ordered set of numbers) to each point in the domain, and for
different positions or states of the dependent variable:

• When position is an independent variable, we must establish a one (for the spring), two (for the
drumhead) or three (for the cube of metal) dimensional coordinate system. This coordinate system
will have an origin (zero point) at some convenient location, indication of which direction(s) is(are)
positive, and a scale on each axis. (The two space variables for the drumhead in Example 1.1(d)
would most likely be given using polar coordinates, since the head of the drum is circular.)

• If time is an independent variable, we must establish a “time coordinate system” by determining
when time zero is. (Of course all times after that are considered positive.) We must also decide
what the time units will be, providing a “scale” for time.

• It may not be clear that there is a coordinate system for the temperature in the cube of metal,
or the amount of salt in the tank. For the temperature, the decision whether to measure it in
degrees Fahrenheit or degrees Celsius is actually the establishing of a coordinate system, with a
zero point and a scale (both of which differ depending on which temperature scale is used).

• The choice of zero for the amount of salt in the tank will be the same regardless of how it is
measured, but the scale can change, depending on the units of measurement.

Once we’ve established the coordinate system(s) for the variable(s), we should determine the domain
of our function, which means the values of the independent variable(s) for which the dependent variable
will have values. The domain is usually given using inequalities or interval notation. Let’s look at some
examples.

⋄ Example 1.1(h): For Example 1.1(a), suppose that we pull the mass down and then let it go at

a time we call time zero (the origin of our time coordinate system). Time t is the independent
variable, and the values of it for which we are considering the height of the mass are t ≥ 0 or,
using interval notation, [0,∞).

⋄ Example 1.1(i): For Example 1.1(b), we will use a position coordinate system consisting of a

horizontal number line at the top of where the beam emerges from the wall (so along the dashed
line in the picture), with origin at the wall and positive values (in feet) in the direction of the
beam. Letting x represent the position along the beam, the domain is [0, 10] feet.

The four functions described in Examples 1.1(a), (b), (c) and (e) are functions of a single variable;
the functions in Examples 1.1(d) and (f) are examples of functions of more than one variable.
The differential equations associated with functions of one variable are called ordinary differential
equations, and the differential equations associated with functions of more than one variable are (out
of necessity) partial differential equations. In this class we will study primarily ordinary differential
equations.
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The function in Example 1.1(c) is a mathematical function, whereas all of the other functions
from Example 1.1 are not. (We might call them “physical functions.”) In your previous courses you
have studied a variety of types of mathematical functions, including polynomial, rational, exponential,
logarithmic, and trigonometric functions. The main reason that scientists and engineers are interested
in mathematics is that many physical situations can be mathematically modeled with mathematical
functions or equations. This means that we can find a mathematical function that reasonably well
describes the relationship between physical quantities. For a mass on a spring (Example 1.1(a)), if we
let y represent the height of the mass, then the equation that models the situation is y = A cos(bt),
where A and b are constants that depend on the spring and how far the mass is lifted or pulled
down before releasing it. We will see that the deflection of the beam in Example 1.1(b) can be modeled
with a fourth degree polynomial function, and the amount of salt in the tank of Example 1.1(c) can be
modeled with an exponential function.

Of course one tool we use to better understand a function is its graph. Suppose for Example 1.1(a)
we started the mass in motion by lifting it 1.5 inches and releasing it (with no upward or downward
force). Then the equation giving the height y at any time t would be of the form y = 1.5 cos(bt),
where b depends on the spring and the mass. Suppose that b = 5.2 (with appropriate units). Then
the graph would look like this:
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When graphing functions of one variable we always put the independent variable (often it will be time)
on the horizontal axis, and the dependent variable on the vertical axis. We can see from the graph
that the mass starts at a height of 1.5 inches above its equilibrium position (y = 0). It then moves
downward for the first 0.6 seconds of its motion, then back upward. It is back at its starting position
every 1.2 seconds, the period of its motion. This periodic up-and-down motion can be seen from the
graph. (Remember that the period T is the time at which bT = 2π, so T = 2π

b
.) Such behavior

is called simple harmonic motion, and will be examined in detail later in the course because of its
importance in science and engineering.

Note that even if we didn’t know the value of b in the equation y = 1.5 cos(bt) we could still
create the given graph, we just wouldn’t be able to put a scale on the time (horizontal) axis. In fact,
we could even create the graph without an equation, using our intuition of what we would expect to
happen. Let’s do that for the situation from Example 1.1(e).

⋄ Example 1.1(j): A tank contains 100 gallons of water with 10 pounds of salt dissolved in it.
At time zero a 0.3 pounds per gallon solution begins flowing into the tank at 2 gallons per minute
and, at the same time, thoroughly mixed solution is pumped out at 2 gallons per minute. (See
Example 1.1(e).) Sketch a graph of the amount of salt in the tank as a function of time.

Solution: The initial amount of salt in the tank is 10 pounds. We
know that as time goes on the concentration of salt in the tank
will approach that of the incoming solution, 0.3 pounds per gallon.
This means that the amount of salt in the tank will approach 0.3
lbs/gal × 100 gal = 30 pounds, resulting in the graph shown to
the right, where A represents the amount of salt, in pounds, and
t represents time, in minutes.

30

10

t

A
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NOTE: We have been using the notation sin(bt) or cos(bt) to indicate the sine or cosine of the
quantity bt. It gets to be a bit tiresome writing in the parentheses every time we have such an
expression, so we will just write sin bt or cos bt instead.

Section 1.1 Exercises To Solutions

1. Some material contains a radioactive substance that decays over time, so the amount of the
radioactive substance is decreasing. (It doesn’t just go away - it turns into another substance that
is not radioactive, in a series of steps. For example, uranium eventually turns into lead when it
decays.)

(a) Give the dependent and independent variables.

(b) Sketch a graph of the amount A of radioactive substance versus time t. Label each axis
with its variable - this will be expected for all graphs.

2. A student holds a one foot plastic ruler flat on the top of a table, with half of the ruler sticking
out and the other half pinned to the table by pressure from their hand. They then “tweak” the
end of the ruler, causing it to vibrate up and down. (This is roughly a combination of Examples
1.1(a) and (b).)

(a) Give the dependent and independent variables. (Hint: There are two independent variables.)

(b) Give the domains of the independent variables.

3. Consider the drumhead described in Example 1.1(e). Suppose that the position of any point on
the drumhead is given in polar coordinates (r, θ), with r measured in inches and θ in radians.
Suppose also that time is measured in seconds, with time zero being when the head of the drum
is struck by a drumstick. Give the domains of each of these three independent variables.

4. Consider the cube of metal described in Example 1.1(f). Suppose that we position the cube in
the first octant (where each of x, y and z is positive), with one vertex (corner) of the cube
at the origin and each edge from that vertex aligned with one of the three coordinate axes. Each
point in the cube then has some coordinates (x, y, z). Give the domains of each of these three
independent variables.

5. Consider again the scenario from Section 0.2, in which a rock is fired straight upward with a
velocity of 60 feet per second, from a height of 20 feet off the ground. In that section we derived
the equation

h = −16t2 + 60t+ 20

for the height h (in feet) of the rock at any time t (in seconds) after it was fired. Using the
equation, determine the domain of the independent variable time.

13



6. When a solid object with some initial temperature T0 is placed in a medium (like air or water)
with a constant temperature Tm, the object will get cooler or warmer (depending on whether
T0 is greater or less than Tm), with its temperature T approaching Tm. The rate at which
the temperature of the object changes is proportional to the difference between its temperature
T and the temperature Tm of the medium, so it cools or warms rapidly while its temperature is
far from Tm, but then the cooling or warming slows as the temperature of the object approaches
Tm.

(a) Suppose that an object with initial temperature T0 = 80◦ F is place in a water bath that is
held at Tm = 40◦ F. Sketch a graph of the temperature as a function of time. You should
be able to indicate two important values on the vertical axis.

(b) Repeat (a) for Tm = 40◦F and T0 = 30◦F.

(c) Repeat (a) for Tm = 40◦F and T0 = 40◦F.

7. (a) Suppose that a mass on a spring hangs motionless in its equilibrium position. At some time
zero it is set in motion by giving it a sharp blow downward, and there is no resistance after
that. Sketch the graph of the height of the mass as a function of time.

(b) Suppose now that the mass is set in motion by pulling it downward and simply releasing it,
and suppose also that the mass is hanging in an oil bath that resists its motion. Sketch the
graph of the height of the mass as a function of time.

8. As you are probably aware, populations (of people, rabbits, bacteria, etc.) tend to grow exponen-
tially when there are no other factors that might impeded that growth.

(a) The variables in such a situation are time and the number of individuals in the population.
Which variable is independent, and which is dependent?

(b) Using t for time and N for the number of individuals, sketch (and label, of course) a
graph showing growth of such a population.

(c) Often there are environmental conditions that lead to a carrying capacity for a given pop-
ulation, meaning an upper limit to how many individuals can exist. Suppose that 500 fish
are stocked in a sterile lake (no fish in it) that has a carrying capacity of 3000 fish. When
a population like this starts at well below the carrying capacity, it experiences “almost ex-
ponential” growth for a while, then the growth levels off as the population approaches the
carrying capacity. Sketch a graph of the fish population versus time. This sort of growth is
called logistic growth.

(d) Sketch a graph showing how you would expect the population of fish to behave if 5000 fish
were introduced into the same lake having a carrying capacity of 3000 fish.

14



In this course we will often be interested in just a few “families” of functions, like

y(t) = A sinωt+B cosωt, y = a+ be−rt, y(x) = a4x
4 + a3x

3 + a2x
2 + a1x+ a0,

where each of A, B, ω, a, b, r, a0, a1, a2, a3, a4 are constants that we will call parameters (more on
this in Section 1.3) and x, t, and y are variables. (ω is the Greek letter omega.) We will often omit
showing the dependence of y on x or t, as done for the second function above. The behavior of
each of the above functions remains roughly the same, but varies somewhat depending on the values of
the parameters. The point of the following exercises is to see what the graph of each type of function
looks like in general, and how the values of the parameters affect various aspects of the graph.

9. We begin with the graph of y = A sinωt+B cosωt.

(a) Sketch what you expect the graph to look like when A = 1, B = 0 and ω = 1. Sketch
a separate graph for A = 0, B = 1 and ω = 1. These two graphs should be familiar to
you. Do you have any idea what the graph would look like if A = B = ω = 1?

(b) Enter the function into Desmos, using w in place of ω. It will ask you if you want sliders
for A, w, B and t. select the first three, but not t. Check your answers to part (a) by
setting the sliders for the appropriate values.

(c) Recall that trigonometric graphs have three important characteristics:

• Amplitude - The maximum distance the function (y value) gets from the horizontal
axis. (We will assume no vertical shifting of the graph, which we don’t need in this
course.)

• Period - The distance along the horizontal axis from any point on the graph to where
the graph first repeats itself.

• Phase - This refers to the horizontal point on the graph where it crosses the vertical
axis. For example does the graph cross the vertical axis at a peak, trough, near the top
of an “upslope,” etc.?

Set B = 0. Now use the slider to change A. Which of the above characteristics does
changing A seem to affect? Which characteristics does changing w affect? Which
characteristic is not affected by changing A or w when B = 0?

(d) Now set B = 1 and change A. Which characteristic or characteristics does this affect?
What does changing w affect? How about changing B?

Note: We’ll see later how to take a function of the form y = A sinωt + B cosωt and turn it
into just a sine function of the form y = C sin(ωt+ φ), which is a little easier to work with.

10. The type of function we looked at in the previous exercise models a mass on a spring, as described
in Example 1.1(a), as well as certain electric circuits. We will see that ω is determined by the
mass and the spring, but A and B are determined by how the mass is set in motion. We
assume there is nothing resisting the motion of the mass, a situation we refer to as undamped. In
applications we often have some sort of resisting force called damping. It shows up mathematically
as an exponential function times a function of the sort we saw in Exercise 9:

y = e−rt(A sinωt+B cosωt), r > 0.

Speculate, based on either this function equation or the physical situation, what the graph of such
a function would look like. Check your conjecture using Desmos.
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11. Now we consider the function y = a+ be−rt, where r > 0.

(a) What do you expect the graph of this function to look like when a = 0 and b = r = 1?
Enter the function in Desmos, setting sliders for a, b and r and check your conjecture.
When working with this kind of function we are really just interested in its behavior for t ≥ 0.
You can restrict the graph in Desmos by entering {t > 0} after the function - do that now.

(b) For graphs of this sort of function, we are interested in three things:

• What the y-intercept is.

• What y value the graph tends toward as time goes on. This is the horizontal asymp-
tote of the graph, and it can be expressed in the language of calculus as the limit of
y as t goes to infinity: lim

t→∞
y(t)

• How rapidly the function approaches the aymptote.

How do the parameters a, b and r affect each of the above? Be as specific as possible.
Remember that we are only interested in positive values of r. For the applications we will
be interested in we will usually have only positive values of a, but b will sometimes be
positive, sometimes negative.

12. To the right is the graph from Example 1.1(j), for a tank containing
100 galloms of water with 10 pounds of salt dissolved in it. The
horizontal axis is time, in minutes, and the vertical axis is the amount
of salt dissolved in the water, in pounds.
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(a) Determine values of a, b and r for which the graph of A = a+ be−rt is the graph shown.
Use Desmos to check your answer.

(b) In part (a) you should have found that you cannot determine the value of r from the graph
given. Graph your answer to (a) with Desmos, for r = 0.1. Sketch what you see, using a
dotted line for the graph. Sketch in, as a dashed line and a solid line, what you think the
graph would look like for r = 0.05 and r = 0.5. Check your answers with Desmos.

13. You cook a potato in a microwave oven, and when you take it out, its temperature is 160◦F. It is
too hot to eat, so you decide to let it cool. In the meantime you start playing a video game, and
completely forget about the potato for several hours. The temperature in your house is 70◦F.

(a) Sketch a graph of what you expect the temperature T of the potato to be as a function of
time, t.

(b) Give values of a and b for which the graph of T = a+ be−rt has the appearance of your
graph from part (a).
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14. There are two facts that are helpful in understanding the appearance of the graph of y = a+be−rt,
where we emphasize again that we are only interested in r > 0. Those two facts are

e0 = 1 and lim
t→∞

e−rt = 0 for any fixed r > 0.

(a) What is the value of t at the y-intercept of the graph of y = a+ be−rt? Given that and
the above, what is the y-intercept of y = a+ be−rt?

(b) Based on the above, what is the limit of y as t goes to infinity? What does that tell us
about the graph of y = a+ be−rt?

15. Use what you discovered in the previous exercise to sketch the graph of each of the following
functions for some value of r > 0. Use Desmos to check your answers.

(a) y = 100 + 50e−rt (b) y = 100 − 50e−rt (c) y = 200e−rt

16. The functions that model how a horizontal beam deflects (a fancy way of saying “sags”) under
its own weight are always of the form

y = c4x
4 + c3x

3 + c2x
2 + c1x+ c0, (1)

where x is the distance along the beam from one end (usually the left end as we look at it from
the side), y is the amount of deflection, and c4, c3, c2, c1 and c0 are constants determined by
properties of the beam and how it is supported at its ends. We will consider the following ways
of supporting a beam at its ends:

• Embedded - The end of the beam is held at a fixed angle (which we will always take to be
horizontal) coming out of a wall.

• Pinned - Sometimes called simply supported. The end of the beam is held up on the end
by a hinged joint that allows it to pivot at that point.

• Free - The end of the beam is not supported at all. In this case the other end must be
embedded.

Give the Roman numeral of the form of equation (1) given below that models a ten foot horizontal
beam with the given left-right end conditions. Graph each function using Desmos to help you do
this, and enter {0 < x < 10} after each equation to restrict the graph to zero to ten feet.

(a) pinned-pinned (b) embedded-embedded (c) embedded-free

I. y = −0.001x4 + 0.02x3 − 0.1x2 II. y = −0.0001x4 + 0.004x3 − 0.06x2

III. y = −0.001x4 + 0.02x3 − x
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1.2 Derivatives and Differential Equations

Performance Criteria:

1. (c) Interpret derivatives in physical situations.

(d) Find functions whose derivatives are given constant multiples of the orig-
inal functions.

Scientists and engineers are usually concerned with the behavior of a system, which is a collection
of physical objects. Some examples of physical systems that we saw in the previous section and will see
again later include

• a mass on a spring, hanging from a “ceiling”

• a horizontal beam, supported somehow on one or both ends

• a tank or reservoir of liquid, with liquid added and removed over time

More complex examples of systems are electrical components and devices (including computers), heating
and cooling systems, mechanical systems, and constructed things like roads, building structures, bridges
and so on. (We will focus on systems of interest in mechanical, civil and electrical engineering, but
things like biological and sociological systems can be modeled using differential equations as well!)

In the previous section’s exercises you graphed the behaviors of some physical systems. Those graphs
aremodels of the systems’ behaviors; that is, they are human constructed descriptions of how the systems
behave. Such graphical models are good for giving us an overall qualitative idea of the behavior of a
system, but are generally inadequate if we would like to know precise values of the dependent variable
based on a value (or values in the case of more than one) of the independent variable(s). When we
desire such quantitative information, we attempt to develop an analytical model, which usually consists
of an equation of a function.

Analytical models for physical situations can often be developed from various principles and laws
of physics. The physical principles do not usually lead us directly to the functions that model physical
situations, but to equations involving derivatives of those functions. This is because what we usually
know is how our variables are changing in relationship with each other, and such change is described
with derivatives. Equations containing derivatives are called differential equations. In this section we
will review the concept of a derivative and see an example of a simple differential equation, along with
how it arises.

When you hear the word “derivative,” you may think of a process you learned in a first term calculus
class. Throughout this course it will be important that you can carry out the process of “finding a
derivative”; if you need review or practice, see Appendix B. In this section our concern is not the
mechanics of finding derivatives, but instead we wish to recall what derivatives are and what they mean.

To reiterate what was said in the previous section, a function is just a quantity that depends on one
or more other quantities, one in most cases that we will consider. Again, we refer to the first quantity
(the function) as the dependent variable and the second quantity, that it depends on, is the independent
variable. If we were to call the independent variable x and the dependent variable y, then you should

recall the Leibniz notation
dy

dx
for the derivative. This notation can be loosely interpreted as change

in y per unit of change in x. Technically speaking, any derivative of a function is really the derivative
of the dependent variable (which IS the function) with respect to the the independent variable. We
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sometimes use the notation y′ instead of
dy

dx
. Obviously it is easier to write y′, but that notation

does not indicate what the independent variable is and it does not suggest a ratio, or rate.
Let’s consider a couple examples of the meaning of the derivative in physical situations.

⋄ Example 1.2(a): Suppose again that we take a mass hanging from a ceiling on a spring, lift
it and let it go, and suppose the equation of motion is y = 1.5 cos 5.2t. The derivative of this

function is
dy

dt
= −7.8 sin 5.2t, a new function of the independent variable. This function’s value

at any time t can be interpreted as how fast the the height of the mass is changing with respect
to time, at that particular time. If the height units are inches and the time units seconds, then
the units of the derivative are inches

seconds = inches per second, indicating that the derivative of the
function y at a given time is the velocity of the mass at that time. For example, the derivative
at time 0.5 seconds is

dy

dt

∣
∣
∣
∣
t=0.5

= y′(0.5) = −7.8 sin[(5.2)(0.5)] = −4.02 in/sec,

telling us that the mass is moving downward (indicated by the negative sign) at about four inches
per second at one half second after being set in motion. NOTE: Your calculator will need to be
set in radians for all trigonometric computations in this course!

⋄ Example 1.2(b): Now recall the beam of Example 1.1(b), sticking out from a wall that it
is embedded in. If x represents a horizontal position along the beam and y represents the

deflection (“sag”) of the beam at that horizontal position, then the derivative
dy

dx
is the change

in deflection per unit of horizontal change, which is just the slope of the beam at that particular
point.

We’ll now take a break from actual physical situations to ask some questions about derivatives, in
a mathematical sense. After doing so, we’ll see that such questions relate directly to certain “real-life”
situations.

⋄ Example 1.2(c): Find a function whose derivative is seven times the function itself.

Solution: Note that the derivative of y = ekt, where k is a constant, is y′ = kekt. This
shows that exponential functions are essentially their own derivatives, with perhaps a constant
multiplier. If k was seven, the original function would be y = e7t and the derivative would be
y′ = 7e7t = 7y, seven times the original function y.

⋄ Example 1.2(d): Find a function whose second derivative is sixteen times the function itself.

Solution: Here we should again be expecting an exponential function, but it will get multiplied
twice because of the chain rule. Note that if y = e4t, then y′ = 4e4t and y′′ = 16e4t = 16y,
so y = e4t is the function we are looking for. But in fact it is not the function, but only one
such function. The function y = e−4t is another such function, as is y = 5e−4t. (You should
verify this last claim for yourself.) In fact, y = Ce−4t is a solution for any value of C. We will
see later why this is, and what we do about it.
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⋄ Example 1.2(e): Find a function whose derivative is −16 times the function itself.

Solution: The previous example shows that the desired function is not an exponential function,
as the only likely candidates were shown to have second derivatives that are positive sixteen times
the original function. What we want to note here is that if we take the derivative of sine or cosine
twice, we end up back at sine or cosine, respectively, but with opposite sign. However, each time
we take the derivative of a sine or cosine of kx, the chain rule gives us a factor of k on the
“outside” of the trig function. Thus we see that

y = sin 4x =⇒ y′ = 4cos 4x =⇒ y′′ = −16 sin 4x = −16y

y = cos 4x =⇒ y′ = −4 sin 4x =⇒ y′′ = −16 cos 4x = −16y

This shows that y = sin 4x and y = cos 4x are functions whose derivatives are −16 times
the original functions themselves.

Examples 1.2(c) and (d) show the importance of exponential functions in the study of derivatives and
differential equations. Regarding Example 1.2(e), we can see that if y = e4ix where i2 = −1,

y′ = 4ie4ix =⇒ y′′ = (4i)2e4ix = 16i2e4ix = −16e4ix = −16y. (1)

The same sort of computation would show that the second derivative of y = e−4ix would also be
−16y. Later we will see that these two functions are “equivalent” to the sine and cosine, in some
sense. The point, for now, is that the functions we are looking for are again exponential functions.

Consider Example 1.2(e) above. The words “the second derivative is −16 times the original
function” can be written symbolically as

d2y

dx2
= −16y, (2)

since the function is the dependent variable y. This is a differential equation, an equation containing
a derivative. (Differential equations can contain derivatives of any order. The order of a differential
equation is the highest order derivative occurring in the differential equation, so this is a second order
differential equation.) Any function that makes such an equation true is a solution to the differential
equation, so Example 1.2(e) shows that both y = sin 4x and y = cos 4x are both solutions to the
differential equation (2), and (1) shows that y = e4ix is as well. We will find later that every solution
to (2) is a function of the form

y = C1 sin 4x+ C2 cos 4x,

where C1 and C2 are constants that can be any numbers (and that must be able to be complex
numbers to account for the fact that y = e4ix is a solution).

We now show that Example 1.2(e) and equation (2) are not just an exercise in understanding
derivatives or a mathematical curiosity, but can arise from a physical situation. Suppose one end of a
spring is attached to a ceiling, as shown in Figure 1.2(a) at the top of the next page. We then hang an
object with mass m (we will refer to both the object itself and its mass as the “mass” - one must note
from the context which we are talking about) on the spring, extending it by a length l to where the
mass hangs in equilibrium. See Figure 1.2(b). There are two forces acting on the mass, a downward
force of mg, where g is the acceleration due to gravity, and an upward force of kl, where k is the
spring constant, a measure of how hard the spring “pulls back” when stretched. The spring constant
is a property of the particular spring. When the mass hangs in equilibrium these two force are equal in
magnitude to each other, but in opposite directions. This is expressed by mg = kl.
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Figure 1.2(a)

F = kl

F = mg

l

Figure 1.2(b)

0
y
l

y (pos)

F = k(l − y)

F = mg

Figure 1.2(c)

We will put a coordinate system (with a scale in appropriate length units, like inches) beside the mass,
with the zero at the point even with the top of the mass at rest and with the positive direction being
up. If we then lift the mass up to a position y0, where y0 < l, and release it, it will oscillate up and
down. If we assume (for now) that there is no resistance, it will oscillate between y0 and −y0 forever;
as noted in the previous section, this is called simple harmonic motion. Consider the mass when it is
at some position y in this oscillation, as shown in Figure 1.2(c) above. There will be an upward force
of k(l − y) due to the spring and a downward force of −mg (the negative indicating downward)
due to gravity. Remembering that force is mass times acceleration and that acceleration is the second
derivative of position with respect to time, the net force is then

F = ma = m
d2y

dt2
= k(l − y)−mg = kl − ky −mg = −ky,

since kl = mg.

Extracting the equation m
d2y

dt2
= −ky from the above and dividing both sides by m gives

d2y

dt2
= − k

m
y. If the values of k and m are such that

k

m
= 16, this becomes

d2y

dt2
= −16y, the

equation describing the situation from Example 1.2(e) (with the variable x replaced with t). Based
on the discussion from the previous page, the equation that models the motion of the mass is

y = C1 sin 4t+ C2 cos 4t. (3)

This is to be expected, as we know the mass will oscillate up and down. The values C1 and C2 will
depend on how the mass is set in motion (more on that in Section 1.4), but as long as k

m
= 16 we

will have a solution of the form (3). All of this shows that what seems like a whimsical mathematical
question about derivatives (posed in Example 1.2(e)) is actually very relevant for a practical application.

Section 1.2 Exercises To Solutions

1. Find the derivative of each function without using your calculator. You MAY use the course
formula sheet. Give your answers using correct derivative notation.

(a) y = 2 sin 3x (b) y = 4e−0.5t (c) x = t2 + 5t− 4

(d) y = 3.4 cos(1.3t− 0.9) (e) y = te−3t (f) x = 4e−2t sin(3t+ 5)

2. Find the second derivatives of the functions from parts (a) - (c) of Exercise 1. Give your answers
using correct derivative notation.
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3. The temperature T of an object (in degrees Fahrenheit) depends on time t, measured in

minutes, and
dT

dt
= 2.7 when t = 7.

(

We sometimes write this as
dT

dt

∣
∣
∣
∣
t=7

= 2.7

)

Interpret

the derivative in a sentence, using either increasing or decreasing.

4. The amount A of salt in a tank depends on the time t. If A is measured in pounds and

t is measured in minutes, interpret the fact that
dA

dt

∣
∣
∣
∣
t=12.5

= −1.3. Again, use increasing or

decreasing.

5. The height of a mass on a spring at time t is given by y, where t is in seconds and y is in
inches.

(a) Interpret the fact that
dy

dt
= −5 when t = 2.

(b) Interpret the fact that
d2y

dt2
= 3 when t = 2.

(c) Based on the values of these two derivatives, is the mass speeding up or slowing down at
time t = 2? Explain.

6. The number of bacteria in a test dish is denoted by N , and time t is measured in hours. Write

a sentence interpreting the fact that
dN

dt
is 430 when t = 5.4. Include one of the words

increasing or decreasing in your answer.

7. For this exercise, consider the beam of Examples 1.1(b) and 1.2(b). Note that deflection downward
is generally considered positive for this situation!

(a) Will the value of the derivative
dy

dx
be positive, or negative, for points x with x > 0?

(b) Suppose that 0 ≤ x1 < x2 ≤ 10. Which is greater, the absolute value of the derivative at
x1, or the absolute value of the derivative at x2?

8. (a) Find a function y(x) whose derivative is −3 times the original function. Is there more
than one such function? If so, give another.

(b) Find a function y(t) whose second derivative is −9 times the original function. Is there
more than one such function? If so, give another.

(c) Find a function x(t) whose second derivative is 9 times the original function. Is there
more than one such function? If so, give another.

(d) Find a function y(x) whose second derivative is −5 times the original function. Is there
more than one such function? If so, give another.

9. For each of the situations in Exercise 8, write a differential equation whose solution is the desired
function. (See the second paragraph after Example 1.2(e).) Use the given independent and
dependent variables, and give your answers using Leibniz notation.
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1.3 Parameters and Variables

Performance Criterion:

1. (e) Identify parameters and variables in functions or differential equations.

If you have not recently read the explanation of the spring-mass system at the end of the last section,
you should probably skim over it again before reading this section. Recall that for the spring-mass system,
the independent variable is time and the dependent variable is the height of the mass. Assuming no
resistance, once the mass is set in motion, it will exhibit periodic oscillation (simple harmonic motion).
It should be intuitively clear that changing either the amount of the mass or the stiffness of the spring
(expressed by the spring constant k) will change the period of oscillation. The mass m and the spring
constant k are what we call parameters, and they should not be confused with the variables, which
are time and the height of the mass. When working with real world mathematical models of physical
systems, parameters will show up in three places:

• As characteristics of the physical systems themselves, quantified by numerical values.

• As constants within differential equations.

• As constants in the solutions to differential equations.

Let’s illustrate these three manifestations of parameters using our spring-mass system. As mentioned
above, the two physical parameters are the mass of the object hanging on the spring, and the stiffness
of the spring, given by the spring constant. If the mass was m = 0.5 kg and the spring constant was
k = 8 N/m (Newtons per meter) the differential equation would be

0.5
d2y

dt2
= −8y.

Here we see the two physical parameters, characteristics of the physical system, showing up in the
differential equation. If we multiply both sides by two and subtract the right side from both sides we
obtain

d2y

dt2
+ 16y = 0,

where the 16 is the new parameter k
m
, which we often rename as ω2. In this case ω2 = 16 1

sec2
.

So the physical parameters k and m give us the parameter ω2 in the differential equation

d2y

dt2
+ ω2y = 0. (1)

As stated in the previous section, the most general solution to this equation is y = C1 sinωt +
C2 cosωt. The variables are t and y, and C1, C2 and ω are parameters. ω determines the period
of oscillation and C1 and C2 determine the amplitude and phase shift. The parameter ω depends

on the mass and spring constant

(

ω =

√

k

m

)

and the parameters C1 and C2 depend on how the

mass is set in motion, by what we will call initial conditions. In Sections 1.4 and 1.7 we will see what
initial conditions are and how they are used to determine C1 and C2.

We now consider the horizontal beam of Example 1.1(b). One might guess that some parameters
that determine the amount of deflection of the beam would be the material the beam is made of, the
thickness and cross-sectional shape of the beam (square, “I-beam,” etc.), the length of the beam, and
perhaps other things.
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⋄ Example 1.3(a): The differential equation, and its solution, for the beam of Example 1.1(b)
are

EI
d4y

dx4
= w and y =

w

24EI
x4 + c3x

3 + c2x
2 + c1x+ c0,

where E is Young’s modulus of elasticity of the material the beam is made of, I is the cross-
sectional moment of inertia of the beam about the “neutral axis,” and w is the weight per unit
of length. Give the variables and parameters for both the differential equation and the solution.

Solution: We can see from the derivative in the differential equation that the independent variable
is x and the dependent variable is y. The remaining letters all represent parameters: the modulus
of elasticity E, the cross-sectional moment of inertia I, and the weight per unit of length w.
In the solution we see these parameters again, combined as the single parameter w

24EI
, along

with four others, c0, c1, c2 and c3.

The last four parameters c0, c1, c2, and c3 in the solution will depend on the length of the beam
and how it is supported, in this case by being embedded in the wall at its left end and having no support
at the right end. These things are what are called boundary conditions. We’ll discuss them more
in the next section and Section 1.7, and look at specific applications involving boundary conditions in
Chapter 5.

In summary, the physical parameters are variables that can change from situation to situation, but
once the situation is determined the values of those parameters are constant. At that point, the only
things that change are the variables. The physical parameters then show up alone, or with each other,
as parameters in the differential equation modeling the physical situation. Finally, the solution to the
differential equation will be some familiar type of function like an exponential function, trigonometric
function or polynomial function, with its exact behavior determined by parameters that are dependent
on the parameters in the differential equation and the initial or boundary conditions.

NOTE: In this course we will never again refer to parameters as variables, and we will consider them
distinct from the variables of interest.

Section 1.3 Exercises To Solutions

1. As mentioned previously, when a solid object with some initial temperature T0 is placed in a
medium (like air or water) with a constant temperature Tm, the object’s temperature T will
approach Tm as time goes on. The rate at which the temperature of the object changes is
proportional to the difference between its temperature T and the temperature Tm of the
medium, giving us the differential equation

dT

dt
= k(Tm − T ),

where k is a constant dependent on the material the object is made from.

(a) Keeping in mind that parameters are quantities that vary from situation to situation but do
not change once the situation is fixed, give all of the parameters.

(b) Give the independent variable(s).

(c) Give the dependent variable.
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2. Suppose that a mass on a spring hangs motionless in its equilibrium position. At some time zero it
is set in motion by pulling it downward and simply releasing it, and suppose also that the mass is
hanging in an oil bath that resists its motion. The independent variable is time, and the dependent
variable is the height of the mass. Give as many physical parameters as you can think of for this
situation - there are three or four that occur to me.

3. When dealing with certain electrical circuits we obtain the differential equation and solution

L
di

dt
+Ri = E and i =

E

R
+

(

i0 −
E

R

)

e−
R

L
t.

Give the independent variable, dependent variable, and all the parameters.

4. At some time a guitar string is plucked, and the dependent variable that we are interested in is
the displacement of the string from its initial position.

(a) What is(are) the independent variable(s)?

(b) What are some physical parameters of importance?

5. Recall the situation of Example 1.1(d): A tank containing 100 gallons of water with 10 pounds
of salt dissolved in the water. At some time we begin pumping a 0.3 pounds salt per gallon (of
water) solution into the tank at two gallons per minute, mixing it thoroughly with the solution
in the tank. At the same time the solution in the tank is being drained out at two gallons per
minute as well. Our interest is the amount, in pounds, of salt in the tank at any time.

(a) What are the independent and dependent variables, in that order?

(b) What are the parameters?
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1.4 Initial Conditions and Boundary Conditions

Performance Criterion:

1. (f) Identify initial value problems and boundary value problems. Determine
initial or boundary conditions.

Recall Examples 1.1(a) and 1.1(b):

⋄ Example 1.1(a): Suppose that a mass is hanging on a spring
that is attached to a ceiling, as shown to the right. If we lift the
mass, or pull it down, and let it go, it will begin to oscillate up
and down. The height y of the mass (relative to some fixed
reference, like its height before we lifted it or pulled it down) is
a function of the time t that has elapsed since we set the mass
in motion.

spring

mass

⋄ Example 1.1(b): Consider a beam that extends horizontally
ten feet out from the side of a building, as shown to the right.
The beam will deflect (sag) some, with the distance below hor-
izontal being greater the farther out on the beam one looks.

deflection is
exaggerated

The differential equations modeling these two situations are

d2y

dt2
+

k

m
y = 0 and EI

d4y

dx4
= w,

where k, m, E, I and w are physical parameters, as described in the previous section. We’ve already
seen in Example 1.2(d) that a differential equation can have infinitely many different solutions, all of
which are obtained by varying one (or more) constants. In this case, the most general solutions to the
above two differential equations are

y = C1 sinωt+ C2 cosωt and y =
w

24EI
x4 + c3x

3 + c2x
2 + c1x+ c0,

where C1, C2, c3, c2, c1 and c0 are arbitrary (meaning they can have any values) constants differing
from, and not depending on, the parameters k, m, E, I and w. (Remember that we are case sensitive
in mathematics, science and engineering, so C1 and c1 are not necessarily the same value.) Note that
the number of such arbitrary constants in the solution of a differential equation is equal to the order of
the differential equation. (Again, the order of a differential equation is the highest order derivative
in the differential equation - more on this in Section 1.6.)

The height of the mass at any time t depends on the amount of the mass and the “stiffness” of
the spring (given quantitatively by the spring constant k), but it also depends on how we set the mass
in motion. It can be lifted or pulled down and let go, or given a blow, or some combination of these
things. The combination that sets it in motion are what are called initial conditions. Suppose that
we set the mass in motion by simply pulling it down by two units and then letting it go. Calling the
moment we let it go time zero, we would have that

y = −2 and
dy

dt
= 0 when t = 0.
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(Remember that the derivative is the velocity, so the second statement says that the mass has zero
velocity at the moment we let it go.) Using function notation and the fact that the derivative is the
function y′, this is usually expressed by

y(0) = −2, y′(0) = 0.

The two numbers −2 and 0 are called initial values, a term we will use interchangeably with initial
conditions, even though the concepts are slightly different. We will see later how these two pieces
of information can be used to determine the values of the constants C1 and C2 in the solution
y = C1 sinωt+ C2 cosωt.

Let’s now think about the horizontal beam. The independent variable is x, the horizontal distance
along the beam, measured from the wall. Time is not a variable at all; the beam deflects immediately
when put into place, then retains its displacement from then on. The deflection, though, is dependent
on what is going on at the two ends of the beam. At the left end the beam is what we call embedded.
The effect of this is two things: the displacement of the beam is zero at that point, and the slope of
the beam is zero right where it leaves the wall. We can express these two things by

y(0) = 0 and y′(0) = 0,

which are boundary conditions. The right end of the beam is “free,” which is described mathematically
by the boundary conditions

y′′(10) = 0 and y′′′(10) = 0.

We’ll discuss the origin of these two conditions a bit more in Chapter 5. Altogether we have four
boundary conditions

y(0) = 0, y′(0) = 0, y′′(10) = 0, y′′′(10) = 0

which allow us to determine the four constants c3, c2, c1 and c0 in the solution

y =
w

24EI
x4 + c3x

3 + c2x
2 + c1x+ c0.

The numerical values of zero for all these derivatives at x = 0 and x = 10 are boundary values. As
with initial values/initial conditions, we will blur the distinction between boundary values and boundary
conditions. Let’s now look at some more examples of initial and boundary conditions.

⋄ Example 1.4(a): Consider the mass on the spring, set in motion by lifting it one inch and
letting it go. Give the height and velocity of the mass at the time it is let go, using function
notation.

Solution: Taking up to be positive, at time zero (the moment we set the mass in motion) the
height of the mass is one inch, so we write y(0) = 1. Since we simply release the mass at time
zero, the velocity at time zero is zero. Recalling that velocity is the first derivative of position, we
can describe this by y′(0) = 0. The initial conditions are then y(0) = 1, y′(0) = 0.

⋄ Example 1.4(b): Consider the mass on the spring, this time setting it in motion by hitting it
downward at three inches per second from its position at rest. Give the initial conditions for the
height function y.

Solution: Because we are forcing the mass from its position at rest, its initial height is zero. This
is given using function notation by y(0) = 0. The fact that it has downward velocity of three
inches per second at time zero gives us the initial condition y′(0) = −3.
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⋄ Example 1.4(c): Suppose that the mass is set in motion by pulling it down two inches, then
giving it an upward velocity of five inches per second to begin. Give the initial conditions for the
height function y.

Solution: The initial conditions are y(0) = −2 and y′(0) = 5.

⋄ Example 1.4(d): Consider a twenty foot beam that is
embedded in walls at both ends, as shown to the right.
The beam will deflect downward some in the middle;
the deflection is exaggerated in the picture. Give the
boundary conditions for the beam.

Solution: The boundary conditions are y(0) = 0, y′(0) = 0, y(20) = 0 and y′(20) = 0.

This last example warrants a bit more thought. The independent variable is the distance along the
beam (most likely from the left wall) and the dependent variable is the amount of deflection downward.
(Again, standard convention for this sort of problem is that down is positive.) The shape the beam
takes, given by the deflections at all points, depends on the material the beam is made of, the design
(cross section) of the beam, and the way that the beam is supported at the ends. One might then think
that the type of support would be a parameter, but it is not. The type of support can be expressed as
values of the dependent variable and some of its derivatives, and that is what distinguishes the support
(boundary conditions or values) from the parameters. Similarly, the behavior of a mass on a spring is
dictated in part by how it is set in motion, but that can be described by values of the dependent variable
and its first derivative. Thus the way the mass is set in motion is given by initial conditions/values
rather than parameters.

We conclude this section with the following remarks:

• Situations in which time is the independent variable will have initial conditions.

• Situations in which position along a line is the independent variable will have boundary conditions.

• Situations where a function depends on both position and time will have both initial conditions
and boundary conditions. We will not see these, because they are described by partial differential
equations.

• Partial differential equations are also required when working with boundary conditions only, when
the function of interest is a function of more than one space variable. Such functions would arise
when dealing with sheets or solids, rather than beams, which can be thought of as one-dimensional
lines.

We will work primarily with initial conditions, but you will see boundary conditions later in the course
(Section 1.7 and Chapter 5).
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Section 1.4 Exercises To Solutions

1. In each of the following, the independent variable is given for a situation (the dependent variable
should be clear), along with initial or boundary conditions, in function form. For each, give every
initial or boundary condition in the form “variable = number when variable = number.”

(a) independent variable x, y(0) = 7, y′(0) = −3

(b) independent variable t, x(0) = 1, x′(0) = 5

(c) independent variable x, y(0) = 0, y′′(0) = 0, y(15) = 0, y′(0) = 0.

2. For each of the following, give the initial conditions for a mass on a spring that is set in motion in
the way described. Give the conditions using function notation, as done in Examples 1.4(a), (b)
and (c). Let the dependent variable in each case be y.

(a) The mass is pulled down five units and let go with no initial velocity.

(b) The mass is not displaced, but it is given an downward velocity of two units per second.

(c) The mass is lifted by one unit and given an upward velocity of two units per second.

(d) The mass is pulled down by three units and given an upward velocity of one unit per second.

3. If a mass on a spring is set in motion are there is no resistance to its vibration, it will oscillate
in the same manner forever. (Resistance to its motion we will call damping, and we’ll study its
effect in Chapters 3 and 4.) Assuming such conditions, sketch the graph of the displacement of
the mass at any time t for each of the sets of initial conditions listed in Exercise 2. Extend your
graph far enough to show at least two full periods. You will not be able to label a scale on the
horizontal axis, but for three of the cases you should be able to label the vertical axis with a scale.
Take care to make sure that the graph has the correct slope where it leaves the vertical axis.

4. There is one other condition (besides embedded or free) we’ll see at the end of a beam, called
simply supported or pinned. This means that the end is supported but allowed to pivot freely,
as shown in the diagram below and to the right. In that case the deflection at the end is zero,
and the second derivative of deflection is zero there as well. For each of the following scenarios,
give the boundary conditions for the beam, assuming a dependent variable of y.

(a) A 20 foot beam that is simply supported at its left end and
embedded at its right end.

(b) A 12 foot beam that is simply supported at both ends. x = 0 x = 10

5. Suppose that we have a 70 centimeter metal rod that is perfectly insulated along the length of the
rod, so that no heat can enter or leave along its length, but heat CAN enter or leave at its ends.
We then put the rod horizontally in front of us and consider a coordinate system that puts zero
at the left end of the rod and 70 cm at the right end, and we let u(x) represent the temperature
at any point x along the length of the rod, using our coordinate system.

Suppose also that we hold an ice cube (temperature 32◦ Fahrenheit at the left end and a hair
dryer blowing 115◦ F air on the right end. Because the independent variable is a space variable
x, this situation has boundary conditions. Give them, using function notation.
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1.5 Differential Equations and Their Solutions

Performance Criteria:

1. (g) Determine the independent and dependent variables for a given differen-
tial equation.

(h) Determine whether a function is a solution to an ordinary differential
equation (ODE); determine values of constants for which a function is a
solution to an ODE.

An equation that contains one or more derivatives is called a differential equation. Here are some
examples that we will be considering:

Equation 1:
dy

dx
+ 3y = 0 Equation 2: y′′ + 3y′ + 2y = 0

Equation 3: y′′ + 9y = 26e−2t Equation 4: 15.3
d4y

dx4
= 1.4

Equation 5:
dy

dx
=

x

y
Equation 6:

∂2u

∂x2
+

∂2u

∂y2
=

∂u

∂t

Note that equations 1, 2, 3 and 5 contain not only derivatives of the function y, but the function itself
as well. (We can really think of the function as the “zeroth” derivative.)

The first five of these equations are all ordinary differential equations, meaning that they contain
“ordinary” derivatives, which are appropriate when there is only one independent variable. The last one
contains partial derivatives (which are written with the symbol ∂ instead of d) and is called a partial
differential equation. (Some of you may have not yet taken a course in which you learn about partial
derivatives.) We often use the abbreviations ODE for ordinary differential equation and PDE for partial
differential equation. Video Discussion, 0:00 to 2:00

The order of a differential equation is the order of the highest derivative in the equation. Equations
1 and 5 above are first order, Equations 2, 3 and 6 are second order, and Equation 4 is fourth order. In
this course we will focus almost entirely on ordinary differential equations, and most of the equations
we will work with will be first or second order. Video Discussion, 2:00 to 3:40

When looking at a differential equation, it is often possible to determine the independent and
dependent variables of interest. Derivatives are always of the dependent variable, and with respect to
the independent variable (or one of the independent variables in the case of a function of more than
one variable). So for Equation 1, the dependent variable is y and the independent variable is x.

⋄ Example 1.5(a): Give the dependent and independent variables for the rest of the equations.

Solution: For Equations 4 and 5 the dependent variable is y and the independent variable is
x. For equation 3 the dependent variable is y, and since the derivative is an ordinary derivative
there must be only one independent variable, and it has to be t, the only other variable visible
in the equation. The dependent variable in Equation 2 is y, and it is not possible to determine
the independent variable in that case. Lastly, u is the dependent variable in Equation 6. There
are three independent variables, x, y and t, which is why partial derivatives are required. Any
situation with more than one independent variable will result in a partial differential equation.
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Is x = 5 a solution to 4x − 2 = 10? One way to answer this question is to substitute five for
x in the left hand side of the equation and see if it simplifies to become the right hand side. If it does,
then five is a solution to the equation:

4(5) − 2 = 20− 2 = 18 6= 10, so x = 5 is not a solution

On the other hand, x = 3 is a solution to 4x− 2 = 10:

4(3) − 2 = 12− 2 = 10, so x = 3 is a solution

What the above shows us is that a solution to an algebraic equation is a number that, when substituted
for the unknown value, makes the equation true. We should recall that some equations have more than
one solution. For example, both 3 and −3 are solutions to the equation x2 − 9 = 0.

In the case of a differential equation, a solution to the equation is NOT a number, it is a function.

Solution to a Differential Equation

A solution to a differential equation is a function for which the function and
its relevant derivatives can be substituted into the equation to obtain a true
statement.

There are some differential equations whose solutions are relations rather than functions; we’ll solve a
few of those, but for all of the applications we will consider, the solutions to the ODEs modeling the
situations will be functions.

When asked to verify that, or determine whether, a function is a solution to an ODE, you need to
show some work supporting whatever your conclusion is. The following example shows one way to do
this.

⋄ Example 1.5(b): Show that y = 5cos 4t is a solution to
d2y

dt2
= −16y.

Solution: We compute the left hand side (LHS) and right hand side (RHS) separately:

dy

dt
= −20 sin 4t =⇒ LHS =

d2y

dt2
= −80 cos 4t

RHS = −16(5 cos 4t) = −80 cos 4t

Because LHS = RHS, y = 5cos 4t is a solution to
d2y

dt2
= −16y.

For the above example the left hand side was just one derivative. When the left hand side is more
complicated, a standard method of verifying a solution is to first calculate any derivatives that appear
on the left hand side of the equation, then substitute them into the left hand side. If the right hand
side is fairly simple, we might be able to simplify the left side directly to the right hand side, as done in
the next example.
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⋄ Example 1.5(c): Determine whether y = Ce−2t, where C is any constant, is a solution to

the differential equation y′′ + 3y′ + 2y = 0. Another Example

Solution: First we see that y′ = Ce−2t(−2) = −2Ce−2t and y′′ = −2Ce−2t(−2) = 4Ce−2t,
so

LHS = 4Ce−2t + 3(−2Ce−2t) + 2(Ce−2t) = 4Ce−2t − 6Ce−2t + 2Ce−2t = 0 = RHS.

Therefore y = Ce−2t is a solution to y′′ + 3y′ + 2y = 0.

This last example shows that a differential equation can have an infinite number of solutions (since
C can be any real number), and we’ll see the same thing in the next example as well.

⋄ Example 1.5(d): Verify that y = C1 sin 3t+C2 cos 3t, where C1 and C2 are any constants,

is a solution to y′′ + 9y = 0.

Solution: First we see that y′ = 3C1 cos 3t − 3C2 sin 3t and y′′ = −9C1 sin 3t − 9C2 cos 3t.
Therefore

LHS = (−9C1 sin 3t− 9C2 cos 3t) + 9(C1 sin 3t+ C2 cos 3t) = 0 = RHS,

so y = C1 sin 3t+ C2 cos 3t is a solution to y′′ + 9y = 0.

In this last example the function y = C1 sin 3t+C2 cos 3t is a solution regardless of the values of
the parameters C1 and C2. Because C1 and C2 can take any values, we say they are arbitrary
constants. We will often use the lower case c and upper case C for arbitrary constants, sometimes
with subscripts like above. We call all the functions obtained by letting the constants take different
values a family of solutions for the differential equation. The solution to every first order equation
will contain a constant that can take on infinitely many values, and solutions to second order equations
contain two arbitrary constants, as in the above example. This may seem to contradict the result of
Example 1.5(c), but the most general solution in that case is y = C1e

−2t+C2e
−t; the solution verified

in that example is for the case in which C2 = 0. The fact that C1 and C2 are subscripted differently
means that they are probably, but not necessarily, different constants. Other letters will occasionally be
used as constants.

In this next example you will see a situation where a function is a solution only when the parameter
takes a certain value; in this case the constant (parameter) is NOT arbitrary.

⋄ Example 1.5(e): Determine any values of C for which y = Ce−2t is a solution to the

differential equation y′′ + 9y = 26e−2t.

Solution: The derivatives of the given function are y′ = −2Ce−2t and y′′ = 4Ce−2t. Substi-
tuting the second derivative into the left hand side of the ODE gives

LHS = 4Ce−2t + 9Ce−2t = 13Ce−2t.

y = Ce−2t is a solution only if LHS = RHS, which requires that 13C = 26. Therefore
y = Ce−2t is a solution to the differential equation y′′ + 9y = 26e−2t only when C = 2.
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The equation y′′ + 9y = 0 is what we will call the homogenous equation associated with the
equation y′′ + 9y = 26e−2t. (More on this later.) y′′ + 9y = 0 is a second order homogenous
equation, and Example 1.5(d) shows that the solution to the second order homogenous equation has
not one, but two, arbitrary constants. The function y = 2e−3t is what we call a particular solution to
the non-homogenous equation y′′ + 9y = 26e−2t. A particular solution is one for which the values
of constants are not arbitrary: The constant in this case must be two.

A family of solutions that has one arbitrary constant, like the family from Example 1.5(c), is often
referred to as a one-parameter family of solutions. The parameter is the constant C. The family
y = C1 sin 3t + C2 cos 3t from Example 1.5(d) is a two-parameter family of solutions, with the
parameters being C1 and C2. Solutions containing all possible arbitrary constants will be called
general solutions.

This section has contained a lot of information! Let’s summarize the important points:

• A solution to a differential equation is a function for which the function and its relevant
derivatives can be substituted into the equation to obtain a true statement.

• Solutions to first order differential equations contain one arbitrary constant, and solutions to
second order differential equations contain two arbitrary constants. All the solutions obtained by
letting constants take all possible values are called families of solutions.

• A solution to a differential equation that contains constants that are not arbitrary is called a
particular solution to the differential equation.

• A family that encompasses all possible solutions of a differential equation is called a general
solution to the differential equation.

• General solutions to first order differential equations contain one arbitrary constant, and general
solutions to second order differential equations contain two arbitrary constants. All the solutions
obtained by letting constants take all possible values are called families of solutions.

In Section 1.7 we will see that if we have initial or boundary conditions along with a differential equation,
the values of the arbitrary constants can be determined.

Section 1.5 Exercises To Solutions

1. For each of the following differential equations, determine the independent and dependent variables
when possible. (You should always be able to identify the dependent variable.)

(a)
dy

dx
− 2y = 0 (b) y′′ − y = 0 (c)

∂2u

∂t2
= 3

(
∂2u

∂x21
+

∂2u

∂x22
+

∂2u

∂x23

)

(d) y′′ + 9y = 26e−2t (e)
∂u

∂t
= 0.5

∂2u

∂x2
(f)

d2x

dt2
− 5

dx

dt
+ 6x = 10 sin t

(g) L
d2u

dx2
+ g sinu = 0 (h) EI

d4y

dx4
= w (i)

∂2u

∂t2
− c2

(
∂2u

∂r2
+

2

r

∂u

∂r

)

= 0

2. (a) For part (b) of the previous exercise you should not have been able to identify the independent
variable. Given that the solution is y = 3ex − 5e−x, what is the independent variable?

(b) The differential equation y′′ − 6y′ + 9y = 0 has solution y = C1e
3t + C2te

3t. What are
the independent and dependent variables?
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3. Is y = sin 2t a solution to
dy

dt
+ 2y = 0?

4. Is y = 3ex − 5e−x a solution to y′′ − y = 0?

5. (a) Verify that y = −5e−3x is a solution to
dy

dx
+ 3y = 0.

(b) Verify that y = Ce−3x, where C is any constant, is a solution to the same differential
equation.

6. (a) Verify that y = 2e−2t is a solution to the differential equation y′′+9y = 26e−2t and show
that y = 3e−2t is NOT a solution to the same differential equation.

(b) Verify that y = C1 sin(3t) + C2 cos(3t) + 2e−2t is a solution to the differential equation
y′′ + 9y = 26e−2t.

7. Determine values of constants A and B for which x = A sin t+ B cos t is a solution to the

differential equation
d2x

dt2
− 7

dx

dt
+ 10x = 8 sin t.

8. Consider the differential equation y′′ − 6y′ + 9y = 0.

(a) Verify that y = ce3t is a solution to the differential equation.

(b) Verify that y = cte3t is a solution to the differential equation.

9. Consider the differential equation
dy

dx
− y = 4e3x.

(a) Is there any value of c for which y = cex a solution to the equation? If so, what is the
value?

(b) Is there any value of c for which y = ce3x a solution to the equation? If so, what is the
value?

(c) Recall that a solution to a differential equation that cannot have an arbitrary constant in it
is called a particular solution to the equation. Give a particular solution to the differential

equation
dy

dx
− y = 4e3x.

(d) Is there any value of c for which y = cex a solution to the equation
dy

dx
− y = 0? If so,

what is the value?

10. Consider the ODE y′′ + 3y′ + 2y = 0. For this exercise the independent variable is t, not x!

(a) Because exponential functions are their own derivatives, it is conceivable that y = ert is a
solution for some constant value of r. Substitute it into the ODE.

(b) You should be able to factor ert out of the left side of your result from (a). Now eu is
not zero for any value of u. What does this imply about our situation? (The answer to
this is an equation!)

(c) Your answer to (b) should be an equation. Solve it to determine what value(s) r must
have in order for y = ert to be a solution. Write the solution(s) to the ODE.
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(d) You now should have at least one solution to the ODE. Write down all the solutions you
have found and check each.

11. Repeat Exercise 10 for the ODE 2y′′ + 3y′ + y = 0.

12. (a) Determine whether x = e−3t sin 2t is a solution to the ODE x′′ + 4x′ + 13x = 0. Note
that you will need the product rule when taking derivatives.

(b) Determine whether x = e−2t cos 3t is a solution to x′′ + 4x′ + 13x = 0.

13. An equation of the form ax2y′′+ bxy′+ cy = 0 is called an Euler equation. (Euler is pronounced
“oiler.”)

(a) Determine whether any of y = x, y = x2, y = x3 is a solution to the Euler equation
x2y′′ − 3xy′ + 4y = 0.

(b) Another Euler equation is 4x2y′′ + 4xy′ − y = 0. Show that y = C1x
1

2 + C2x
− 1

2 is a
solution to this equation.

(c) Assume that a solution to the Euler equation x2y′′ + 4xy′ + 2y = 0 has the form y = xr,
for some constant r. Substitute into the equation and do a bit of algebra to determine any
values of r for which y = xr is in fact a solution.
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1.6 Classification of Differential Equations

Performance Criteria:

1. (i) Classify differential equations as ordinary or partial; classify ordinary dif-
ferential equations as linear or non-linear. Give the order of a differential
equation.

(j) Identify the functions a0(x), a1(x), ..., an(x) and f(x) for a linear or-
dinary differential equation. Classify linear ordinary differential equations
as homogenous or non-homogeneous.

(k) Write a first order ordinary differential equation in the form
dy

dx
= F (x, y) and identify the function F . Classify first-order

ordinary differential equations as separable or autonomous.

There are many different classifications and types of differential equations; we will focus on just a
few classifications here. Let’s consider the following examples, most of which we saw in the previous
section.

Equation 1:
dy

dx
+ 3y = 0 Equation 2: x2y′′ + xy′ + x2y = 0

Equation 3: y′′ + 9y = 26e−2t Equation 4: 15.3
d4y

dx4
= 1.4

Equation 5:
dy

dx
=

x

y
Equation 6:

∂2u

∂x2
+

∂2u

∂y2
=

∂u

∂t

Here are the classifications we’ll be interested in: Video Discussion

• Ordinary differential equations (ODEs) versus partial differential equations (PDEs). We have
already discussed this; Equations 1 - 5 are ODEs and Equation 6 is a PDE. It is worth mentioning
here that a solution to an ODE is a function of just one variable, whereas a solution to a PDE is
a function of more than one variable. The solution to Equation 6 is a function u of the three
variables x, y and t.

• Differential equations are classified by order, which is the highest derivative occurring in the
equation. Equations 1 and 5 are first order, Equations 2, 3 and 6 are second order (PDEs are
classified by order the same way that ODEs are), and Equation 4 is fourth order.

• An ODE that can be written in the form

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · · + a2(x)

d2y

dx2
+ a1(x)

dy

dx
+ a0(x)y = f(x), (1)

where a0(x), ..., an(x) are functions of x (possibly constants), is called a linear ordinary
differential equation. Equations 1 through 4 are linear ODEs: Another Video Discussion

◦ Equation 1 is first order linear, with a1(x) = 1, a0(x) = 3 and f(x) = 0.

◦ Equation 2 is second order linear, with a2(x) = x2, a1(x) = x, a0(x) = x2 and f(x) = 0.
This particular equation is known as a Bessel equation of order zero (where “order” does not
refer to the order of the ODE - how confusing!). It is obtained when working with a PDE
called the wave equation, used for things like modeling the vibration of a drumhead.
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◦ Equation 3 is second order linear with a2(t) = 1, a1(t) = 0, a0(t) = 9 and f(t) = 26e−2t.
Note the variable is t, rather than x, because the independent variable in this case is t.

◦ Equation 4 is fourth order linear with a4(x) = 15.3, a3(x) = a2(x) = a1(x) = a0(x) =
0 and f(x) = 1.4.

• A linear equation, so an ODE of the form (1) above, is called homogeneous if f(x) = 0.
Equations 1 and 2 are homogeneous, Equations 3 and 4 are non-homogeneous. One must
be a bit careful, because there is another meaning of homogenous associated with ODEs! The
difference between the two uses must be determined by the context in which they are used. The
definition just given is the only one we’ll be using.

• If we multiply both sides of Equation 5 by y we get y
dy

dx
= x, which is not of the form (1).

Any effort to get the coefficient of
dy

dx
to be a function of x will fail, so Equation 5 is non-

linear. Note that if the original equation had instead been
dy

dx
=

y

x
, we could multiply both

sides by x and subtract y to get x
dy

dx
− y = 0. This equation IS linear, with a1(x) = x,

a0(x) = −1 and f(x) = 0.

Suppose that we have a first order ODE with independent variable x and dependent variable y. Such

an equation can always be written in the form
dy

dx
= F (x, y), where F is simply a function of the two

variables x and y. Consider for example the Equation B below; it can be written as
dy

dx
= x+ 2xy,

so F (x, y) = x+ 2xy for that equation.

A.
dy

dx
− x

y
= 0 B. y′ − 2xy = x C. y′ + 2y = y2 D. 5

dy

dx
− 3y = sinx

⋄ Example 1.6(a): Determine the functions F (x, y) for Equations A, C and D above.

Solution: Each of the equations can be solved for
dy

dx
to get

A.
dy

dx
=

x

y
C.

dy

dx
= y2 − 2y D.

dy

dx
=

3

5
y +

1

5
sinx

We can see now that the functions F for the three equations are

A. F (x, y) =
x

y
C. F (x, y) = y2 − 2y D. F (x, y) =

3

5
y +

1

5
sinx

We can now define two other categories of first order differential equations.

• When F is the product of a function of x and a function of y, written compactly as
F (x, y) = g(x)h(y), the ODE is called separable.

• When F is really just a function of y (so F (x, y) = f(y)) the ODE is called autonomous.
Note that by letting g(x) = 1, any autonomous equation is also separable (but not vice-versa!).
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⋄ Example 1.6(b): Determine whether any of the the equations

A.
dy

dx
− x

y
= 0 B. y′ − 2xy = x C. y′ + 2y = y2 D. 5

dy

dx
− 3y = sinx

are separable or autonomous.

Solution: The only one of the equations that can be written in the form
dy

dx
= f(y) is C, so it

is autonomous (and therefore separable as well). For Equation A, F (x, y) =
x

y
= x · 1

y
, so it is

separable, with g(x) = x and h(y) =
1

y
. For Equation B, F (x, y) = x + 2xy = x(1 + 2y),

so it is also separable, with g(x) = x again and h(y) = 1 + 2y. In the case of Equation D
F (x, y) = 3

5y +
1
5 sinx, which is clearly not just a function of y, so it is not autonomous. We

also see that it is not possible to write F (x, y) in the form g(x)h(y) either, so it is also not
separable.

We will see the significance of separable and autonomous equations later. For now we should note
a bit of algebra that can be performed with a separable equation. To begin with, we need to think of

the derivative
dy

dx
as being the quotient of the two differentials dy and dx. Treating each like we

would a variable, when we are working with a separable equation we can get all the x “stuff” on one
side of the equation and the y “stuff” on the other side:

dy

dx
− x

y
= 0

dy

dx
=

x

y

dy =
x

y
dx

y dy = x dx

Separable equations are often easy to find solutions for, as we’ll do in Chapter 2, and computations like
the above will be part of the process.

Section 1.6 Exercises To Solutions

1. List the letters of all the following that are ordinary differential equations. Assume that any letters
not used in derivatives represent constants except w(x) is a function of x.

(a)
dy

dx
− 2y = 0 (b) y′′ − y = 0 (c)

∂2u

∂t2
= 3

(
∂2u

∂x21
+

∂2u

∂x22
+

∂2u

∂x23

)

(d) y′′ + 9y = 26e−2t (e)
∂u

∂t
= 0.5

∂2u

∂x2
(f)

d2x

dt2
− 5

dx

dt
+ 6x = 10 sin t

(g) L
d2u

dx2
+ g sinu = 0 (h) EI

d4y

dx4
= w(x)w( (i) utt − c2(urr +

2
r
ur) = 0
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2. Give the order of each of the following ordinary differential equations. Assume that any letters
not used in derivatives represent constants.

(a)
dy

dt
− 2y = 0 (b) y′′ − y = 0 (c)

1

y

dy

dx
+ y = 1

(d) y′′ + 9y = 26e−2t (e)
1

x

dy

dx
+ y = 1 (f)

d2x

dt2
− 5

dx

dt
+ 6x = 10 sin t

(g) L
d2u

dx2
+ g sinu = 0 (h) EI

d4y

dx4
= w (i)

dy

dx
+ xy = 1

3. For each of the first order equations from Exercise 2, give the function F if the the equation

was to be written in the form
dy

dx
= F (x, y). (Use the appropriate variables for the equation.)

4. For each of the ODEs from Exercise 2 that are linear, give the values of the functions f , a0,
a1, a2, ... (Include the independent variable, like a1(x) = x2, for example.) If the independent
variable cannot be determined, use x.

5. For each of the first order equations from Exercise 2 that are separable, give the functions g and
h, using the appropriate independent variable.

6. Which of the first order equations from Exercise 2 are autonomous?
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1.7 Initial Value Problems and Boundary Value Problems

Performance Criterion:

1. (l) Determine whether a function satisfies an initial value problem (IVP) or
boundary value problem (BVP); determine values of constants for which
a function satisfies an IVP or BVP.

Initial Value Problems

Consider again the ODE
dy

dx
+ 3y = 0, for which any function of the form y = Ce−3x is a

solution. Suppose we impose the additional condition that y = 4 when x = 0. This is called an
initial condition and we often write such a condition in the form y(0) = 4, where the number four is
called an initial value. (As discussed in Section 1.4, we will often blur the distinction between initial
conditions and initial values.) Substituting these values into y = Ce−3x gives 4 = Ce−3(0), leading
to C = 4.

When we combine a differential equation with one or more initial values, we have what is called an
initial value problem (IVP). The solution to an initial value problem is a function or equation that
satisfies both the differential equation and the initial value(s). Thus y = 4e−3x is a solution to the
IVP

dy

dx
+ 3y = 0 , y(0) = 4

The term “initial” implies “starting,” so the independent variable for initial value problems is often time.
To be a solution to an initial value problem means the following:

Solution to an Initial Value Problem

A solution to an initial value problem is a function that is a solution to the
differential equation and that satisfies all of the initial conditions.

⋄ Example 1.7(a): Verify that y = 7
2e

−5t + 5
2 sin t− 1

2 cos t is the solution to the initial value
problem

dy

dt
+ 5y = 13 sin t, y(0) = 3

Solution:
dy

dt
= −35

2 e
−5t + 5

2 cos t+
1
2 sin t, so

LHS = −35
2 e

−5t + 5
2 cos t+

1
2 sin t+ 5

(
7
2e

−5t + 5
2 sin t− 1

2 cos t
)

= −35
2 e

−5t + 5
2 cos t+

1
2 sin t+

35
2 e

−5t + 25
2 sin t− 5

2 cos t

= 26
2 sin t

= 13 sin t

= RHS
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This shows that the function satisfies the differential equation. We must now show that the
function satisfies the initial condition. When t = 0,

y = 7
2e

−5(0) + 5
2 sin 0− 1

2 cos 0 = 7
2 + 0− 1

2 = 6
2 = 3,

so the function satisfies the initial condition also. Therefore it is a solution to the IVP.

We should observe in the above example that the process of checking the initial condition is easier than
checking the differential equation; this is often the case.

⋄ Example 1.7(b): Determine whether y = 5e−3t−2e3t is a solution to the initial value problem

y′′ − 9y = 0 , y(0) = 3 , y′(0) = −8

Solution: This time let’s check the initial conditions first. We see that y(0) = 5−2 = 3, so the
first initial condition is met. We next compute y′(t) = −15e−3t−6e3t, so y′(0) = −15−6 6= −8,
So the second initial condition is not met. Therefore the function is NOT a solution to the IVP.

Let’s reiterate that in order to be a solution to an IVP, the function must satisfy BOTH the ODE and
the initial conditions. Since the function in this last example failed to satisfy one of the initial conditions,
it doesn’t matter whether it satisfies the ODE or not (it does in this case), it still fails to satisfy the
IVP.

We will now see how initial values or boundary values are used to determine the values of arbitrary
constants for solutions to ODEs for which we also know initial or boundary conditions.

⋄ Example 1.7(c): It can be shown that Another Example

x = C1e
−t +C2e

−3t + 2 sin t (1)

is the general solution to the differential equation x′′ + 4x′ + 3x = 4 sin t + 8cos t. Find the
values of C1 and C2 for which the function also satisfies the initial conditions

x(0) = −2, x′(0) = 5.

Solution: First we can substitute t = 0 and x = −2 into (1) to get

−2 = C1 + C2. (2)

Next we compute the derivative of (1) to get x′ = −C1e
−t − 3C2e

−3t + 2cos t. Substituting
t = 0 and x′ = 5 into this gives us

5 = −C1 − 3C2 + 2. (3)

We can simply add (2) and (3) at this point to get

3 = −2C2 + 2,

which can then be solved to obtain C2 = −1
2 . We then substitute this value into (2) and solve

to obtain C1 = −3
2 .

Note that the above shows that
x = −3

2e
−t − 1

2e
−3t + 2 sin t

is a solution to the initial value problem

x′′ + 4x′ + 3x = 4 sin t+ 8cos t, x(0) = −2, x′(0) = 5.
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Boundary Value Problems

When the independent variable we are working with is distance along a line, rather than time, we
have boundary conditions rather than initial conditions. An example of such a situation occurs when
we model the deflection of a horizontal beam. Often when we have boundary conditions they are given
at two different values of the independent variable. The numerical values of the dependent variable that
describe the boundary conditions are called boundary values. A solution to a boundary value problem
is a function that satisfies both the differential equation and the boundary conditions.

⋄ Example 1.7(d): Determine whether y = C cos 2
3x is a a solution to the boundary value

problem
y′′ + 4

9y = 0, y′(0) = 0, y′(3π) = 0.

Solution: First we see that

y = C cos 2
3x =⇒ y′ = −2

3C sin 2
3x =⇒ y′′ = −4

9C cos 2
3x,

from which we get
y′′ + 4

9y = −4
9C cos 2

3x+ 4
9C cos 2

3x = 0,

so y = C cos 2
3x is a solution to the differential equation. Noting that we found y′ above, we

have

y′(0) = −2
3C sin 2

3(0) = 0 and y′(3π) = 2
3C sin 2

3(3π) =
2
3C sin 2π = 0.

These show that y = C cos 2
3x also satisfies the boundary condtions, so it is indeed a solution

to the boundary value problem.

⋄ Example 1.7(e): Consider the boundary value problem

y′′ + 1
4y = 0, y(0) = 3, y(π) = −4. (2)

Show that
y = C1 sin

1
2x+ C2 cos

1
2x (3)

is a solution to the ODE y′′ + 1
4y = 0. Then find values of C1 and C2 for which the function

(3) satisfies the boundary conditions y(0) = 3, y(π) = −4.

Solution: It is easy to calculate

y′ = 1
2C1 cos

1
2x− 1

2C2 sin
1
2x and y′′ = −1

4C1 sin
1
2x− 1

4C2 cos
1
2x,

leading to

y′′ + 1
4y = (−1

4C1 sin
1
2x− 1

4C2 cos
1

2
x) + 1

4(C1 sin
1
2x+ C2 cos

1
2x) = 0,

so y = C1 sin
1
2x+ C2 cos

1
2x is a solution to y′′ + 1

4y = 0.

For the boundary condition y(0) = 3 we substitute x = 0 and y = 3 into (3) to get

3 = C1 sin
1
2 (0) + C2 cos

1
2(0).

This gives us C2 = 3. Substituting x = π and y = −4 into (3) gives us C1 = −4.

We now know that y = −4 sin 1
2x+ 3cos 1

2x is a solution to the boundary value problem (2).
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Section 1.7 Exercises To Solutions

1. Verify that y = −1

x
+ 3 is a solution to the initial value problem

x2
dy

dx
= 1, y(1) = 2

2. Determine whether y = 2 sin(3t) + e−2t is a solution to the initial value problem

y′′ + 9y = 13e−2t, y(0) = 1, y′(0) = 4

3. For each of the following, determine whether the given function is a solution to the initial value
problem that is given after it. If it is not, tell why not.

(a) y = 1
4e

−x + 1
2e

2x + 3
4e

3x IVP: y′′ − y′ − 2y = e3x, y(0) = 3
2 , y′(0) = 1

(b) y = 3e−x + 1
2 sinx IVP: y′ + y = sinx, y(0) = 3

(c) y = 5
2e

x2 − 1
2 IVP:

dy

dx
− 2xy = x, y(0) = 2

(d) x = 2 sin 2t+ 3cos 2t IVP:
d2x

dt2
+ 4x = 0, x(0) = 3, x′(0) = 4

4. (a) y = Ce−2t + 3cos 2t is the general solution to the ODE y′ + 2y = 6cos 2t − 6 sin 2t.
Determine the solution to the initial value problem

y′ + 2y = 6cos 2t− 6 sin 2t, y(0) = 5.

(b) x = C1e
−t+C2e

−4t+3t+1 is the general solution to the ODE
d2x

dt2
+5

dx

dt
+5x = 12t+19.

Find the solution to the IVP

d2x

dt2
+ 5

dx

dt
+ 5x = 12t+ 19, x(0) = −2, x′(0) = 1.

(c) y = A sin
√
5 t + B cos

√
5 t is the general solution to the ODE y′′ + 5y = 0. Find the

solution to the initial value problem

y′′ + 5y = 0 , y(0) = −3, y′(0) = 2
3 .

(d) y = C1 sin 2t + C2 cos 2t + e−3t is the general solution to the ODE y′′ + 4y = 13e−3t.
Find the solution to the initial value problem

y′′ + 5y = 13e−3t , y(0) = 7, y′(0) = −4.
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5. We showed in Example 1.7(e) that y = C1 sin
1
2x + C2 cos

1
2x is a solution to the differential

equation y′′ + 1
4y = 0.

(a) Determine values of C1 and C2 for which y = C1 sin
1
2x+C2 cos

1
2x is a solution to the

boundary value problem

y′′ + 1
4y = 0, y′(0) = 1, y′(π) = 2.

Note that both boundary conditions are on the first derivative!

(b) Determine values of C1 and C2 for which y = C1 sin
1
2x+C2 cos

1
2x is a solution to the

boundary value problem

y′′ + 1
4y = 0, y(0) = 5, y′(2π) = −3.

6. In each of the following, a boundary value problem and function are givne. In each case, determine
whether the function is a solution to the boundary value problem (see Example 1.7(d)). If it is
not a solution, tell why not.

(a) BVP: y′′ + π2

25 y = 0, y(0) = 0, y′(5) = 0 Function: y = C sin π
5x

(b) BVP: y′′ + π2

25 y = 0, y(0) = 0, y(5) = 0 Function: y = C sin π
5x

(c) BVP: y′′ + 25
4 y = 0, y(0) = 0, y′(π) = 0 Function: y = C sin 5

2x

(d) BVP: y′′ + π
14y = 0, y′(0) = 0, y(7) = 0 Function: y = C cos π

14x

(e) BVP: y′′ + π2

25 y = 0, y′(0) = 0, y′(10) = 0 Function: y = C cos π
5x

(f) BVP: y′′ + 9
25y = 0, y(0) = 0, y′(5π) = 0 Function: y = C cos 3

5x
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1.8 Chapter 1 Summary

• For our purposes, a function is a dependent variable that depends on one or more independent
variables. (For most of this course we are concerned only with functions of one independent
variable.)

• The values of the independent variable for which values of the dependent variable are obtained
are called the domain of the function.

• The graph of a function gives us a quick way to determine the general behavior (sometimes called
the qualitative behavior) of the function.

• The derivative of a function gives the rate of change of the dependent variable with respect to
the independent variable.

• Exponential functions are essentially their own derivatives (of any order). Sine and cosine are
essentially their own second derivatives. “Essentially” means that the function and the derivative
differ only by a factor of (multiplication by) a constant.

• Differential equations are equations containing derivatives of a function. When the function is a
function of one variable, the differential equation is an ordinary differential equation; when the
function is a function of more than one variable, the differential equation is a partial differential
equation.

• Parameters are values that change from situation to situation, but that do not change once the
situation is set. Variables are values that change once the situation is set. Another way of looking
at this is that parameters are characteristics of the physical system, variables are quantities that
vary within the physical system.

• When examining a situation in which time is the independent variables, we generally have initial
conditions, which describe the state of the dependent variable at time zero (or some other point
in time).

• When considering a situation in which position in space (or along a rod, on a surface) is(are) the
independent variable(s), we have values of the dependent variable on the boundary of our domain.
These are called boundary values.

• Even though they are slightly different, we use initial values and initial conditions synonymously,
and the same for boundary values and boundary conditions. Technically, initial conditions are
physical states of the system at time zero and initial values are numerical values describing those
states. A similar distinction holds for boundary conditions and boundary values.

• A solution to a differential equation is a function (or relation) for which the function(relation) and
its relevant derivatives can be substituted into the equation to obtain a true statement.

• When a solution contains arbitrary constants we call it a family of solutions. A family that includes
all possible solutions to a differential equation is called a general solution; a solution that contains
no arbitrary constants is called a particular solution.

• General solutions to first order differential equations contain one arbitrary constant, and general
solutions to second order differential equations contain two arbitrary constants.

• To verify that a function is a solution to a differential equation, we substitute the function and its
derivative into the left side and see if the result is the right side, OR we substitute the function
and its derivatives into both sides and see if the results are equal.
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• We classify ordinary (and partial) differential equations:

– The order of a differential equation is the order of the highest derivative in the equation.

– In addition to classifying ordinary differential equations by order, we also classify them as
linear or non-linear.

– Linear ODEs are classified as homogeneous or non-homogeneous.

– First order ordinary differential equations can also be classified as separable (or not), and
autonomous (or not).

• Values of arbitrary constants are determined by initial (or boundary) conditions. For a first order
equation, one initial condition is needed to determine the one constant. For a second order
equation, two initial (or boundary) conditions are needed to determine the two constants.

• A differential equation together with either initial values or boundary values is called an initial
value problem or a boundary value problem.

• Recognizing the classification(s) of an ordinary differential equation is important for knowing how
to solve the equation.
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1.9 Chapter 1 Exercises

1. For the ten foot beam in Example 1.1(b), shown to the right, the
boundary value problem modeling the situation is given below.
In this exercise you will solve the boundary value problem.

d4y

dx4
= 2, y(0) = 0, y′(0) = 0, y′′(10) = 0, y′′′(10) = 0

deflection is
exaggerated

(a) The original equation can be written y(4) = 2. Given that y(4) is the derivative of
y(3) = y′′′, what must y(3) look like? Your answer should include a constant.

(b) Use the boundary condition y′′′(10) = 0 to determine the constant from your answer to
(a). Write the function y′′′ with that value substituted into your answer to (a).

(c) Now that you know y′′′, you can use the fact that it is the derivative of y′′ to find what
y′′ looks like. It contains a constant - use the boundary condition y′′(10) = 0 to find the
value of that constant. Then give y′′.

(d) Repeat to find y′, and then y.

2. In this exercise you will solve what is perhaps the easiest boundary value problem there is. Remem-
ber the situation from Exercise 5 of Section 1.4: A 70 centimeter metal rod is perfectly insulated
along the length of the rod, so that no heat can enter or leave along its length, but heat CAN
enter or leave at its ends. We impose a one-dimensional coordinate system that puts zero at the
left end of the rod and 70 cm at the right end, and we let u(x) represent the temperature at
any point x along the length of the rod, using our coordinate system. The temperature at the
left end of the rod is held at a constant temperature of 32◦ Fahrenheit and the right end is held
at 115◦ F.

We now leave the rod in this state for a very long (infinite) period of time. The temperature at
each point in the rod will eventually reach a constant value, called its equilibrium temperature.
Let u(x), for 0 ≤ x ≤ 70, represent the function giving the equilibrium temperature at every
point in the rod. Physical principles of heat flow dictate that the function u must satisfy the
following BVP:

d2u

dx2
= 0, u(0) = 32, u(70) = 115.

The equation
d2u

dx2
= 0 is called the one-dimensional Laplace’s equation or the steady-state

heat equation, and u(0) = 32 and u(70) = 115 are associated boundary values. Let’s solve
the boundary value problem!

(a) Draw a graph of what you think the equilibrium temperatures will look like. As we will always
do, put the independent variable x on the horizontal axis and the dependent variable u
(the temperature) on the vertical axis. Label each axis with its variable and the units for
that variable.

(b) The ODE can be written as u′′ = 0. Remembering that u′′ is the derivative of u′, what
sort of function must u′ be if it has a derivative of zero? Write an equation for u′.
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(c) What must u look like in order to have the derivative found in (b)? Write an equation for
u - it should contain two arbitrary constants.

(d) Substitute the first boundary condition into your answer to (b) to get an equation containing
both arbitrary constants but neither of the variables x or u. Repeat for the second boundary
condition.

(e) You now have a system of two equations containing the two unknown constants. Solve the
system to find their values.

(f) Give the function u that is the solution to the BVP. Would the graph of this function look
like what you drew for part (a)?

NOTE: When we have a similar problem, but for temperatures in a two-dimensional plate of metal
rather than a rod, the differential equation will be the two-dimensional Laplace’s equation

∂2u

∂x2
+

∂2u

∂y2
= 0.

This is a partial differential equation - we can tell by the facts that the derivatives are partial derivatives
and that there are two independent variables, x and y. You should be able to guess what the
three-dimensional Laplace’s equation would look like.

If we were to, instead of waiting for the temperatures to reach equilibrium in our rod, watch the
temperature as time progressed from time zero, then time itself would be an independent variable as
well. The temperature u(x, t) at any point and time in the rod is then a function of two variables,
and it obeys the one-dimensional heat equation

∂u

∂t
= κ

∂2u

∂x2
.

Here the constant κ is a parameter that depends on various properties of the material the rod is made
of. If our object was three dimensional, the corresponding heat equation would be

∂u

∂t
= κ

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)

.

When we work with Laplace’s equation or the heat equation in more than one dimension, the boundary
value situation becomes more complicated, as there are infinitely many boundary points. When working
with the heat equation (in any number of dimensions) there will also be infinitely many initial values.
In all of these cases the boundary values and initial values are given by functions rather than constants
(unless the functions happen to be constant functions!).

There are three important classes of partial differential equations, called elliptic, parabolic and hy-
perbolic. Laplace’s equation and the heat equation are the standard examples of elliptic and parabolic
equations, respectively. (Mathematicians love to call such examples “canonical” examples.) The canon-
ical example of a hyperbolic equation is the wave equation. In three dimensions the wave equation is
usually written as

∂2u

∂t2
= c2

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)

,

where c is a constant.
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2 First Order Equations

Learning Outcome:

2. Solve first order differential equations and initial value problems; set up and
solve first order differential equations modeling physical problems.

Performance Criteria:

(a) Solve first order ODEs and IVPs by separation of variables.

(b) Demonstrate the algebra involved in solving a relation in x and y for
y; in particular, change ln |y| = f(x) to y = g(x), showing all steps
clearly.

(c) Sketch solution curves to an ODE for different initial values. Given a set
of solution curves for a first order ODE, identify the one having a given
initial value.

(d) Sketch a small portion of the direction field for a first order ODE.

(e) Given the direction field and an initial value for a first order IVP, sketch
the solution curve.

(f) Use an integrating factor to solve a first order linear ODE or IVP.

(g) Determine whether an ODE is autonomous.

(h) Create a one-dimensional phase portrait for an autonomous ODE.

(i) Determine critical points/equilibrium solutions of an autonomous ODE,
and identify each as stable, unstable or semi-stable.

(j) Sketch solution curves of an autonomous ODE for various initial values.

(k) Solve an applied problem modeled by a first order ODE using separation
of variables or an integrating factor.

(l) Give an ODE or IVP that models a given physical situation involving
growth or decay, mixing, Newton’s Law of Cooling or an RL circuit.

(m) Sketch the graph of the solution to a mixing or Newton’s Law of Cooling
problem, indicating the initial value and the steady-state asymptote.

(n) Identify the transient and steady-state parts of the solution to a first
order ODE.

In the first chapter we found out what what ordinary differential equations (ODEs), initial value
problems (IVPs) and boundary value problems (BVPs) are, and what it means for a function to be a
solution to an ODE, IVP or BVP. We then saw how to determine whether a function is a solution to an
ODE, IVP or BVP, and we looked at a few “real world” situations where ODEs, BVPs and IVPs arise
from physical principles.

Our goal for the rest of the course is to solve ODEs, IVPs and BVPs and to see how the ODEs,
IVPs, BVPs and their solutions apply to real situations. We can “solve” ODEs (and PDEs) in three
ways:

• Analytically, which means “paper and pencil” methods that give exact solutions in the form of
algebraic equations.
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• Qualitatively, which means determining the general behavior of solutions without actually finding
function values. Results of qualitative methods are often expressed graphically.

• Numerical methods which result in values of solutions only at discrete points in time or space.
Results of numerical methods are often expressed graphically or as tables of values.

In this chapter you will learn how to find solutions qualitatively and analytically for first order ODEs
and IVPs. (Numercial methods are discussed in Appendix C.) You will see two analytical methods,
separation of variables and the integrating factor method.

• Separation of variables is the simpler of the two methods, but it only works for separable ODEs,
which you learned about in Section 1.6. It is a useful method to look at because when it works
it is fairly simple to execute, and it provides a good opportunity to review integration, which we
will need for the other method as well.

• Solving with integrating factors is a method that can be used to solve any linear first order ODE,
whether it is separable or not, as long as certain integrals can be found. The method of solution
is more complicated than separation of variables, but not necessarily any more difficult to execute
once you learn it.

After learning these two methods we will again look at applications, but only for first order ODEs and
IVPs at this time.
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2.1 Solving By Separation of Variables

Performance Criteria:

2. (a) Solve first order ODEs and IVPs by separation of variables.

(b) Demonstrate the algebra involved in solving a relation in x and y for
y; in particular, change ln |y| = f(x) to y = g(x), showing all steps
clearly.

So far you have learned how to determine whether a function is a solution to a differential equation,
initial value problem or boundary value problem. But the question remains, “How do we find solutions
to differential equations?” We will spend much of the course learning some analytical methods for
finding solutions. If the ODE is separable, we can apply the simplest method for solving differential
equations, called separation of variables. The bad news is that separation of variables only “works”
for separable (so necessarily also first order) equations; the good news is that those sorts of equations
actually occur in some “real life” situations. Let’s look at an example of how we solve a separable
equation. Video Discussion

⋄ Example 2.1(a): Solve the differential equation y′ − 6 sin 3x

y
= 0. Another Example

Solution: Note that we can write the ODE as
dy

dx
= 6 sin 3x · 1

y
= g(x)h(y), where g(x) =

6 sin 3x and h(y) =
1

y
. (It doesn’t really matter where the 6 is, it can be included in either

g or h.) Therefore the ODE is separable; let’s separate the variables and solve:

y′ − 6 sin 3x

y
= 0 The original equation.

dy

dx
=

6 sin 3x

y
Change to dy

dx
notation and get the term with the

derivative alone on one side.

dy =
6 sin 3x

y
dx Multiply both sides by dx.

y dy = 6 sin 3x dx Do some algebra to get all the “x stuff” on one side
and the “y stuff” on the other. At this point the
variables have been separated.

∫

y dy =

∫

6 sin 3x dx Integrate both sides.

1
2y

2 + C1 = −2 cos 3x+ C2 Compute the integrals.

1
2y

2 = −2 cos 3x+ C Subtract C1 from both sides and let C = C2 − C1.
DO NOT solve for y unless asked to.

The resulting solution for the above example is not a function, but is instead a relation. In some cases
we will wish to solve for y as a function of x (or whatever other variables we might be using), but
you should only do so when asked to.
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In the next example you will see a simple, but a very useful, type of differential equations.

⋄ Example 2.1(b): Solve the differential equation
dy

dt
+ 0.5y = 0 by separation of variables,

and solve the result for y.

Solution: First let’s solve the ODE by separation of variables:

dy

dt
+ 0.5y = 0

dy

dt
= −0.5y

dy = −0.5y dt

dy

y
= −0.5 dt

∫
dy

y
=

∫

−0.5 dt

ln |y|+ C1 = −0.5t+ C2

ln |y| = −0.5t+ C3

where C3 = C2 − C1. We now solve for |y|, using the facts that the inverse of the natural
logarithm is the exponential function with base e and if |x| = u, then x = ±u (the definition
of absolute value):

ln |y| = −0.5t+ C3

eln |y| = e−0.5t+C3 take e to the power of each side

|y| = e−0.5t eC3 inverse of natural log and xaxb = xa+b

|y| = C4e
−0.5t eC3 is just another constant, which we call C4

y = ±C4e
−0.5t the definition of absolute value

y = Ce−0.5t “absorb” the ± into C4, calling the result C

The last step above might seem a bit “fishy,” but it is valid. In most cases we have initial values, which
then determine the constant C, including its sign:

⋄ Example 2.1(c): Solve the initial value problem
dy

dt
+ 0.5y = 0, y(0) = 7.3.

Solution: We already solved the differential equation in the previous example, so we just need to
find the value of the constant by substituting the initial values into the solution y = Ce−0.5t:

7.3 = Ce−0.5(0)

7.3 = C

The solution to the IVP is y = 7.3e−0.5t.
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Don’t assume that the the constant is always the initial value!

⋄ Example 2.1(d): Solve the initial value problem y′ − 6 sin 3x

y
= 0, y(0) = 4.

Solution: We already solved the differential equation in Example 2.1(a), so we just need to find
the value of the constant. Substituting x = 0 and y = 4 into the solution 1

2y
2 = −2 cos 3x+C:

1
2(4)

2 = −2 cos 3(0) + C

8 = −2 +C

C = 10

The solution to the IVP is 1
2y

2 = −2 cos 3x+ 10.

The next, and last, example in this section illustrates something we will see again soon.

⋄ Example 2.1(e): Solve the ODE (x2 + 4x− 5)y′ = x+ 17.

Solution: The derivative y′ is
dy

dx
. When we separate the variables we get

dy =
x+ 17

x2 + 4x− 5
dx.

If we do the partial fraction decomposition of the fraction on the right side (see Example A.4(a))
we can proceed as follows:

dy =

(
3

x− 1
− 2

x+ 5

)

dx

∫

dy =

∫ (
3

x− 1
− 2

x+ 5

)

dx

∫

dy =

∫
3

x− 1
dx−

∫
2

x+ 5
dx

y + C1 = 3

∫
dx

x− 1
− 2

∫
dx

x+ 5

y + C1 = 3 ln |x− 1|+ C2 − 2 ln |x+ 5|+ C3

From here we can combine the constants and apply properties of logarithms to obtain

y = ln |x− 1|3 − ln |x+ 5|2 + C

y = ln
|x− 1|3
|x+ 5|2 + C,

which can also be written as

y = ln

∣
∣
∣
∣

(x− 1)3

(x+ 5)2

∣
∣
∣
∣
+ C.

53

https://www.youtube.com/watch?v=fBb68MsuAAk


Section 2.1 Exercises To Solutions

1. Use separation of variables to solve each of the following ODEs. Don’t solve for y.

(a)
dy

dx
= −x sec y (d) y′ =

y

2x+ 3

(b) dx+ x3y dy = 0 (e) x2 dy = ey dx

(c) x2 + y4
dy

dx
= 0 (f) y′ =

5x+ 3

y

2. Solve each of the following initial value problems. DO NOT solve for y, and give constants
in exact form.

(a) y′ = xy, y(1) = 3 (c)
dy

dx

ey

x
= 3, y(0) = 2

(b) x
dx

dt
+ 5t = 3, x(2) = 4 (d) y′ = y4 cos t, y(0) = 2

3. Some of the following initial value problems can be solved by separation of variables. Solve the
ones that CAN be solved by that method. DO solve for y and give constants in exact form
again.

(a)
dy

dx
− 3y = 0 , y(0) = 4 (b) x

dy

dx
− y = x , y(1) = 2

(c) y′ − 4xy = 0 , y(0) = 2 (d) y′ − 2x = xy , y(2) = 5

(e)
dy

dx
− y = e3x , y(0) = 4 (f)

dy

dx
=

y − 1

x+ 3
, y(1) = 3

4. (a) Solve the initial value problem y′ − 2xe−y = e−y , y(0) = 0.

(b) Solve the initial value problem y′ − 2xe−y = e−y , y(1) = 3. Give the exact form for
the unknown constant.

5. (a) Solve the differential equation y′ + 2ty = 0. You should get ln y = −t2 + C.

(b) We now want to get y as a function of t. “e” both sides of the equation and use the
fact that elnu = u. Use also the facts that xa+b = xaxb and e raised to a constant
power is yet another constant. You should now have a family of solutions to the differential
equation.

(c) Use the initial condition y(0) = 7 to determine the value of the arbitrary constant. You
now have a solution to the initial value problem.
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6. Later we will solve certain second order linear ODEs using a method called reduction of order.
At one point in the process we will need to solve first order ODEs that will be expressed with
independent variable x and dependent variable v. An example of such an equation is the rather
harmless looking equation

xv′ + v = 0.

Solving this requires a bit of delicate handling - you will be led through the process in this exercise.

(a) Separate the variables, noting that x cannot be zero.

(b) When integrating the right side, note that there is a negative sign that can be taken out of
the integral.

(c) The result of integrating the right side is − ln |x|. Apply the property of logarithms stating
that log(uc) = c log u, and combine constants as usual.

(d) “e” both sides and apply the fact that |u|r = |ur| when ur is defined.

(e) Apply the fact that if |u| = C|v|, then u = ±Cv, absorb the ± into the constant, get
rid of the negative exponent and you are done!

7. Solve each of the following ODEs. You will use separation of variables and partial fraction de-
composition for each.

(a) (x2 + 3x)
dy

dx
= 2x+ 3 (b) (x2 + 3x)

dy

dx
= 3

(c) (x2 − 3x − 10)
dy

dx
= −14 (see Exercise 2(b) from Appendix A.4 to check your partial

fraction decomposition)

8. In this exercise you will solve the differential equation
dy

dx
= −1

3y
2+y with various initial values.

This will lead into Sections 2.2 and 2.4, and will illustrate the sort of calculations that we must
perform to solve certain applied problems related to something called the logistic equation. Some
of these calculations are not really needed but make the expressions involved a bit simpler.

(a) Solve this system by separation of variables and partial fraction decomposition. (Be sure
to begin by multiplying both sides by −3 to clear the fraction.) This situation is a bit
different from the other ones you’ve encountered, in that you will be doing the partial
fraction decomposition with the dependent variable this time.

(b) Check that your answer to (a) agrees with the solution given in the back of the book. Now
“e” both sides, putting the right side in the form demonstrated in Example 2.1(b). As in
that example, the absolute value can be removed.

(c) Now here comes a bit of algebra: Get rid of the fraction on the left by multiplying both sides
by its denominator. Multiply both sides by e−x and then solve for y. This is the solution
to the ODE.

(d) Determine the values of the constant, and then the solution to the corresponding initial
value, for each of the following initial conditions:

y(0) = −1
2 , y(0) = 0, y(0) = 1, y(0) = 4

DO NOT give your answers as complex fractions: Multiply the numerator and denominator
both by the same value in order to eliminate smaller fractions within them.
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(e) Use your calculator or a graphing utility like www.desmos.com to graph your solutions. (For
y(0) = −1

2 we want only the part of the solution that goes through that initial value.)
Sketch a single grid with all four solutions on it. We call these solution curves for the ODE,
each corresponding to a different initial value. In Section 2.4 we will see how to obtain these
curves without even solving the ODE!

(f) Remembering that e−x → 0 as x → ∞, give the limit of each of your solutions from part
(d). This should agree with what you see in the graph from (e).

(g) Attempt to determine the value of the constant for the initial condition y(0) = 3. What
happens/what do you get?
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2.2 Solution Curves and Direction Fields

Performance Criteria:

2. (c) Sketch solution curves to an ODE for different initial values. Given a
set of solution curves for a first order ODE, identify the one having a
given initial value.

(d) Sketch a small portion of the direction field for a first order ODE.

(e) Given the direction field and an initial value for a first order IVP, sketch
the solution curve.

Suppose that a tank contains 80 gallons of water with 10 pounds of salt dissolved in it. Fluid with
a 0.3 pounds per gallon salt concentration is being pumped into the tank at a rate of 7 gallons per
minute. The fluid is continually mixed and, at the same time, the fluid is being drained from the tank
at a rate of 7 gallons per minute. (This is similar to the situation from Example 1.1(c).)

A quick computation reveals that the initial concentration of the solution in the tank is 0.125 pounds
per gallon, less than the concentration of the fluid that is replacing it. Therefore the concentration of the
fluid in the tank will increase, but it can never exceed the concentration of the incoming fluid. If all of
the fluid in the tank had the concentration of the incoming fluid, there would be (0.3)(80) = 24 pounds
of salt. If we were then to graph the amount of salt in the tank as a function of time we would get the
solid curve graphed below and to the right. The limit of the amount of salt in the tank is 24 pounds,
indicated by the dotted line.

Now suppose that the tank had A0 = 60 pounds of
salt initially, giving an initial concentration of 0.5 pounds
per gallon, higher than the concentration of the incoming
fluid. In this case the amount of salt in the tank will
decrease, with a limit of 24 pounds again. The dashed
line on the graph to the right shows the amount of salt as a
function of time, for the initial amount of 60 pounds. The
dotted curve is the solution curve for the initial amount
of 24 pounds, and it is also the asymptote for the other
solutions.
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As we saw before, the situation with the tank can be modeled with a differential equation, and the
general solution to that differential equation is a family of functions. The graphs of the functions in the
family are called solution curves for the ODE. Each curve is associated with a particular initial value.
The graph above shows the graphs of the solutions for the initial values 10, 24 and 60 pounds of salt in
the tank. Notice that none of the solution curves cross each other; this is not always the case, but will
be for most of the ODEs that we’ll look at. For an initial salt amount of 15 pounds, the solution curve
will lie midway between the curves for initial amounts of 10 and 24 pounds, without crossing either.

In the exercises you will use your calculator or a graphing utility to plot solution curves for various
ODEs.

Direction Fields

To obtain a graph like the one above we need to either find actual solutions to the differential
equation for various initial values, or we have to have a good intuitive idea of what is happening. What
if we don’t have either of those two things? Well, for first order equations it is usually fairly easy to
determine what solution curves look like from just the differential equation itself, as we will now see.
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Consider the first order linear differential equation
dy

dx
+ y = x. We can solve for

dy

dx
to get

dy

dx
= x − y. Now remember that by “solving” the differential equation we mean finding a function

y = y(x) that makes the equation true; there are infinitely many such functions, with the graph of
each representing a particular solution curve. Recall also that when considering the graph of a function,
the derivative of the function at some point is the slope of the tangent line to the graph of the function

at that point. So the equation
dy

dx
= x− y gives us a formula for finding the slope of the tangent line

to the unknown function y(x) at any point (x, y).

To be more specific, consider the point (3, 1). The equation

dy

dx
= x− y

tells us that at that point the slope of the tangent line to the solution
curve will be

dy

dx

∣
∣
∣
∣
(3,1)

= 3− 1 = 2

So the tangent line of the solution curve passing through the point
(3, 1) has slope 2 at that point. The dotted line to the right has slope
two and passes through the point (3, 1). We will just keep the small
part of it that actually goes through the point. In the following example
we continue on to find slopes at other points with integer coordinates.

4

-2

2

⋄ Example 2.2(a): Find slopes for the remaining grid points, for
dy

dx
= x− y.

Another Example

Solution: It is often easiest to determine slopes not by going
point to point, but to find all points where the slope is the same.
For this equation, the slope will be zero at every point where
x = y, so at (0.0, (1, 1), (2, 2), and so on. Similarly, the slope
will be one at all the points where x is one unit larger than y;
for the above grid those are the points (1, 0), (2, 1), (3, 2) and
(4, 3). Similarly, the slope will be two at the points where x is
two greater than y: (0,−2), (1,−1), (2, 0), (3, 1) and (4, 2).
The slope lines for slopes zero, one and two are plotted on the
grid shown to the right. The remaining slopes can be seen on the
left graph at the top of the next page.

4

-2

2

The graph of the result of what we have been doing is something called a direction field or slope
field; the completed direction field can be seen to the left at the top of the next page. Direction fields
are a way of studying the behavior of solutions to first order differential equations without actually
solving the equations analytically. The slope lines that we have drawn in on the direction field are not
all that are possible - such a slope line exists for every point in the plane where the derivative exists.
Given a direction field and an initial value, we can sketch a solution curve by drawing a curve that starts
at the initial value point and that is tangent to the “imagined” slope lines at all points that a curve
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goes through. To the right below you can see the solution curves corresponding to the initial values
y(0) = 2, y(0) = −1 and y(0) = −3. Each curve is began by sketching a curve that is tangent to
the slope line at the initial value, then continues to be tangent to other slope lines it passes through or
near as the curve is constructed. Video Example

4

-2

2

4

-2

2

Section 2.2 Exercises To Solutions

1. The general solution to the ODE
dy

dx
+ y = x from Example 2.2(a) is y = x − 1 + Ce−x.

Find the values of the constant C and graph the solution curves for each of the following initial
values. Sketch each of the curves on the same grid as each other, for −1 ≤ x ≤ 4. Use a
graphing tool if you wish.

(a) y(0) = 2 (b) y(0) = 0 (c) y(0) = −1 (d) y(0) = −3

2. On your graph from Exercise 1, sketch what you think the graphs for initial conditions y(0) = −2,
y(0) = 1 and y(0) = 3 would look like. Then graph them with a graphing tool to check yourself.
(You will need to find the values of C for each to do this.)

3. The graph of some solution curves for a differ-
ential equation are shown to the right. Give the
Roman numeral that corresponds to each given
initial condition.

(a) y(0) = 1 (b) y(−1
2) = 1

(c) y(1) = 1
2 (c) y(0) = 0

−3

3

3

I II

III

IVV

x

y

4. (a) On the grid for Exercise 3, sketch in what you think the solution curve for the initial value
y(0) = 3

4 would look like.

(b) The general solution for the ODE for which some solution curves are shown in Exercise 3 is
y = 1

2 (sinx+cos x)+Cex. Determine the value of C for the initial value y(0) = 3
4 and

plot the solution curve using technology. Compare with the curve you sketched for part (a).
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5. (a) The graph below shows some solutions to
dy

dx
= xy2. Label each that you can with its

initial value y(0) = .

(b) The solution to the ODE is y =
−2

x2 + C
. Find a point on one of the curves for which you

couldn’t find an initial value and substitute it into the solution to determine the value of C.

(c) Use technology to graph the solution, for the value of C that you found in (b). Explain
what is going on. What are the asymptotes for the parts of the graph that go out the top
and bottom edges of the grid?

4

4

-4

-4
x

y

6. Suppose that a group of N0 individuals is put in an environment that can only support K indi-
viduals, and suppose that the growth rate of the population without any restrictions would be r
percent (in decimal form!) per year. Then the population N at any time t years is given by

N =
K

1− (1−K/N0)e−rt

The value N0 is called the initial population, K is called the carrying capacity. Suppose that
for some population the carrying capacity is 100 and the growth rate is 20%. Graph the functions
N for the initial populations below all on the same grid, for zero to forty years, using technology.
Your graph will need to go up to at least 150 individuals. Sketch the graph.

(a) N0 = 20 (b) N0 = 150 (c) N0 = 100 (d) N0 = 0

7. Think about the graph you got in the previous exercise, and make sure that you understand (from
a population growth point of view) why each curve looks the way it does.

8. For each ODE given, plot the direction field at integer coordinates over the values given for each
variable.

(a)
dx

dt
=

1

2
xt, −1 ≤ t ≤ 2, −2 ≤ x ≤ 2

(b)
dy

dx
= x2 − 2x, 0 ≤ x ≤ 4, −2 ≤ y ≤ 4

(c)
dy

dx
= y2 − 2y, 0 ≤ x ≤ 4, −2 ≤ y ≤ 4

(d)
dy

dt
= y + t. −2 ≤ t ≤ 2, −2 ≤ y ≤ 2
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9. On the direction field below and to the left, sketch the solution curves going through the given
points.

(a) (−4, 5) (b) (−2,−2) (c) (6,−4)

- 6 - 4 - 2 0 2 4 6

- 6

- 4

- 2

0

2

4

6

x

y

Exercise 9

- 3 - 2 - 1 0 1 2 3

- 3

- 2

- 1

0

1

2

3

x

y

Exercise 10

10. On the direction field above and to the right, sketch the solution curves going through the given
points.

(a) (−2, 0) (b) (−1.5,−1) (c) (3, 0)

61



2.3 Solving With Integrating Factors

Performance Criterion:

2. (f) Use an integrating factor to solve a first order linear ODE or IVP.

Let’s begin with an example that demonstrates the limitation of separation of variables.

⋄ Example 2.3(a): Solve
dy

dx
− 3y = e5x.

Solution: Note that if we try to separate the variables we get

dy

dx
− 3y = e5x

dy

dx
= 3y + e5x

dy = (3y + e5x) dx

Here we see that there is no way to get the 3y term back over to the left side with dy. (This
is because 3y + e5x cannot be written in the form g(x)h(y).) Therefore this equation cannot
be solved by separation of variables.

The following derivative computation provides the key for solving equations like the one above.

⋄ Example 2.3(b): Suppose that y = y(x) is some function of x. Find the derivative of

ye−3x (with respect to x).

Solution: Because both y and e−3x are functions of x, we must use the product rule:

d

dx
(ye−3x) = y

d

dx
(e−3x) + e−3x d

dx
(y) = −3ye−3x + e−3x dy

dx
= e−3x

(
dy

dx
− 3y

)

Notice that multiplying the left side of the ODE of Example 2.3(a) by e−3x gives the result of Example
2.3(b). This indicates an idea for solving the ODE: Video Example

dy

dx
− 3y = e5x Original equation

e−3x

(
dy

dx
− 3y

)

= e−3xe5x Multiply both sides by e−3x

e−3x dy

dx
− 3e−3xy = e2x Distribute e−3x and apply xaxb = xa+b

d(ye−3x)

dx
= e2x From Example 2.3(b)

d(ye−3x) = e2x dx Multiply both sides by dx
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∫

d(ye−3x) =

∫

e2x dx Integrate both sides

ye−3x + C1 = 1
2e

2x + C2 Carry out the integrations

ye−3x = 1
2e

2x +C Combine constants

ye−3xe3x = 1
2e

2xe3x + Ce3x Multiply both sides by e3x

y = 1
2e

5x + Ce3x Apply properties of exponents

Thus the solution to
dy

dx
− 3y = e5x is y = 1

2e
5x + Ce3x. The reason for multiplying both sides by

e3x was to get y alone on the left side.

The method just shown for finding the solution to
dy

dx
−3y = e5x probably seems a bit mysterious,

to say the least! This is called the integrating factor method, which we now summarize. Note that it

only applies to linear first order ODEs, which can always be put into the form
dy

dx
+ p(x)y = q(x).

Solving a 1st Order Linear ODE Using An Integrating Factor

To solve a first order ODE of the form
dy

dx
+ p(x)y = q(x),

1) Compute u =

∫

p(x) dx. The integrating factor is eu (not just u).

2) Multiply both sides of the equation by the integrating factor eu. The left

side of the differential equation then becomes
d(yeu)

dx
.

3) Multiply both sides of the equation by dx and integrate both sides. The
left side will become yeu.

4) Solve for y by multiplying both sides by e−u.

Note that after integrating both sides of the equation there will be a constant added to the right

side. This constant will be multiplied by e−u in the solution. For the equation
dy

dx
− 3y = e5x,

p(x) = −3 so u =

∫

p(x) dx = −3

∫

dx = −3x and eu = e−3x.

Any first order linear ODE can be solved using the integrating factor method, as long as p(x) and
euq(x) can be integrated; sometimes you can use either this method or separation of variables and they
both will work. Now let’s take a look at executing the above steps with another example.

⋄ Example 2.3(c): Solve
dy

dx
+

y

x
= x2 for x > 0 by the integrating factor method.

Solution: First we note that p(x) =
1

x
and q(x) = x2. Because x > 0, |x| = x and

u =

∫
1

x
dx = lnx. Therefore eu = elnx = x. We now carry out steps (2) through (4) above,

as shown at the top of the next page.
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dy

dx
+

y

x
= x2 original equation

x
dy

dx
+ y = x3 multipy both sides by eu, which in this case is x

d(xy)

dx
= x3 use the product rule “in reverse” to “collapse” the left side

∫

d(xy) =

∫

x3 dx multiply both sides by dx and integrate

xy = 1
4x

4 + C include a single constant of integration on the right side

y = 1
4x

3 +
C

x
multiply both sides by e−u =

1

eu
=

1

x

Note that in the next to last step we simply put the constant on the right that results from combining
the constants from both sides. From here on we will simply put a constant on one side (usually the
right side) when we integrate both sides of an equation.

Section 2.3 Exercises To Solutions

1. Solve the IVP
dy

dx
− 3y = e5x, y(0) = −1.

2. (a) Use an integrating factor to solve y′ + 2y = 0.4e−2t. (Note that y is now a function of
t.) Solve for y.

(b) Solve the IVP y′ + 2y = 0.4e−2t, y(0) = 3.

3. (a) Use an integrating factor to solve
dy

dx
− 1

2
y = 0.

(b) Solve the same ODE by separation of variables. Solve for y and compare with your answer
to (a) (and take any action that might be suggested by this comparison!).

(c) Solve the IVP
dy

dx
− 1

2
y = 0, y(0) = 3

2 .

4. (a) Solve the ODE y′ − 5y = 3cos 2t. Use your formula sheet to avoid some very messy
integration.

(b) Solve the IVP y′ − 5y = 3cos 2t, y(0) = −4.

5. (a) Solve the ODE
dy

dt
+ 3y = t2 + 5t− 1.

(a) Solve the IVP
dy

dt
+ 3y = t2 + 5t− 1, y(0) = 2.

64



6. The IVPs from Exercises 3(b) and 3(e) of Section 2.1 couldn’t be solved by separation of variables,
but they can be done with integrating factors. You will do them here.

(a) Solve the IVP
dy

dx
− y = e3x , y(0) = 4.

(b) Solve the IVP x
dy

dx
− y = x , y(1) = 2. Begin by multiplying through by

1

x
.

7. The IVP y′ − 2x = xy , y(2) = 5 from Exercise 3(d) of Section 3.1 can be solved by both
separation and using an integrating factor. Solve it using an integrating factor. Be sure to get it
in the right form before multiplying by the integrating factor!

8. In this exercise you will see another method for solving the ODE y′−5y = 3cos 2t from Exercise
4. This method will be used later when we solve second order ODEs.

(a) The equation y′−5y = 0 is the homogeneous equation associated with y′−5y = 3cos 2t.
Substitute y = Cert into the homogenous equation to determine what value r must have
in order for y = Cert to be a solution. For that value of r, y = Cert is called the
homogeneous solution to y′ − 5y = 3cos 2t.

(b) Find the values of A and B for which y = A sin 2t+B cos 2t is a solution to y′ − 5y =
3cos 2t. Do this as follows:

• Find y′ and substitute it and y into the differential equations to get an equation
involving sines and cosines of 2t.

• Combine the like terms on the left side of the equation to get only one sine term and
one cosine term.

• You will need to note that on the right side of your equation 3 cos 2t is the same as
3 cos 2t+0 sin 2t. Equate the coefficient of cos 2t on the left side with the coefficient
of cos 2t on the right side to get an equation involving the unknowns A and B.
Then repeat for sine to get another equation with A and B.

• Solve two equations for the two unknowns A and B. The resulting y = A sin 2t +
B cos 2t is called the particular solution to y′ − 5y = 3cos 2t.

(c) Write the sum of the homogeneous and particular solutions. This is known as the general
solution, and should match what you found in Exercise 4(a).

9. Use the method of Exercise 8 to solve the ODE
dy

dx
− 3y = e5x from Exercise 1 with this

difference: For part (b), find the value of A for which y = Ae5x is a solution to the ODE.

10. Use the method of Exercise 8 to solve the ODE
dy

dt
+ 3y = t2 + 5t− 1 from Exercise 5, but for

part (b), find the values of A, B and C for which y = At2 + Bt + C is a solution to the
ODE.
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2.4 Phase Portraits and Stability

Performance Criteria:

2. (g) Determine whether an ODE is autonomous.

(h) Create a one-dimensional phase portrait for an autonomous ODE.

(i) Determine critical points/equilibrium solutions of an autonomous
ODE, and identify each as stable, unstable or semi-stable.

(j) Sketch solution curves of an autonomous ODE for various initial values.

Recall that a first order ODE is called autonomous if it can be written in the form
dy

dx
= f(y).

That is, when we get the derivative alone on the left side of the equation, the right hand side is a

function of only the dependent variable.
dy

dt
= y2 − 2y is an example of an autonomous ODE. Note

that
dy

dt
= 0 whenever y = 0, so if we had an initial condition of y(0) = 0, then the value of

y would never change because the rate of change with respect to time is zero. Therefore the solution
to the IVP

dy

dt
= y2 − 2y, y(0) = 0

is the constant function y = 0. We have solved the IVP without doing any calculations! Now suppose

that, for the same ODE, y(0) = 2. We see that when y = 2 we again have
dy

dt
= 0, so the value

of y will again not change. This means that y = 2 is the solution to the IVP

dy

dt
= y2 − 2y, y(0) = 2

The graph to the right shows the two solution curves that we have

obtained so far for the ODE
dy

dt
= y2 − 2y, for the initial values

y(0) = 0 and y(0) = 2. (The dots represent the initial values
themselves - note the position of zero on the horizontal axis.) We
will call constant solutions like those two equilibrium solutions; the
word equilibrium essentially meaning unchanging as time goes on. The
question that should occur to you is “What happens for other initial
values of y?” With a little thought we should be able to figure that
out. There are three key observations we can make that will help answer
the question:

0

1

2

0 1 2 3

y(0) = 2

y(0) = 0

t

y

Video Discussion/Example

• The direction field depends only on y alone, so for any given value of y the slope remains
constant.

• The right hand side of the ODE can be factored to y(y−2). From that we see that if y < 0 both

y and y − 2 will be negative, so
dy

dt
= y(y − 2) will be positive. Therefore any solution with

an initial value less than zero will be increasing. When 0 < y < 2, y is positive and y − 2 is

negative, so
dy

dt
is negative and any solution with an initial value between zero and two will be

decreasing. Finally, when y > 2 we have
dy

dt
> 0 because both y and y − 2 are positive

when y > 2. Any solution with an initial value greater than two will be increasing.
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• Whether positive or negative, the value of
dy

dt
approaches zero as y gets nearer to either zero

or two. Therefore the direction field lines become “flatter” (closer to horizontal) for values of
y close to zero and two.

From these observations we can deduce that the direction field for
dy

dt
= y2 − 2y has the appear-

ance shown to the left below. The direction field with solutions corresponding to four different initial
conditions is shown in the center.

0

1

2

0 1 2 3 x

y

0

1

2

0 1 2 3

y(0) = 2.5

y(0) = 2

y(0) = 1

y(0) = −.5

x

y

2

0

y

We will summarize the information in the three bullets above with something called a phase portrait,
shown above and to the right. (Technically it is a one-dimensional phase portrait. Those of you taking
the second term of this course may see two-dimensional phase portraits.) The vertical line indicates
y values, with the two critical points zero and two indicated. The critical points divide the line into
three intervals, and the arrow in each interval indicates whether y is increasing or decreasing, in the
particular interval, as time increases.

Look again at the direction field in the middle above, with the four solutions curves drawn in. Note
that solutions with an initial y value less than two (including less than zero) all tend toward the constant
solution y = 0, as the phase portrait tells us they will. When this occurs we say that the solution
y = 0 is a stable equilibrium solution. You can sort of think that if we have an initial condition of
zero the solution will be zero, and if we “bump off” from zero a bit with our initial condition, the new
solution obtained will tend back toward zero as time goes on. This is indicated by putting a solid dot
at y = 0 on the phase portrait.

On the other hand you can see that if y starts with the value two it will remain two, but if it starts
at any value close to, but not equal to, two the solution will diverge away from two. For this reason
we call the solution y = 2 an unstable equilibrium solution and we indicate it on the phase portrait
with an open circle at y = 2. Other language you might hear is that y = 0 is a stable critical point
on the phase diagram, and y = 2 is an unstable critical point. As just stated, on our phase portraits
we will indicate stable critical points with solid dots, and unstable critical points with open circles. (We
will also use open circles for semi-stable equilibria, which you will see later.)

Again, the entire analysis you have just seen is based on the fact that the ODE is autonomous. Two
points of interest here are

• Autonomous first order ODEs are not just a curiosity - they occur naturally in many applications.

• Autonomous ODEs can be difficult or impossible to solve. However, an analysis like we just did
can make it very easy to determine how solutions to such an equation behave, in a qualitative
sense.

It is important to be able to recognize autonomous differential equations.
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⋄ Example 2.4(a): Determine which of the following first order ODEs are autonomous:

dy

dx
= y2 − x y′ = 2y − 1

dy

dt
= t2 − 5t+ 1 x

dx

dt
= x+ 1

Solution: Clearly the first equation is not autonomous and the second is. The third and fourth
equations might be a bit confusing, as the variables are no longer x and y. In the third equation
the dependent variable is y and the independent variable is t. Because the right hand side is
a function of only the independent variable t, the equation is not autonomous. In the fourth
equation the dependent variable is x, the independent variable is t, and the equation can be

rewritten as
dx

dt
=

x+ 1

x
. The right hand side is then a function of x alone, so the equation

is autonomous.

If we can determine the phase portrait for an autonomous ODE, we then have a pretty good idea
what all solutions to the ODE look like, without having to go to the trouble of creating a direction field.
The next example shows how this is done.

⋄ Example 2.4(b): Sketch the phase portrait for
dy

dt
= −y3 + 6y2 − 9y and use it to sketch

solution curves for the initial conditions y(0) = 4, y(0) = 2 and y(0) = −1. Identify each
equilibrium solution as stable or unstable.

Solution: We factor the right hand side of the ODE, starting by factoring −y out:

dy

dt
= −y3 + 6y2 − 9y = −y(y2 − 6y + 9) = −y(y − 3)2

From this we can see that the equilibrium solutions are y = 0 and y = 3. Testing values of
y in each of the three intervals (−∞, 0), (0, 3) and (3,∞) gives us the following:

• When y < 0,
dy

dt
> 0 • When 0 < y < 3,

dy

dt
< 0 • When y > 3,

dy

dt
< 0

This gives us the phase portrait shown to the left below, which indicates that there are equilibrium
solutions of y = 0 and y = 3. If y(0) < 0 the solution is increasing, but will approach the
equilibrium solution y = 0; if 0 < y(0) < 3 the solution decreases toward y = 0. If y > 3 the
solution also decreases, but toward y = 3. These behaviors are shown to the right below, for
the three solutions with the given initial values. The solution y = 0 is a stable equilibrium
solution, and the solution y = 3 is neither stable nor unstable, but is what we call a semi-stable
equilibrium solution.

3

0

y

−1

0

2

3

4 y(0) = 4

y(0) = 2

y(0) = −1

t

y
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(Long) Video on This Section

Section 2.4 Exercises To Solutions

1. Determine which of the following first order ODEs are autonomous.

(a)
dy

dt
− 2y = 0 (b)

dy

dx
+ xy = 1 (c)

1

y

dy

dx
+ y = 3

(d) y′ = y2 − 7y + 10 (e)
1

x

dy

dx
+ y = 1 (f)

dx

dt
+ 6x2 = x3 + 9x

2. For each of the ODEs in Exercise 1 that are autonomous,

• draw a phase portrait

• on a single separate graph, sketch in all equilibrium solution curves, and one solution curve
with an initial value in each interval of the real line created by the values of the equilibrium
solutions

• give all equilibrium solutions and, for each, tell what kind of equilibrium it is

3. In (i) below, the graph of some solution curves to an ODE are given. (ii) and (iii) are phase
portraits for two other ODEs.

0

2

6

y

t

(i)

4

1

y
(ii)

5

2

0

y
(iii)

(a) For the solution curves in (i) above, identify each equilibrium solution and tell whether it is
a stable equilibrium, unstable equilibrium, or semi-stable equilibrium.

(b) Repeat (a) for the phase portrait (ii). (c) Repeat (a) for the phase portrait (iii).

4. (a) Draw the phase portrait for the ODE with solution curves shown in (i) of the previous
exercise.

(b) Draw some solution curves for the ODE whose phase portrait is shown in (ii) of the previous
exercise. Be sure to include curves for the equilibrium solutions and at least one solution
with initial value in each of the intervals created by the equilibrium points.

(c) Draw some solution curves for the ODE whose phase portrait is shown in (iii) of the previous
exercise. Be sure to include curves for the equilibrium solutions and at least one solution
with initial value in each of the intervals created by the equilibrium points.
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5. (a) Give an ODE of the form
dy

dx
= f(y), with f(y) in factored form, that could have the

solution curve graph shown in Exercise 3(a).

(b) Repeat (a) for the phase portrait shown in Exercise 3(b).

(c) Repeat (a) for the phase portrait shown in Exercise 3(c).

6. In Exercise 7 of Section 2.1 you solved the ODE
dy

dx
= −1

3y
2 + y. When working with it in this

exercise, you will find it useful to factor −1
3 out of the right hand side first.

(a) When we tried to solve the ODE with the initial value y(0) = 3 we were not able to obtain
a solution. What do we now know happens for that initial condition?

(b) Give the equilibrium solutions, and what kind each is.

(c) Sketch the phase portrait and some solution curves for the ODE.

7. In the next section the ODE
dA

dt
= 2.1− 0.0875A

will arise in a mixing problem. Give all equilibrium points and identify each as stable, semi-stable
or unstable. The sketch a phase portrait and a graph of solution curves for the initial values
A = 10, A = 40 and A = 80.

8. Consider the ODE
dT

dt
= −k(T − 50), where k > 0. Sketch a graph of the equilibrium solution

and several other solution curves with initial values different from that of the equilibrium solution.

9. Sketch several solution curves for the ODE 1
4

di

dt
+15i = 12, including any equilibrium solutions.
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2.5 Applications of First Order ODEs

Performance Criteria:

2. (k) Solve an applied problem modeled by a first order ODE using separation
of variables or an integrating factor.

(l) Give an ODE or IVP that models a given physical situation involving
growth or decay, mixing, Newton’s Law of Cooling or an RL circuit.

(m) Sketch the graph of the solution to a mixing or Newton’s Law of Cool-
ing problem, indicating the initial value and the steady-state asymp-
tote.

(n) Identify the transient and steady-state parts of the solution to a first
order ODE.

Radioactive Decay and Population Growth

In general, we can assume that the rate at which a quantity of radioactive material decays is
proportional to the amount present. For example, 20% of the material might decay in any 600 year
period. If there were 1000 pounds initially, 200 pounds would decay over 600 years, but if there were
only 100 pounds initially, only 20 pounds would decay over 600 years. If we let A represent the
amount of material at any time t, then the rate at which the material decays is given by the derivative
dA

dt
. The above discussion tells us that there is some constant of proportionality r for which

dA

dt
= rA

We will find that r is negative because the amount A (which is positive) is decreasing.
Similarly, suppose that N represents the number of individuals (which could be people or any other

animals) in a region, and assume the that the population is growing. If there were no constraints like

famine, disease and such, the population should grow continuously. The derivative
dN

dt
would represent

the rate of change of population with respect to time. When the population is small we would expect
a small change in population over a fixed time period, but when the population is large we’d expect a
greater increase in population over the same time period, because there is a larger population having
offspring. We’d again expect the rate of change to be proportional to the population itself, resulting in

the differential equation
dN

dt
= rN , but in this case the constant r would be positive because here

there is growth rather than decay.
Clearly the differential equations for both radioactive decay and population growth are the same, and

both can easily be solved by separation of variables, or even just by guessing, as long as we remember
that the solution must contain an arbitrary constant! The arbitrary constant is in addition to the
constant r; the additional constant is introduced by the fact that we must essentially integrate once
to determine the function N = N(t).

⋄ Example 2.5(a): Five hundred rainbow trout are introduced into a previously barren (no fish

in it) lake. Three years later, biologists estimate that there are 1730 rainbow trout in the

lake. Assuming that the population satisfies the ODE
dN

dt
= rN , determine the function

N = N(t) that gives the number N of rainbow trout in the lake at time t.
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Solution: The ODE
dN

dt
= rN says that we are looking for a function N(t) whose derivative

is r times the function itself, and N = ert clearly is such a function. This function contains
no constant of integration, but we recall that N = Cert is also a solution, for any value of C.
The general solution is then N = Cert. The fact that there are 500 fish in the lake at time
zero gives us 500 = Ce0, so C = 500 and N = 500ert.

To find r we substitute N = 1730 when t = 3 into our solution to get 1730 = 500e3r , and
solve to find r = 0.414. The equation for the number of rainbow trout at any time t is then
N = 500e0.414t .

Here’s how one would solve the differential equation from the last example by separation of variables,
with some of the steps combined:

dN

dt
= rN

dN

N
= r dt multiply by dt and divide by N

lnN = rt+ C integrate both sides - absolute value is not
needed because N must be greater than zero

N = Cert exponentiate both sides and apply xaxb = xa+b

Mixing Problems

We’ve discussed this sort of situation previously, so let’s go straight to an example:

⋄ Example 2.5(b): A tank contains 80 gallons of water with 10 pounds of salt dissolved in it.
Fluid with a 0.3 pounds per gallon salt concentration is being pumped into the tank at a rate
of 7 gallons per minute. The fluid is continually mixed and, at the same time, the fluid is being
drained from the tank at a rate of 7 gallons per minute. Letting A represent the amount of
salt in the tank, in pounds, sketch a graph of A as a function of time t. Label any values you
can on the A axis.

Solution: In the next two examples we will set up and solve the initial value problem for this
situation analytically, arriving at an equation that will give us the amount of salt at any time t.
Before doing that it would be good to have some idea of what the behavior of the solution would
be. We did this previously, in Example 1.1(j), but let’s repeat the reasoning here.

The initial amount of salt in the tank is 10 pounds. We know
that as time goes on the concentration of salt in the tank will
approach that of the incoming solution, 0.3 pounds per gallon.
This means that the amount of salt in the tank will approach
0.3 lbs/gal × 80 gal = 24 pounds, resulting in the graph shown
to the right, where A represents the amount of salt, in pounds,
and t represents the time, in minutes.

24

10

t

A (lbs)

Now let’s set up an IVP and solve it:
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⋄ Example 2.5(c): Letting A represent the amount of salt in the tank, in pounds, give an initial
value problem describing this situation.

Solution: Taking the concentration of salt in the incoming fluid times the rate at which the fluid
is coming in, we get that salt is entering the tank at a rate of

(0.3 lbs
gal )(7

gal
min ) = 2.1 lbs

min .

Now let A = A(t) be the amount (in pounds) of salt in the tank at any time t minutes. Then
the concentration of salt in the tank is A

80 , so by the same sort of calculation that we just did

the rate at which salt is leaving the tank is 7A
80 = 0.0875A lbs

min . The net rate of change of salt in

the tank is the amount coming in minus the amount going out, or (2.1− 0.0875A) lbs
min . But this

quantity, being a rate of change, is also a derivative. Namely it is
dA

dt
, giving us the differential

equation
dA

dt
= 2.1− 0.0875A

We also have the initial value A(0) = 10 pounds, so we have the initial value problem

dA

dt
= 2.1 − 0.0875A , A(0) = 10 (1)

Note that the ODE is autonomous, and the graph obtained in the previous exercise can be obtained
from the ODE by the methods of the previous section.

⋄ Example 2.5(d): The ODE in (1) above is autonomous. Determine the equilibrium solution
and whether it is stable, unstable, or semi-stable. Sketch a phase portrait for the situation.

Solution: The equilibrium solution occurs when

dA

dt
= 2.1− 0.0875A = 0.

Solving 2.1 − 0.0875A = 0 for A gives us an equilibrium solution of A = 24

pounds. When A < 24 we find that
dA

dt
> 0, and when A > 24,

dA

dt
< 0.

Therefore A = 24 is a stable equilibrium. The phase portrait is shown to the right.

24

A

Note that the phase portrait agrees with the solution curve obtained in Example 2.5(b).
We will see differential equations like the one in (1) above in several contexts, and it can always

be solved using separation of variables or an integrating factor (and you should be able to do it either
way). When we separate variables we get

dA

2.1− 0.0875A
= dt.

The left side can be integrated by u-substitution, but such integrals come up often enough in practice
that we should use the following formula instead, obtained by u-substitution:

∫
1

ax+ b
dx =

1

a
ln | ax+ b |+ C (2)

We can now use this result to solve the IVP (1).
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⋄ Example 2.5(e): Solve the IVP
dA

dt
= 2.1− 0.0875A , A(0) = 10. Another Example

Solution: Multiplying both sides of the ODE by dt and dividing by the quantity 2.1 −
0.0875A gives us

dA

2.1− 0.0875A
= dt

To use equation (2) from the previous page we note that our left side is like the left side of (2),
but with x = A, a = −0.0875 and b = 2.1. The formula then tells us that the left side
integrates to − 1

0.0875 ln(2.1−0.0875A)+C. (We don’t need absolute value because the quantity
2.1− 0.0875A is the rate at which the amount of salt is changing, and this is positive due to the
concentration of the incoming solution being higher than the initial concentration in the tank.)
Thus when we integrate both sides and combine the constants we have

− 1
0.0875 ln(2.1 − 0.0875A) = t+ C

ln(2.1 − 0.0875A) = −0.0875t +C

2.1− 0.0875A = e−0.0875t+C

2.1− 0.0857A = Ce−0.0875t

−0.0875A = −2.1 + Ce−0.0875t

A = 24 + Ce−0.0875t

Applying the initial value A(0) = 10 we get 10 = 24 + C, so C = −14 and the solution to
the IVP is A = 24− 14e−0.0875t.

Note that when t = 0 the solution A = 24 − 14e−0.0875t gives us A = 10, as it should. Also, as
t → ∞, A goes to 24 as expected.

Newton’s Law of Cooling

Newton’s Law of Cooling

Suppose that a solid object with initial temperature T0 is placed in a medium
with a constant temperature Tm, and let T = T (t) be the temperature of the
object at any time t after it is placed in the medium. The rate of change of the
temperature T with respect to time is proportional to the difference between the
temperatures of the medium and that of the object. That is,

dT

dt
= −k(T − Tm) (3)

for some constant k > 0. Together with T (0) = T0, this gives us an initial
value problem for the temperature of the object.

The medium that the object is placed in might be something like air, water, etc., and Tm stands
for “temperature of the medium,” sometimes called ambient temperature. We will always consider
situations for which this temperature is constant. Note that if the temperature of the medium is greater
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than the temperature of the object, the rate of change of temperature must be positive, which is why
k must be positive. A little thought will tell you that k must be positive if the temperature of the
medium is less than the temperature of the object as well.

⋄ Example 2.5(f): Suppose that a solid object with initial temperature 88◦F is placed in a
medium with ambient temperature 50◦F, and after one hour the object has a temperature of
65◦F. Determine the equation for the temperature T as a function of the time t.

Solution: Because the object’s initial temperature of 88◦F is
higher than the ambient temperature of 50◦F, it will cool
after being placed in the medium. Newton’s Law of Cooling
tells us that it cools more rapidly at first, when the temperature
difference between the object and the medium is large. As the
object cools to temperatures closer to the ambient temperature,
the rate of cooling decreases. This is shown by the graph to the
right.

88

50

t

T

Now the initial value problem for this situation is

dT

dt
= −k(T − 50) , T (0) = 88

The differential equation becomes
dT

T − 50
= −k dt, and the method of Example 2.4(e) gives us

T = 50 + Ce−kt before applying the initial condition. Using the initial condition, we obtain the
solution T = 50 + 38e−kt. To determine k we apply T (1) = 65 to get k = 0.930, so the
final solution is T = 50 + 38e−0.930t.

Electric Circuits

We will work with some basic electrical circuits in this class. The first sort of circuit we’ll look at
consists of a voltage source, a resistor and an inductor. The voltage source can be constant (so-called
“direct current,” or “DC”), or it can be variable, usually in an oscillating manner (“alternating current,”
or “AC”). The voltage source causes electrons to move in the circuit, and the flow of electrons is called
current. (Somewhat confusingly, the current flows in the direction opposite the flow of the electrons.)
The voltage source provides an electromotive force which we can think of as sort of “pushing” current
through the circuit, analogous to a pump pushing fluid through a network of pipes. The units of the
electromotive force are volts. We will use the symbol i for current, and it is measured in units called
amperes. (“Amps,” for short.)

The resistor has a characteristic called resistance, which is measured
in units called ohms. The inductor’s characteristic is called inductance,
which is measured in henries. Although resistance and inductance could
be variable, they will always be constants in our considerations. We will
use E = E(t) for the voltage, R for the resistance and L for
the inductance. To the right is a schematic diagram of such a circuit.
We will usually think of our circuits as having a switch as well, which
is “open” (off) until time zero, when it is “closed” (turned on). From
that point on the current is (usually) changing, and is a function of time:
i = i(t).

E

R

L

Figure 2.5(a)
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RL Circuit

Consider an electric circuit as described above, with an applied voltage E(t) volts
(possibly a function of time) and constant resistance of R ohms and constant
inductance of L henries. The current i = i(t), in amperes, satisfies the first
order linear differential equation

L
di

dt
+Ri = E(t) (4)

Because the ODE (4) is first order linear, it can be solved using an integrating factor. If the voltage
E(t) is constant, the equation can be solved by separation of variables as well. Let’s examine the case
where the voltage source E(t) is a constant function, to observe why mathematics is so powerful in
science and engineering. Suppose that L = 1

4 henry, R = 15 ohms, and E = 12 volts; in this case the

ODE is 1
4

di

dt
+ 15i = 12. If we separate the variables we obtain

di

12− 15i
= 4 dt or

di

48− 60i
= dt.

Let’s look at the first of these along with the separated equations arising in Examples 2.5(e) and 2.5(f):
Video Example

di

12− 15i
= 4 dt

dA

2.1− 0.0875A
= dt

dT

T − 50
= −k dt

Note that these are all of the form
dx

ax+ b
= c dt, where a, b and c are constants. This illustrates

the fact that

physical situations that seem to have nothing in
common lead to the same differential equation.

We will see this principle in action again when we study second order ODEs.

Response of a System

Suppose that we have a circuit like that show in Figure 2.5(a), but without a voltage source E (but
with the circuit closed). If there is no current in the circuit initially, then there will not be any current
at any future time. However, if there is some current in the circuit initially (which can be made to
happen by including a voltage source, then removing it and completing the circuit in its absence), then
there will be current in the future as well. Similarly, if we set a mass on a spring (like shown in Example
1.1(a)) in motion it will continue to oscillate for some time.

We will refer to the circuit without a voltage and the mass on a spring as systems. In the case
of the circuit the variable of interest is the current in the circuit at any time, and for the mass we are
interested in the vertical position at any time. With some initial “stimulus” (non-zero initial conditions)
in each case the current or vertical position will vary with time. The current or vertical position will be
referred to as the response of the system to the initial conditions.

Now suppose that we have either an RL circuit with a voltage source or a spring-mass system
with some outside force pushing or pulling on the mass. The outside force or voltage (which is also
sometimes referred to as an electromotive force) we will refer to as a forcing function for the system.
In the presence of a voltage source, the circuit will have current at all future times. Similarly, a mass
on a spring with a forcing function will continue to oscillate

We will revisit the spring-mass system, along with slightly more complex electrical circuits, in Chap-
ters 3 and 4. For the time being, let’s focus on the circuit shown in Figure 2.5(a) and the governing
differential equation

L
di

dt
+Ri = E(t). (5)
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Here the left side L
di

dt
+Ri of the equation represents the system, and the right side E(t) represents

the forcing function. Our goal is usually to solve an associated initial value problem for the current
i = i(t). That current, the solution to the IVP, is the response of the system to the forcing function
E(t) and initial current. Another way of thinking about this is that the forcing function and initial
condition(s) are “inputs” to the system, and the response is the “output” of the system for that input.

Let us consider for example an RL circuit where again L = 1
4 henry and R = 15 ohms, and

for which E(t) = sin 3t. In this case we would not be able to separate the variables, so we’d solve the
equation using an integrating factor. In doing so, we would obtain the solution

i = 4
63 sin 3t+ Ce−60t

where C is a constant that would be determined by an initial condition. Note that the solution has
two parts:

• The part 4
63 sin 3t, which is periodic and “goes on forever in the same way.” This part of the

solution is called the steady-state solution or steady-state response of the system.

• The part Ce−60t, approaches zero as time goes on, so it “dies out.” Such a solution or part of
a solution is called the transient solution or transient response of the system.

To clarify a little, we will define a steady-state solution to be any solution that is either constant (and,
to avoid triviality, not zero) or periodic.

In practice, when a system like a machine with moving parts or an electrical circuit is “turned on,”
it often exhibits a certain behavior as it starts up, which is the transient response of the system. Then
it will “settle in” to a steady state behavior or response. (Note that the ideas of transient and steady
state solutions only make sense when the independent variable is time.) In general only the steady-state
response is important in terms of what we want the system to do from a practical viewpoint, but the
transient response might be of interest because it might cause some sort of stress on the system that
could cause a problem.

For the scenario described above but with E having the constant value of 12 volts, the solution to
the differential equation is

i = 12
15 + Ce−60t,

where C is again determined by the initial current in the circuit. (Ordinarily we would be expected
to reduce 12

15 , but we’ll leave it as is to see the voltage and resistance.) We can see that here the
steady-state solution is i = 12

15 , where 12 is the voltage and 15 is the resistance, saying that “in the

long run” the circuit will exhibit Ohm’s Law V = IR

(

solved for I =
V

R

)

. This is because the

current approaches a constant value, and the inductor only affects the circuit when there is change in
the current, causing flux in the coil of the inductor.

⋄ Example 2.5(g): In Example 2.5(f) we found that when a solid object with initial temperature
88◦F is placed in a medium with ambient temperature 50◦F, and after one hour the object has
a temperature of 65◦F, the temperature T at any time t is given by T = 50 + 38e−kt. Give
the transient and steady-state parts of the solution.

Solution: The transient part of the solution is 38e−kt and the steady-state part is 50.
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Section 2.5 Exercises To Solutions

1. When a person takes a medication, the amount in their body decreases exponentially, in the same
way that a radioactive element decays. Suppose that a person takes 80 grams of some medication,
and that we somehow know (???) that 12 hours later they still have 23 grams in their system.

(a) Give the initial value problem for this situation, using A for amount in grams and t for
time in hours.

(b) The ODE is autonomous - what is the equilibrium solution? Is it stable?

(c) Solve the IVP. Your answer should still contain an unknown constant k.

(d) Determine k and give the amount function A.

2. An underground storage tank contains 1000 gallons of water with 87 pounds of contaminant in it.
At some time we will call time zero, clean water is pumped into the tank at a rate of 300 gallons
per hour and the thoroughly mixed solution is pumped out at the same rate.

(a) Set up an IVP for this situation, using A for the amount of contaminant, in pounds, and
t for time, in minutes.

(b) Solve the IVP.

(c) Determine when the amount of contaminant has decreased to five pounds.

(d) Give the transient and steady-state solutions.

3. (a) A solid object is placed in a medium with ambient temperature 70◦F. Solve the differential
equation (2) for this situation. The constant k will be unknown for now, and there will be
another constant that arises as well.

(b) Suppose that the initial temperature of the object is 32◦F. Solve for the constant that arose
in solving the ODE.

(c) After one hour the object has a temperature of 58◦F. Use this information to determine
the constant k. Give units with your answer.

(d) What is the steady-state solution? What is the transient solution?

4. (a) Suppose that the voltage in resistor-inductor series circuit is supplied by a 12 volt battery,
so E(t) = 12. The inductance of the circuit is 1

2 henry, and the resistance is 10 ohms.
At time zero the current in the circuit is zero. Find the current function i(t) by solving the
initial value problem just described.

(b) Now suppose that the voltage is variable, with equation E(t) = 10 sin 2t, and the initial
current is zero. Solve the IVP.

(c) Give the transient and steady-state parts of your solution to part (b). (Make it clear of
course which is which!)

5. In general, the solution to the differential equation for Newton’s Law of Cooling is

T (t) = Tm + (T0 − Tm)e−kt , (5)

where T0 is the initial temperature.
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(a) What happens if T0 = Tm? (b) What is the steady-state solution to (5)?

(c) What is the transient solution to (5)?

6. The ODE
dA

dt
= 2.1− 0.0875A from Example 2.5(c) is autonomous.

(a) Determine all equilibrium solutions, and tell whether each is stable, unstable or semi-stable.

(b) Sketch some solution curves for A(0) > 0, including some with A(0) greater than the
largest equilibrium solution.

7. When an owner arrives home in their car, it is at 29◦F from being outside all day. The owner
parks it in a heated garage, which is at a temperature of 73◦F.

(a) We wish to determine the temperature T of the car as a function of time t, assuming
it follows Newton’s Law of Cooling. Write a differential equation to be solved to find that
function, the solution we are looking for. Also, give any initial condition(s).

(b) Will there be a steady-state solution? If so, what will it be?

(c) Solve the initial value problem. Your answer will still contain a constant, but you should be
able to determine the value of another.

(d) Suppose that two hours later the owner is ready to go back out in the car, and by that time
it has warmed up to 47◦F. Determine the function modeling the temperature of the car in
the two hours that it was in the garage.

8. An RL circuit contains an inductor with an inductance of 3
4 henry and a 15 ohm resistor. It is

driven by a variable voltage E(t) = 6 cos 2t, and the initial current in the circuit is 2 amperes.

(a) Give the initial value problem to be solved, and solve it. Determine exact values for all
constants.

(b) Give the steady-state and transient solutions.

9. A 150 gallon tank contains a 3 pounds (lbs) per gallon (gal) salt solution. At time zero, solution
will begin being pumped out of the tank at a rate of 7 gallons per minute and a 1 pounds per
gallon solution will begin being pumped into the tank at the same rate. Assume that there is
constant mixing in the tank, so that it has the same concentration all over in the tank at any
given time. Let A represent the amount of salt in the tank (in pounds) and let t represent
time (in minutes).

(a) Sketch the graph of the amount A of salt in the tank as a function of time, from just the
given information.

(b) Give the initial value problem to be solved for A, and solve it.

(c) Graph your solution using some technology, and compare with your answer to (a).

(d) Give the steady-state and transient solutions.
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10. Suppose that we have an RL circuit with no voltage, as shown
to the right. The resistor has a resistance of 8 ohms, and the
inductor has an inductance of 1

3 henry, and there is an initial
current in the circuit of 5 amperes.

(a) Solve the initial value problem.

(b) Give the transient and steady-state parts of the solution.

R

L
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2.6 Chapter 2 Summary

• We can “solve” ODEs (and PDEs) in three ways:

– Analytically, which means “paper and pencil” methods that give exact algebraic solutions.

– Qualitatively, which means determining the general behavior of solutions without actually
finding function values. Results of qualitative methods are often expressed graphically.

– Numerically, which result in values of solutions only at discrete points in time or space.
Results of numerical methods are often expressed graphically or as tables of values.

• The two most commonly applicable methods for solving first order ODEs analytically are separation
of variables and the integrating factor method.

• Separation of variables only works for equations that can be written
dy

dx
= g(x)h(y), and for

which the antiderivatives

∫

g(x) dx and

∫
dy

h(y)
can be determined.

• The integrating factor method only applies to linear first order ODEs. Such ODEs can be put in

the form
dy

dx
+ p(x)y = q(x), and to carry out the integrating factor method the antiderivatives

u =

∫

p(x) dx and

∫

eu q(x) dx must exist.

• Some applications of first order ODEs are population growth and radioactive decay, mixing prob-
lems, Newton’s Law of Cooling problems, and RL electric circuits.

• Very different physical situations often result in the same differential equation.

• Suppose that the independent variable for an ODE is time, so the solution is a function of time.
Any part of the solution that goes to zero as time goes to infinity is called the transient part of the
solution, and any part of the solution that is a nonzero constant or periodic is called the steady
state part of the solution.

• It is not necessary that all parts of solutions exhibit transient or steady state behavior, but it is
often the case that they do.
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2.7 Chapter 2 Exercises

1. In Example 2.1(b) the ODE
dy

dt
+ 0.5y = 0 is solved by separation of variables, and it can also

easily be solved using an integrating factor.

(a) Instead of either of these, assume that it has a solution of the form y = Cert and determine
the value of r by substituting this solution into the equation. After finding the value of r,
give the solution to the ODE.

(b) Solve the IVP
dy

dt
+ 0.5y = 0, y(0) = 4.7

2. Consider the situation of Example 2.5(b) with the following change: Suppose that the 0.3 pounds
per gallon fluid is coming in at a rate of 5 gallons per minute, rather than 7 gallons per minute.
(The mixed fluid is still being drained from the tank at 7 gallons per minute.) The goal here is
to determine the amount A of salt in the tank at any time t.

(a) Give an expression for the amount of fluid in the tank at any time t.

(b) Give an expression for the concentration of salt in the tank at any time t.

(c) Give the initial value problem to be solved in order to determine the amount of salt in the
tank as a function of time.

(d) The differential equation is linear. What are the functions p(t) and q(t)?

(e) Solve the differential equation, using the integrating factor method. Graph the solution and
make sure it behaves as expected.

Reduction of Order

The term reduction of order usually refers to a method for finding a second solution to a second order
ODE from one solution that is already known. We will use the term more generally, for any process in
which one or more ODEs is turned into one or more other ODEs of smaller order. This can be done in
a variety of ways, the simplest of which is illustrated in the next few exercises.

3. In this exercise we’ll use reduction of order to solve u′′+2u′ = 0, where the independent variable
is x. This equation would likely not show up in any application, but it provides us with an easy
introduction to how reduction of order works.

(a) We begin by letting v = u′ where v, like u, is a function of x. What then is u′′?
Substitute the appropriate expressions in v in for u′′ and u′, then solve the resulting
ODE for v. For simplicity, assume that v ≥ 0. (Make sure you see why I am allowing this
assumption!)

(b) Now that you have found v, substitute u′ for v and solve the new ODE. Note that the
original ODE is second order, so your solution should have two arbitrary constants.

4. A classic problem in the study of PDEs is the equilibrium distribution of heat in a circular disk.
In the course of solving that problem one obtains the ODE

r2
d2R

dr2
+ r

dR

dr
− n2R = 0. (1)

Note that r and R are two different variables! R is the dependent variable, and is a function
of the independent variable r. Later we will see how to solve this equation for n 6= 0, but here
we will solve for n = 0.

82



(a) Write the equation with n = 0.

(b) Let S =
dR

dr
. What then is

d2R

dr2
, in terms of S?

(c) Substitute what you were given and what you determined in (b) into your equation from (a)
to obtain a first order ODE with dependent variable S.

(d) Solve your equation from (c), solving for S eventually.

(e) Replace S in your answer to (d) with
dR

dr
and solve the resulting first order ODE for R.

Note that the original ODE (1) is second order, so your solution should have two arbitrary
constants.

Here you used reduction of order to start with a second order ODE but make a substitution that
gives us a first order equation.

Logistic Growth

When we assume that a population will increase exponentially for all time, the differential equation for
the number N of individuals at time t is

dN

dt
= rN, (2)

where r is a constant that represents the growth rate. (See Example 2.5(a).) This model is somewhat
unrealistic, however - usually we expect some upper limit to the population due to the fact that as it
gets large it will begin to be constrained by some factor like the food available or disease. Thus the
growth rate should approach zero at some point, or even become negative if the population becomes
too large. On the other hand, the growth rate should be relatively constant for very small numbers

N of individuals. These conditions can be incorporated into our model by including a factor 1−N

K
for

some other constant K > 0:
dN

dt
= r

(

1− N

K

)

N. (3)

Equation (3) is one of several forms of what is called the logistic equation.

5. (a) Equation (3) is autonomous. Determine all equilibrium solutions (in terms of K), and
classify each as stable or unstable. Sketch a phase diagram and some solution curves.

(b) Discuss the significance of the constant K.

(c) What effect should changing r have on solution curves? Be as specific as possible. (Hint:
Think in terms of the direction field for the equation.)

6. (a) Solve equation (3) for K = 3000 and N(0) = 500. You don’t need to know the value of
r to do this, but r will appear in your solution.

(b) Suppose that N(4) = 2000, Use this to determine the value of r.

(c) Using your solution to (a) with the value of r determined in (b), determine when the
population will reach N = 2500.
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RC Circuits

In Section 2.5 there is a discussion of RL circuits, ones containing a voltage source, resistor and
inductor. Another simple circuit of interest is one containing a voltage source, resistor and capacitor,
called an RC circuit. Capacitors are devices that store something called charge, which we’ll denote as
q. The units of charge are coulombs. The ability of a capacitor to store charge is quantified by a
characteristic called capacitance, denoted by C. The units of capacitance are farads.

To the right is a schematic diagram of an RC circuit, which we will
also assume has a switch that allows current to begin flowing at some
time. The differential equation that models the charge q (in coulombs)
“on” (stored by) the capacitor at any time t (in seconds) is

R
dq

dt
+

1

C
q = E(t),

where R is resistance in ohms and C is capacitance in farads, and
E(t) is the voltage, which may or may not be constant.

E

R

C

Finally, we note that the derivative
dq

dt
, the rate at which the charge on the capacitor is changing

with respect to time, is the current in the circuit.

7. A 12 volt battery is attached to a circuit containing a 0.5µF (microfarad, 10−6 farad) and an
8kΩ (kilo-ohm, 103 ohm) resistor. At time zero, when the circuit is closed by a switch, the
capacitor has a charge of 10−9 coulombs.

(a) Give the charge q on the capacitor and the current i in the circuit as functions of time
t in seconds after closing the switch. Note that constants and variables have to be in terms
of volts, ohms, farads in order to get results in terms of coulombs and amperes.

(b) Plot the charge on the capacitor and the current in the circuit as two separate graphs.
Indicate clearly any asymptotes.

8. Consider the same situation as the previous exercise, but with the 12 volt battery replaced by a
variable voltage source E(t) = 10 cos 240πt. Repeat parts (a) and (b) of the previous exercise,
but do not expect asymptotic behavior of either the charge or the current.

Falling Body With Air Resistance

9. Here is another situation which is basically reduction of order, but disguised a little. Recall (from
Section 0.2) that the differential equation governing the motion of a falling object (or one that
has been projected upward) is

d2h

dt2
= −32, (4)

where h is the height of the object at any time t. For the value −32 on the right hand

side, h is measured in feet and t in seconds. Now
d2h

dt2
is the acceleration due to gravity.

Remembering that acceleration is the derivative of velocity, (4) can be rewritten as

dv

dt
= −32. (5)

The negative sign here is based on a coordinate system where up is positive. For the sake of
simplicity, let’s consider a falling body (so it never goes upward), and let’s take down to be
positive. (5) then becomes

dv

dt
= 32. (6)
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(4) and (5) are based on the assumption that there is no air resistance, but now lets remove
that assumption. A reasonable alternative premise is that the air resistance is proportional to the
velocity, but in the opposite (upward, so negative in our new cordinate system) direction. Letting
the constant of proportionality be k > 0, (6) then becomes

dv

dt
= 32− kv. (7)

(a) Equation (7) is autonomous; what is the equilibrium solution? (Your answer will contain
the constant k.) Is it stable, or unstable? Sketch the phase diagram and and a graph of
some solution curves. The equilibrium solution is what people are referring to when they
talk about terminal velocity.

(b) Solve (7) using one of the methods from this chapter. Take the limit of your solution as
t → ∞ and make sure it matches your equilibrium solution from (a).

(c) Give the equation for the velocity of an object that begins its motion by being dropped with
no initial velocity, with the assumption that air resistance is proportional to velocity.
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3 Second Order Linear ODEs

Learning Outcome:

3. Solve second order linear, constant coefficient ODEs and IVPs. Understand
the nature of solutions to such ODEs and IVPs.

Performance Criteria:

(a) Solve an Euler equation.

(b) Solve a second order, linear, constant coefficient, homogeneous ODE.

(c) Set up and solve second order initial value problems modeling spring-mass
systems and RLC circuits.

(d) Sketch or identify the graph of the solution to an IVP for an undamped
mass on a spring with no forcing function.

(e) Write a function y = A sinωt + B cosωt in the alternate form y =
C sin(ωt + φ). From this, determine the amplitude, period, frequency,
angular frequency and phase shift.

(f) Determine from the coefficients of a second order, constant coefficient
homogeneous ODE whether the system it models is (i) underdamped,
(ii) critically damped, (iii) overdamped, or (iv) undamped.

(g) Without finding the solution to the differential equation, sketch the graph
of a solution of an overdamped or underdamped homogeneous second
order, linear, constant coefficient ODE for given initial conditions. .

(h) Find a particular solution to a second order linear, constant coefficient
ODE using the method of undetermined coefficients.

(i) Evaluate a differential operator for a given function.

(j) Solve a second order linear, constant coefficient IVP.

(k) Identify the transient and steady-state parts of the solution to a damped
system with forced vibration.

In this course we are focusing on differential equations that can be solved by analytical (“pencil-and-
paper”) techniques. Many differential equations cannot be solved this way, and numerical methods must
be employed to obtain solutions. (See Appendix B for an introduction to solving ODEs by numerical
techniques.) Our chances of being able to solve an ODE analytically are much greater if it is linear.

A second order linear ODE has the form

a2(x)
d2y

dx2
+ a1(x)

dy

dx
+ a0(x)y = f(x), (1)

and when f(x) = 0 it is a homogeneous linear differential equation. Here a2, a1 and a0 are
functions of the independent variable x. In this chapter we will focus almost entirely on second order
linear differential equations in which all the coefficients are constants and the independent variable is
time t, rather than x. So our equations will generally have the form

ay′′ + by′ + cy = f(t), (2)
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where a 6= 0, b and c are constants and f is a function that we will refer to as the forcing function.
(2) is called a second order, linear, constant coefficient ODE. Recall that (1) and (2) are homogeneous
when f = 0 for all x or t.

The one other type of (linear) equation we will see in this chapter is a variety called an Euler
equation. For such equations a2(x) = ax2, a1(x) = bx and a0(x) = c, where b and c are
constants, and f(x) = 0. Thus an Euler equation is one with the form

ax2
d2y

dx2
+ bx

dy

dx
+ cy = 0 (3)

Equations of this form arise when solving certain partial differential equations. In the first section of the
chapter we will solve equations of the forms

ax2
d2y

dx2
+ bx

dy

dx
+ cy = 0 and ay′′ + by′ + cy = 0, (4)

both of which are clearly homogeneous. These equations will always have two solutions y1 and y2,
and the general solution will be a linear combination

y = C1y1 + C2y2 (5)

of the two solutions. (C1 and C2 are of course constants.) It should at this point be no surprise that
the general solution to equations of either of the forms (4) contain two arbitrary constants!

Our main focus as the chapter goes on will be solving initial value problems of the form

ay′′ + by′ + cy = f(t), y(0) = y0, y′(0) = y′0, (6)

with a, b and c being constants, a 6= 0. In addition, the initial values y0 and y′0 are constants
as well. The method we will use to solve the IVP will consist of four steps:

(1) We will first solve the homogeneous equation obtained by replacing f(t) with zero. This will
give us a solution of the form (5), called the homogenous solution. We will denote it by yh.

(2) Next we’ll find something called a particular solution, denoted by yp, for the ODE in (6). We
will do this by a method called the method of undetermined coefficients.

(3) The general solution to the equation ay′′ + by′ + cy = f(t) is

y = yh + yp = C1y1(t) + C2y2(t) + yp(t), (7)

the sum of the homogenous solution and the particular solution.

(4) The initial conditions y(0) = y0 and y′(0) = y′0 are used to determine the values of the
constants C1 and C2. This gives us the final solution to the initial value problem (6).

Initial value problems of the form

ay′′ + by′ + cy = f(t), y(0) = y0, y′(0) = y′0, (6)

model certain electrical circuits and simple mechanical vibration. We will proceed through a series
of variations on this initial value problem, developing an understanding of how the particular model
describes the system and how the solution y(t) behaves:
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• In Section 1.2 we saw how a system consisting of a mass on a spring is modeled by the second
order ODE

m
d2y

dt2
= −ky or m

d2y

dt2
+ ky = 0,

which is ay′′+ by′+ cy = f(t) with b = 0 and f(t) = 0. When b = 0 we refer to the system
as undamped, and when f(t) = 0 the system is free. We begin our study of applications with
free, undamped systems in Section 3.2.

• In Section 3.3 we will add damping, but still no forcing function. That is, we’ll have b 6= 0 and
f(t) = 0. In this case we’ll see that there are three possible scenarios - the system is just one of
(a) underdamped, overdamped, or critically damped. In Section 3.3 we will also introduce an
electrical circuit for which the mathematical model is exactly the same as a mass on a spring.

• Next, in Section 3.4, we will consider systems that are both damped (so b 6= 0 and forced (so
f(t) 6= 0). We will see in that section how to find particular solutions to forced systems.

• Differential operators are introduced in Section 3.5. These give us a convenient way to understand
the nature of solutions to forced systems.

• In Section 3.6, we’ll put together everything from the previous sections to solve initial value
problems with second order, linear, constant coefficient differential equations. We’ll consider such
IVPs in applied settings, and we’ll examine the nature of solutions to such IVPs.

As a specific example of an ODE of the form ay′′ + by′ + cy = f(t), let’s consider

y′′ + 5y′ + 6y = 5 sin 3t.

We want to know not only how to solve such ODEs and their associated IVPs, but also to know what
kind of behavior to expect from solutions, based on the original ODE or IVP. Here is a summary of some
of the ideas you will run across, which were previously brought up in Chapter 2:

• The left hand side of the ODE represents some sort of “system” like a mass on a spring or a
simple electric circuit. The function on the right represents some kind of input to the system,
which we call a forcing function, since it forces movement (for a mass on a spring) or current
(for an electrical circuit) in the system.

• The solution function y is the response of the system, and will often consist of exponential or
trigonometric functions, or products of the two. The solution may have several terms, some of
which may “die out” (go to zero) as time goes on, and others that may not. The parts that die
out are called transient parts of the solution, and parts that are constant or periodic are called
steady-state parts. These are also referred to as the transient and steady-state response of the
system.
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3.1 Homogeneous Second-Order Equations

Performance Criterion:

3. (a) Solve an Euler equation.

(b) Solve a second order, linear, constant coefficient, homogeneous ODE.

In this section we will solve second order homogeneous equations of the forms

ax2
d2y

dx2
+ bx

dy

dx
+ cy = 0 and ay′′ + by′ + cy = 0, (1)

where a 6= 0, b and c are constants. In both cases, solutions are obtained by guessing what the general
form of a solution might be and then substitution that guess into the ODE and “making it work.” The
first equation in (1) is called an Euler equation and the second is a second order, linear, constant
coefficient, homogeneous ODE. The bulk of this chapter is about constant coefficient equations. In
this section we’ll first see how to solve Euler equations, then look at homogeneous constant coefficient
equations, whose solutions take a variety of forms.

Consider the Euler equation
x2y′′ + 2xy′ − 6y = 0.

Note that if y was some power of x then y′ would be one power lower and y′′ two powers lower.
If we then substituted our y, y′ and y′′ into the ODE we would have three terms of the same power
due to the multiplication of y′ by x and y′′ by x2 in the ODE. Thus there might be some hope
that the three terms add up to zero.

⋄ Example 3.1(a): Solve the ODE x2y′′ + 2xy′ − 6y = 0 by guessing a solution of the form
y = xp and determining the value of p.

Solution: First we compute y′ = pxp−1 and y′′ = p(p − 1)xp−2. Substituting these into the
ODE we get

x2p(p− 1)xp−2 + 2xpxp−1 − 6xp = 0

p(p− 1)xp + 2pxp − 6xp = 0

xp
[
p(p− 1) + 2p − 6

]
= 0

xp(p2 + p− 6) = 0

Now the quantity xp is only zero when x = 0, leading to the trivial solution y = 0. Because
we would like nonzero solutions, it must be the case that p2 + p − 6 = 0. Solving this gives
us p = −3, 2, so both y = x−3 and y = x2 are solutions. The general solution is then
y = C1x

−3 + C2x
2.

We now contemplate the second order linear, constant coefficient, homogeneous ODE

y′′ + 5y′ + 6y = 0.

In this case we are looking for some function y = y(t) (we will be interested in applications in
which time is the independent variable) for which we can multiply the function and its first and second
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derivatives by constants, add the results and get zero. This indicates that y must essentially be equal
to its first and second derivatives, which only occurs for exponential functions. Therefore we guess that
the solution has the form y = ert, where r is some constant.

⋄ Example 3.1(b): Solve y′′ + 5y′ + 6y = 0, assuming that the independent variable is t.

Solution: We substitute the guess y = ert into the ODE, resulting in

r2ert + 5rert + 6ert = (r2 + 5r + 6)ert = 0

Now the quantity ert is never zero, so r2 + 5r + 6 = 0. Solving this gives us r = −3,−2, so
both y = e−3t and y = e−2t are solutions. It is not hard to show that if y1 and y2 are both
solutions to a homogeneous ODE and C1 and C2 are constants, then y = C1y1 + C2y2 is
also a solution. So in this case, the general solution is y = C1e

−3t + C2e
−2t.

When using the above method to solve

ay′′ + by′ + cy = 0 (2)

we will arrive at (ar2 + br + c)ert = 0, leading to ar2 + br + c = 0. We will refer to the equation
ar2 + br + c = 0 as the auxiliary equation (also called the characteristic equation) associated with
the ODE ay′′ + by′ + cy = 0, and we will call solutions to this equation roots of the equation. The
following summarizes what we saw in the above example, which is only one of several possible forms
that a solution to (2) can take.

When the auxiliary equation for a second order, linear, constant coefficient homo-
geneous equation has two real roots r1 and r2, the solution to the ODE is

y = C1e
r1t +C2e

r2t.

Video Example - watch from 1:20 to 3:10

The most efficient method for finding the roots of the auxiliary equation r2 + 5r + 6 = 0 from
Example 3.1(b) is to factor the left side, but we could have used the quadratic formula

r =
−b±

√
b2 − 4ac

2a
(2)

instead. We will at times want or need to use the quadratic formula, and at other times factoring or
another method may be more efficient for finding the roots of the auxiliary equation. Regardless of what
we might do in practice, an examination of (2) is useful for determining the various possibilities when
obtaining the roots to the auxiliary equation:

• When b2 − 4ac > 0 there will be two real roots, as in Example 3.1(b).

• When b2 − 4ac = 0 there will only be one real root, which is a rather special case.

• When b2 − 4ac < 0 and b 6= 0 the roots will be complex conjugates. That is, they will be
complex numbers of the form r = k + λi and r = k − λi, where i =

√
−1.
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• When b2 − 4ac < 0 and b = 0, the roots will be two purely imaginary numbers r = λi and
r = −λi. (This is just the previous case, with k = 0.)

Video Discussion

Each of the above cases results in different forms of the solution to the homogeneous equation
ay′′ + by′ + cy = 0, and the methods for solving the auxiliary equations are generally different as well,
although the quadratic formula could be used in all cases. We’ve already taken care of the first case
with Example 3.1(b).

We now consider the second case above. Suppose that we were to try the method of Example 3.1(b)
for the ODE y′′ + 6y′ + 9y = 0. We would only get one value for r, −3. By the same reasoning
as used before we then have the solution y = C1e

−3t +C2e
−3t; because these are like terms, this can

be written y = Ce−3t, where C = C1 + C2. But (for reasons we’ll go into in more depth later) the
general solution to a second order ODE must be the sum of two “different” functions, each multiplied
by arbitrary constants, so something is wrong! The following example shows that there is in fact another
solution besides e−3t.

⋄ Example 3.1(c): Verify that y = te−3t is also a solution to the ODE y′′ + 6y′ + 9y = 0.

Solution: Using the product and chain rules to compute the derivatives,

y′ = t(e−3t)′ + t′e−3t = −3te−3t + e−3t

y′′ = −3(te−3t)′ − 3e−3t = −3(−3te−3t + e−3t)− 3e−3t = 9te−3t − 6e−3t

Substituting into the ODE,

y′′ + 6y′ + 9y =
(
9te−3t − 6e−3t

)
+ 6
(
− 3te−3t + e−3t

)
+ 9
(
te−3t

)

= 9te−3t − 6e−3t − 18te−3t + 6e−3t + 9te−3t

= 0

The general solution to the ODE y′′ + 6y′ + 9y = 0 is then y = C1e
−3t + C2te

−3t. Any time
that our auxiliary equation has a repeated root r (both solutions are the same), one of the solutions
is ert, and the other solution is tert. We’ll see in Section 4.2 how this solution is obtained.

When the auxiliary equation for a second order, linear, constant coefficient homo-
geneous equation has only one real root r, the solution to the ODE is

y = C1e
rt + C2te

rt.

Video Example

We now consider the case where b2 − 4ac < 0 and b = 0, resulting in two purely imaginary
roots r = ±λi. We’ll consider the homogeneous equation y′′ + 9y = 0 that we looked at previously,
which can be rewritten as y′′ = −9y. Through our familiarity with derivatives and the chain rule, we
guessed (correctly) that both y = sin 3t and y = cos 3t are solutions, and it is not hard to show that
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y = C1 sin 3t + C2 cos 3t is a solution. Now how would it work to try the method of Example 3.1(b)
for this equation? Letting y = ert we have

y′′ + 9y = r2ert + 9ert = (r2 + 9)ert = 0

so we need to solve r2+9 = 0 ⇒ r2 = −9. If we allow complex solutions, the solution to this equation
is r = ±3i, so the solution to the ODE is y = Ae3it + Be−3it, where A and B are arbitray
constants. (We could have used C1 and C2 for the constants as we have been doing, but we are
“saving” them, as you’ll see.) To continue we will need the following:

Euler’s Formula: eiθ = cos θ + i sin θ

To see where Euler’s Formula comes from, see Appendix B.5. We will also use the two basic trig
identities:

cos(−θ) = cos θ, sin(−θ) = − sin θ

Combining the two solutions e3it and e−3it, we get

y = Ae3it +Be−3it

= A
(
cos 3t+ i sin 3t

)
+B

[
cos(−3t) + i sin(−3t)

]

= A cos 3t+Ai sin 3t+B cos 3t−Bi sin 3t

= (A+B) cos 3t+ (A−B)i sin 3t

= C1 cos 3t+ C2 sin 3t.

Here A and B are constants, and C1 = A+B, C2 = (A−B)i. Now it seems that C2 should be
a complex number, which is a bit disconcerting. However, it is possible that A and B are complex
as well, in such a way that perhaps C2 turns out to be real! You will find that this method “works,”
regardless. The following summarizes what we have just seen.

When the auxiliary equation for a second order, linear, constant coefficient homoge-
neous equation has two purely imaginary roots r = ±λi, the solution to the ODE
is

y = C1 sinλt+ C2 cos λt.

Let’s use a specific example to examine the final situation, where the auxiliary equation has two
complex roots r = k ± λi.

⋄ Example 3.1(d): Solve y′′ + 10y′ + 28y = 0.

Solution: Guess y = ert, so y′ = rert and y′′ = r2ert. Then

y′′ + 10y′ + 28y = r2ert + 10rert + 28ert = (r2 + 10r + 28)ert = 0

Again, ert cannot equal zero, so we solve r2+10r+28 = 0; this is done in this case using the
quadratic formula:

r =
−10±

√

102 − 4(28)

2
= −5± 2i

√
2
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Therefore

y = Ae(−5+2i
√
2)t +Be(−5−2i

√
2)t

= Ae−5te2i
√
2 t +Be−5te−2i

√
2 t

= e−5t
[(
A cos(2

√
2 t) +Ai sin(2

√
2 t)
)
+
(
B cos(−2

√
2 t) +Bi sin(−2

√
2 t)
)]

= e−5t
[(
A cos(2

√
2 t) +Ai sin(2

√
2 t)
)
+
(
B cos(2

√
2 t)−Bi sin(2

√
2 t)
)]

= e−5t
[
(A+B) cos(2

√
2 t) + (A−B)i sin(2

√
2 t)
]

= e−5t[C1 cos(2
√
2 t) + C2 sin(2

√
2 t)]

The solution to y′′ + 10y′ + 28y = 0 is y = e−5t
[
C1 cos(2

√
2 t) +C2 sin(2

√
2 t)
]
.

In general, we have the following.

When the auxiliary equation for a second order, linear, constant coefficient homo-
geneous equation has two complex roots r = k ± λi, the solution to the ODE
is

y = ekt(C1 sinλt+ C2 cos λt).

Example 3.1(d) and the discussion before it show how sine and cosine functions arise when r1 and
r2 are complex numbers, but you need not show all those steps when solving. Unless asked to show
more, we will just set up and solve the equation ar2 + br + c = 0, then give the solution that arises
from the form of the roots. In the Chapter 3 Summary you will find a flowchart detailing the process of
finding the solution to a second order, linear, constant coefficient, homogeneous differential equation.
You will need to “memorize” the forms of the solution for the various forms of r1 and r2, but if you
do enough exercises, you should know them by the time you are done.

Section 3.1 Exercises To Solutions

1. Solve each Euler equation.

(a) x2y′′ − 4xy′ + 4y = 0 (b) x2y′′ + 4xy′ + 2y = 0 (c) 3x2y′′ − xy′ + y = 0

2. Solve each ODE, assuming the independent variable is t. Use exact values except for (i) - use
decimals rounded to the hundredth’s place there.

(a) y′′ − 2y′ − 3y = 0 (b) y′′ + 2y′ + 10y = 0 (c) y′′ + 10y′ + 25y = 0

(d) y′′ + 6y′ + 11y = 0 (e) y′′ + 3y′ + 2y = 0 (f) y′′ + 2y = 0

(g) y′′ + 2y′ + y = 0 (h) y′′ + 16y = 0 (i) y′′ + 3.1y′ + 4.5y = 0

3. (a) Give the auxiliary equations for the ODEs y′′ + 25y = 0 and y′′ + 25y′ = 0.

(b) Solve the ODE y′′ + 25y′ = 0 using the method of this section.
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4. Give the general form of the solution (that is, give one of the forms found in the boxes in this
section) to ay′′ + by′ + cy = 0 under each of the following conditions:

(a) b = 0 (b) b2 − 4ac > 0 (c) b2 − 4ac < 0, b 6= 0 (d) b2 − 4ac = 0

5. (a) Solve the Euler equation x2y′′ − 3xy′ + 4y = 0. You should obtain only one solution.

(b) We know that there should be two solutions. Show that y = x2 lnx, x > 0, is also a
solution.
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3.2 Free, Undamped Vibration

Performance Criteria:

3. (c) Set up and solve second order initial value problems modeling spring-mass
systems and RLC circuits.

(d) Sketch or identify the graph of the solution to an IVP for an undamped
mass on a spring with no forcing function.

(e) Write a function y = A sinωt + B cosωt in the alternate form y =
C sin(ωt + φ). From this, determine the amplitude, period, frequency,
angular frequency and phase shift.

Let’s return to the following example:

⋄ Example 1.1(a): Suppose that a mass is hanging on a spring
that is attached to a ceiling, as shown to the right. If we lift the
mass, or pull it down, and let it go, it will begin to oscillate up
and down. Its height (relative to some fixed reference, like its
height before we lifted it or pulled it down) varies as time goes
on from when we start it in motion. We say that height is a
function of time.

spring

mass

In Section 1.2 we derived the differential equation

m
d2y

dt2
+ ky = 0 (1)

that governs the motion of the mass. Here y is the height (from equilibrium) of the mass at any time
t after it is set in motion by some means, with positive being upward. m is the mass of the mass
(the first of these being a quantity, and the second being an object) and k is the spring constant. We
will assume that there is no external force acting on the mass once it is set in motion - in such cases
we call the vibration free. We will also consider the system to be undamped, which means that there
is nothing hindering the motion of the mass once it begins moving up and down.

First let’s remind ourselves of how we can solve such ODEs:

⋄ Example 3.2(a): Solve Equation 1 for a mass of 10.3 and a spring constant of 28.7 (both with

appropriate units).

Solution: The auxiliary equation corresponding to the ODE is 10.3r2 + 28.7 = 0. Subtracting
28.7 from both sides and dividing by 10.3 gives r2 = −2.786.... If we then take the square root
of both sides and round to the nearest hundredth, we have r = ±1.67i. Therefore the solution
to the ODE is y = C1 sin 1.67t + C2 cos 1.67t.
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Intuitively it is reasonable that, once set in motion, a
mass on a spring with no damping will oscillate forever with
the same amplitude. The graph of such motion would look
something like what is shown to the right; this is referred to
as harmonic motion. It may not be clear how the solution
to the above differential equation, which contains a sum of
sine and cosine functions, gives a graph like the one shown.
We’ll soon see a computation that makes it clear how this
happens.

y (in)

t (sec)

A mass hanging on a spring can be set in motion by doing one of three things:

• moving the mass away from its equilibrium position and letting it go

• giving the mass some initial velocity upward or downward from its initial position

• moving the mass away from its initial position and giving it an initial velocity

If we move the mass upward or downward, that will give y(0) equal to some value other than zero,
and if we impart an initial velocity the value of y′(0) will be nonzero.

⋄ Example 3.2(b): Suppose that the mass from Example 3.2(a) is set in motion by lifting it up
one inch and giving it an initial velocity of 2 inches per second downward, both at time zero. Give
the initial conditions in function form and sketch a graph of what you expect the motion to look
like. Then determine the solution to the initial value problem and graph it to check your graph.

Solution: The condition of raising the mass up by one
inch is given by y(0) = 1, and the initial velocity of two
inches per second downward is given by y′(0) = −2,
with the negative indicating that the velocity is in the
downward direction. Because the mass starts above its
equilibrium point, we expect the y-intercept of the graph
to be at positive one. The condition of being given an
initial velocity downward means that the slope of the
tangent line to the graph at t = 0 will be negative.
We therefore expect a graph something like that shown
to the right.

y (in)

t (sec)

1

Applying the first initial condition with the solution from Example 3.2(a) gives C2 = 1. Taking
the derivative of the solution obtained in Example 3.2(a) gives

y′ = 1.67C1 cos 1.67t − 1.67C2 sin 1.67t.

Substituting the initial velocity initial condition and C2 = 1 into this gives us C1 = −1.20 (the
zero indicates accuracy to the hundredth’s place), so the solution to the IVP is

y = −1.20 sin 1.67t + cos 1.67t.

The graph of this function agrees with that shown above.

It is sometimes useful to change an expression of the form −1.20 sin 1.67t+cos 1.67t into a single
sine function with a phase shift, and here is what we use to do it:
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C sin(ωt+ φ) Form

A sinωt+B cosωt = C sin(ωt+ φ), where C =
√

A2 +B2

and φ = tan−1 B

A
if A > 0, φ = π + tan−1 B

A
if A < 0

If A = 0, then B cosωt = B sin
(
ωt+ π

2

)

Note that radian mode must be used when using a calculator to compute φ!

⋄ Example 3.2(c): Change the solution y = −1.20 sin 1.67t + cos 1.67t into the form y =

C sin(ωt+ φ), where C, ω and φ are all decimals rounded to the hundredth’s place.

C =
√

(−1.20)2 + 12 = 1.56, φ = π + tan−1 B

A
= 2.44

Thus the solution can be written as y = 1.56 sin(1.67t + 2.44).

We see that the amplitude of the motion for the situation from Examples 3.2(a), (b) and (c) is 1.56,
greater than the initial position of one unit. That is due to the initial velocity - you will see in the
exercises what happens if there is no initial velocity.

There are some important parameters associated with a function y = C sin(ωt+ φ):

Amplitude, frequency, period and phase shift

For a function y = C sin(ωt+ φ),

• C is the amplitude • ω is the angular frequency

• T =
2π

ω
is the period • f =

1

T
=

ω

2π
is the frequency

• −φ

ω
is the phase shift • ω = 2πf

⋄ Example 3.2(d): For the function y = 1.56 sin(1.67t + 2.44), give the amplitude, period,
frequency and phase shift.

Solution: The amplitude is 1.56, the period is T =
2π

1.67
= 3.76, the frequency is f =

1

T
=

0.64 and the phase shift is −2.44

1.67
= −1.46.

With a bit of careful thought, the following should be clear: Only the amplitude and and phase shift
are influenced by the initial conditions. The period, frequency and angular frequency in this case are all
determined by m and k, the parameters of the system.
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Section 3.2 Exercises To Solutions

1. Suppose that the mass is set in motion by moving it upward by 2.5 cm and releasing it with no
initial velocity.

(a) Sketch what you think the graph of y versus t will look like, taking care with the fact
that positive y is upward. Make the amplitude of the motion clear on your graph.

(b) Express the initial conditions mathematically by giving values for y(0) and y′(0).

2. Repeat Exercise 1 for a mass that is set in motion by hitting it upward (as it hangs at equilibrium),
giving it an initial speed of 3 inches per second.

3. Repeat Exercise 1 for a mass that is set in motion by giving it an initial speed of 8 cm per second
downward from a point 2 cm above equilibrium. The amplitude is not two - make it clear whether
it is more or less than two.

4. A mass of 3
4 is attached to a spring with a spring constant of 15. It is set into motion by

raising it 2.5 cm and releasing it. (See Exercise 1.)

(a) Set up an initial value problem consisting of a differential equation and two initial conditions.

(b) Solve the initial value problem to find the position function y. Give all numbers as decimals,
rounded to the hundredth’s place.

(c) Graph your solution using some technology and compare with your answer to Exercise 1.
They should agree; if they don’t, figure out what is wrong and fix it!

(d) Put your solution in the form C sin(ωt + φ). Graph the resulting function and make sure
the graph agrees with what you got for (c). If not, try to find and correct your error.

(e) Give the amplitude, angular frequency, period, frequency and phase shift of the solution.

5. (a) Consider again a mass of 3
4 attached to a spring with a spring constant of 15, as in

Exercise 4. Solve the initial value problem obtained with the initial conditions of Exercise
3, where the initial speed was 8 cm downward from a point 2 cm above equilibrium. Again
give all numbers as decimals, rounded to the hundredth’s place.

(b) Graph your solution using technology and compare with your answer to Exercise 3.

(c) Put your solution in the form y = A sin(ωt+φ). Check it by graphing it and your solution
to part (a) together; they should be the same!

(d) Give the amplitude, angular frequency, period, frequency and phase shift of the solution.

6. A mass of 4
10 on a spring with spring constant 4 is given an initial velocity of 9 cm/sec upward

from an initial position of 4 cm below equilibrium.

(a) Give the initial value problem.

(b) Find the equation of motion of the mass, y(t), in the form y = A sin(ωt+ φ).

(c) Give the amplitude, angular frequency, period, frequency and phase shift of the solution.
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3.3 Free, Damped Vibration

Performance Criteria:

3. (c) Set up and solve second order initial value problems modeling spring-mass
systems and RLC circuits.

(f) Determine from the coefficients of a second order, constant coefficient
homogeneous ODE whether the system it models is (i) underdamped,
(ii) critically damped, (iii) overdamped, or (iv) undamped.

(g) Without finding the solution to the differential equation, sketch the graph
of a solution of an overdamped or underdamped homogeneous second
order, linear, constant coefficient ODE for given initial conditions.

Consider again a mass on a spring, but suppose that we submerge the
mass in an oil bath, as shown to the right (think about an oil-damped
shock absorber). As the mass moves up and down there is now an
additional force acting on it, the resistance of the oil. We will make the
assumption that the force is directly proportional to the velocity but in
the opposite direction; that is, for some positive constant β (the Greek

letter beta), the force of resistance is given by −β
dy

dt
.

oil

Suppose that we also have some variable external force acting on the mass as well. (Think force
exerted upward on a shock absorber by the road, as a car drives along.) If this force is some function
f(t), then the net force on the mass at any time t is

Fnet = m
d2y

dt2
= f(t)− β

dy

dt
− ky.

If we rearrange this equation we get

m
d2y

dt2
+ β

dy

dt
+ ky = f(t), (1)

the second order differential equation that models the motion of a spring-mass system with damping
and an external forcing function f .

Now suppose that we have an electric circuit consisting of a re-
sistor, an inductor and a capacitor in series with each other, along
with (perhaps) a voltage source. We will refer to such a circuit as
an RLC circuit, shown schematically to the right. The differen-
tial equation that models an RLC circuit is derived from Kirchoff’s
voltage law which tells us that the sum of the voltage drops across
each of the three components is equal to the voltage imposed on
the system by the voltage source. By Ohm’s law the voltage drop
across the resistor is V = iR, where i is the current and R is
the resistance of the resistor.

E

R

L

C

Figure 3.1
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The voltage drops across the inductor and the capacitor are L
di

dt
and

1

C
q, where q is the charge

on the capacitor. From Kirchoff’s voltage law we now have

L
di

dt
+Ri+

1

C
q = E(t), (2)

where E(t) is the voltage as a function of time. (It may of course be constant, such as in the case of
DC voltage supplied by a battery.)

But the current i is the rate at which charge is passing by a point in the circuit: i =
dq

dt
Thus

di

dt
=

d

dt

(
dq

dt

)

=
d2q

dt2
and the above equation becomes

L
d2q

dt2
+R

dq

dt
+

1

C
q = E(t) , (3),

where L is the inductance of the inductor in henries, R is the resistance of the resistor in ohms, and
C is the capacitance of the capacitor in farads. All are positive quantities; this will be important! If
we would rather work with current rather than charge we can differentiate both sides of (3) to get

L
d2i

dt2
+R

di

dt
+

1

C
i = E′(t) , (4),

Note that both (3) and (4) are completely analogous to equation (1), which models a spring-mass
system. This illustrates the principle, first encountered in Section 2.5, that different physical situations
are often modeled by the same differential equation.

In this section we will consider the situation in which there is no forcing function. That is, the right
hand sides of (1), (3) and (4) are zero. Of course something needs to happen to get the mass moving or
to get current to flow in the circuit, and each can be accomplished in a variety of ways. For example, the
spring and the capacitor both have the ability to store energy by compressing or stretching the spring,
or by storing charge in the capacitor (with the positivity or negativity of that charge being analogous
to compressing or stretching the spring). As that energy is released it will cause the mass to move or
current to flow in the circuit. Here is a summary of initial conditions we can have for the spring, which
we previously gave in Section 3.2:

• the mass can be displaced and let go, with no initial velocity

• the mass can be given some velocity at its resting position

• the mass can be displaced AND given some initial velocity upward or downward

The analogous conditions for the electric circuit are as follows:

• there is no current in the circuit, but there is an initial charge on the capacitor

• there is no charge on the capacitor, but there is an initial current

• there is both an initial charge on the capacitor and an initial current

Our main objective in this section is to understand the behavior of the solution function y(t) of
equation (1), (3) or (4) when f(t) = 0 or E(t) = 0, and how that behavior varies depending on the
parameters m, k and β or R, L and C. You will be looking at some exercises to do this. Realize
that the values given for the parameters may not be realistic - they were chosen in such a way as to
make the mathematics reasonable.
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Section 3.3 Exercises To Solutions

For all exercises in this section you will be working with the equation

m
d2y

dt2
+ β

dy

dt
+ ky = f(t), (1)

for various values of m, β and k, but always with f(t) = 0.

1. (a) Solve the initial value problem consisting of Equation (1) with m = 5, β = 6 and
k = 80, and initial conditions y(0) = 2, y′(0) = −6. Give your answer in the form
y = Ceat sin(ωt+φ) and all numbers in decimal form, rounded to the nearest tenth. (Note
that 5.0007 rounded to the nearest tenth is 5.0, not 5! What is the difference?)

(b) Graph the solution to the IVP on your calculator. Adjust the viewing window to get about
three cycles of the motion displayed fairly large. Sketch your graph.

(c) Graph y = 2.3e−0.6t and y = −2.3e−0.6t together with the solution you graphed in (b).
Add them to your sketch as dashed curves.

What you have just seen is an example of what is called underdamped vibration. There is damping,
but it is small enough to allow the mass to move up and down while the vibration decays.

2. (a) Solve the initial value problem consisting of Equation (1) with m = 5, β = 50 and k = 80,
and initial conditions y(0) = 2, y′(0) = 6.

(b) Sketch the graph of your solution over a time period long enough to show what is happening
over time. Make your vertical scale such that the general shape of the graph can be seen.

(c) Compare and contrast your solution to this IVP with the solution to the IVP from Exercise
1, in terms of amplitude over time and oscillation.

For your answer to 2(c) you should have noted that the solution of the IVP in Exercise 1 oscillates as it
decays, and the solution of the IVP in Exercise 2 does not. We say that the situation from Exercise 2 is
overdamped vibration. The initial conditions do not affect whether the vibration will be underdamped
or overdamped (can you see why not?), so the only difference is the value of β.

3. (a) Determine a value of β that is the “dividing line” between equations have solutions that
oscillate as they decay and those that do not oscillate. Explain how you determined it.

(b) Solve the IVP with m = 5, k = 80 and the value of β you obtained in (a), along with
the initial conditions from Exercise 2. Graph the solution using some technology and sketch
the graph.

(c) Suppose now that m = 5 and k = 80. How would you expect the solution to (1) to
behave if β was slightly smaller than the value obtained in (a), and why. How would you
expect the solution to behave for β slightly larger than the value obtained in (a)? Answer
these questions in complete sentences.

For your answer to 3(c) you should have said that if β is a little less than the value that you found in
(a) the solution will behave like that in Exercise 1, and if β is a little more than that value the solution
will behave like that in Exercise 2. The situation in Exercises 3(a) and 3(b) is called the critically
damped case, meaning that if there is just a little less damping the behavior will be oscillatory, but if
the damping has that critical value or greater, the motion will not be oscillatory.

4. Describe a method for determining from the coefficients m, β and k whether the solution will
be underdamped, overdamped, or critically damped.
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5. Sketch the graph of the solution to a 2nd-order, constant-coefficient homogeneous ODE with the
given damping conditions and initial conditions.

(a) Underdamped, y(0) < 0, y′(0) > 0.

(b) Overdamped, y(0) < 0, y′(0) < 0.

(c) Overdamped, y(0) > 0, y′(0) < 0. (I think there may be a couple different appearances
possible here - we’ll investigate this more later.)

(d) Undamped (not underdamped, but undamped), y(0) > 0, y′(0) > 0.

6. Consider a circuit like that shown in Figure 3.1, but without the voltage source E = 0. The
components are a 0.15 henry inductor, a 500 ohm resistor and a 2× 10−5 farad capacitor, the
initial charge on the capacitor is 1.3 × 10−6 coulombs and there is no initial current. (This can
be achieved by having an open switch in the circuit and closing the switch at time zero.)

(a) Is the system overdamped, underdamped, or critically damped?

(b) Use equation (3) to determine the charge on the capacitor at any time t. Round all
constants to three significant figures and give correct units with your answer.

(c) If you didn’t already in part (b), put your answer in y = Cekt sin(ωt+ φ) form.

(d) Give the current in the circuit at any time t, again giving units with your answer and
rounding to two significant digits.
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3.4 Particular Solutions, Part One

Performance Criteria:

3. (h) Find a particular solution to a second order linear, constant coefficient
ODE using the method of undetermined coefficients.

In the previous section we found out how to solve equations of the form

ay′′ + by′ + cy = f(t) (1)

when f(t) = 0, but in practice we are usually interested in situations where f(t) 6= 0. For those
situations we will use a technique called the method of undetermined coefficients to find a solution.
To do this we (again!) substitute a guess, which we will call the trial particular solution, into the ODE.
This trial solution will contain one or more unknown constants, whose values can be determined by
finding the result obtained when the trial solution is substituted into the left hand side of the ODE and
then setting it equal to the known right hand side f(t). Like terms are then equated, and the constants
determined. The resulting solution is called the particular solution to (1). Later we will see how the
particular solution is combined with the homogeneous solution to give the general solution to (1).

Let’s consider the ODE
y′′ + 9y = 5e−2t.

If y had the form y = Ae−2t for some constant A, then y′′ would have the same form. Perhaps
there is then a choice of A for which y′′ + 9y will equal 5e−2t. The next example shows us that is
in fact the case.

⋄ Example 3.4(a): Find a value A for which y = Ae−2t is a solution to y′′ + 9y = 5e−2t.

Solution: First we observe that

y = Ae−2t =⇒ y′ = −2Ae−2t =⇒ y′′ = 4e−2t.

Substituting these into the left side of (1) we get

y′′ + 9y = 4Ae−2t + 9Ae−2t = 13Ae−2t.

We now set this equal to the right hand side of the ODE to get 13Ae−2t = 5e−2t. The only way
that this can be true is if the coefficients of e−2t are equal: 13A = 5 ⇒ A = 5

13 . Therefore
y = 5

13e
−2t is a solution to y′′ + 9y = 5e−2t.

A particular solution to a differential equation is any solution that does not contain arbitrary constants,
so y = 5

13e
−2t is a particular solution to the ODE y′′ + 9y = 5e−2t. We sometimes subscript the

dependent variable with the letter p to indicate a particular solution. For the above we would then
write yp =

5
13e

−2t. This distinction is made because, as we will soon see, there are other solutions as
well.

Next we will examine the ODE y′′ + 7y′ + 10y = 5t2 − 8. We might guess that the particular
solution will be a fourth degree polynomial, because then y′′ would be a second degree polynomial. It
turns out that there is no harm in trying a fourth degree polynomial (you will try it in the exercises),
but in fact a second degree polynomial is adequate. The next example demonstrates this.
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⋄ Example 3.4(b): Find the coefficients A, B and C for which yp = At2 + Bt + C is a

solution to y′′ + 7y′ + 10y = 5t2 − 8.

Solution: First we compute the needed derivatives:

yp = At2 +Bt+C =⇒ y′p = 2At+B =⇒ y′′p = 2A.

Next we substitute these values into the left side of the ODE and group by powers of t:

y′′p + 7y′p + 10yp = 2A+ 7(2At+B) + 10(At2 +Bt+ C)

= 2A+ 14At+ 7B + 10At2 + 10Bt+ 10C

= 10At2 + (14A + 10B)t+ (2A+ 7B + 10C)

Setting this equal to the right hand side of the ODE gives us

10At2 + (14A + 10B)t+ (2A + 7B + 10C) = 5t2 + 0t− 8,

and equating coefficients of powers of t (including the constant term) results in the three
equations

10A = 5, 14A+ 10B = 0, 2A+ 7B + 10C = −8.

From the first equation we see that A = 1
2 . Substituting that value into the second equation

and solving for B results in B = − 7
10 . Finally, when we substitute the values we have found for

A and B into the last equation and solve for C we get C = − 41
100 . The particular solution

to y′′ + 7y′ + 10y = 5t2 − 8 is then

yp =
1
2 t

2 − 7
10t− 41

100 .

It is important to note that even though the right hand side 5t2 − 8 contains only a t2 term and a
constant term, we need to include a t term in our guess for the particular solution. If we had instead
guessed a particular solution of the form yp = At2 + B and substituted it into the ODE we would
have obtained the two equations

10A = 5 and 14A = 0,

both of which cannot be true at the same time!
So far we have found a particular solution to ay′′ + by′ + cy = f(t) when f(t) is an exponential

function (Example 3.4(a)) and a polynomial (Example 3.4(b)). The only other type of function we will
consider for f(t) is a trigonometric function; suppose we have the ODE

y′′ + 4y′ + 3y = 5 sin 2t. (2)

Based on what we have seen so far, our first inclination might be that we should consider a particular
solution of the form yp = A sin 2t. Let’s try it:

yp = A sin 2t =⇒ y′p = 2A cos 2t =⇒ y′′p = −4A sin 2t

so
y′′p + 4y′p + 3yp = −4A sin 2t+ 8A cos 2t+ 3A sin 2t

= −A sin 2t+ 8A cos 2t.

Here we need A = 0 because there is no cosine term on the right hand side of (2), but then we’d have
no sine term either!

So what do we do? Well, the “trick” is to let yp have both sine and cosine terms even though the
right side of the ODE has only a sine term.
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⋄ Example 3.4(c): Determine values for A and B so that yp = A sin 2t + B cos 2t is the

particular solution to y′′ + 4y′ + 3y = 5 sin 2t.

Solution: We see that

y′p = 2A cos 2t− 2B sin 2t, y′′p = −4A sin 2t− 4B cos 2t.

so
y′′p + 4y′p + 3yp = (−4A sin 2t− 4B cos 2t)

+ 4(2A cos 2t− 2B sin 2t) + 3(A sin 2t+B cos 2t)

= (−A− 8B) sin 2t+ (8A−B) cos 2t

Thus, in order for the left hand side to equal the right hand side, it must be the case that
8A − B = 0 because there is no cosine term in the right hand side, and −A − 8B = 5, so
that the sine terms are equal. Solving the first equation for B and substituting into the second
equation results in A = − 1

13 . Substituting this back into the second equation gives B = − 8
13 .

Our particular solution is then yp = − 1
13 sin 2t− 8

13 cos 2t.

At this point we have the following guesses for a particular solution to a differential equation of the
form ay′′ + by′ + cy = f(t) when using the method of undetermined coefficients:

• If f is a polynomial of degree n, then

yp = Ant
n +An−1t

n−1 + · · ·+A2t
2 +A1t+A0

Note that all powers of t less than or equal to the degree of f(t) are included.

• If f(t) = Cekt, then yp = Aekt.

• If f(t) = C1 sin kt+ C2 cos kt, then yp = A sin kt + B cos kt. Even if one of C1 or C2 is
zero, the trial yp must still contain both the sine and cosine terms.

In Section 4.3 we will see that there is a bit more to be added to this story, but for now the above
summarizes what we have seen so far.

Section 3.4 Exercises To Solutions

1. For each of the following, give the form the particular solution must have.

(a) y′′ + 3y′ + 2y = 5t− 1 (b) y′′ + 6y′ + 9y = cos 2t

(c) y′′ + 9y = 2e5t (d) y′′ − 4y′ − 5y = 6 sin t

(e) 2y′′ + 3y′ + y = 7 (f) y′′ + 3y = 2t+ 3e−t

2. Determine the particular solution for each of the ODEs in Exercise 1.

3. Suppose that you thought that the ODE y′′+3y′+2y = 5t−1 should have a particular solution
of yp = At3 + Bt2 + Ct + D. (Note that this is the ODE from Exercise 1(a).) Substitute
this into the ODE and see what happens for this guess. Does it give you the correct particular
solution?
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4. You would think that the particular solution to y′′ + 3y′ + 2y = 6e−t would have the form
yp = Ae−t, but that is not the case. In Section 4.3 we will see what our guess for the particular
solution should be. For now, try substituting the given particular solution into the ODE to see
what happens.

5. Solve each of the following homogeneous ODEs, assuming the independent variable for each is t.

(a) y′′ + 4y′ + 29y = 0 (b) 2y′′ + 11y′ + 5y = 0

(c) y′′ + 6y′ + 9y = 0 (d) y′′ + 3y = 0
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3.5 Differential Operators

Performance Criterion:

3. (i) Evaluate a differential operator for a given function.

An Example

In this section we will begin by exploring a specific second order ODE in order to illustrate some
ideas we will capitalize on in order to solve linear, constant coefficient, second order ODEs. The ODE
that we will be considering is

y′′ + 9y = 5e−2t, (1)

which we found to have a particular solution of yp =
5
13e

−2t. (See Example 3.1(a).) This was obtained
by substituting a guess of y = Ae−2t for y in y′′ + 9y and setting the result equal to 5e−2t. The
following example shows that y = 5

133
−2t is not the only solution to (1).

⋄ Example 3.5(a): Show that y = C sin 3t+ 5
13e

−2t, where C is any constant, is a solution to

the differential equation (1).

Solution: Taking derivatives we get

y′ = 3C cos 3t− 10
133

−2t and y′′ = −9C sin 2t+ 20
13e

−2t.

Substituting in to the left hand side of the ODE we get

y′′ + 9y = −9C sin 2t+ 20
13e

−2t + 9(C sin 3t+ 5
13e

−2t)

= −9C sin 2t+ 20
13e

−2t + 9C sin 3t+ 45
13e

−2t)

= 65
13e

−2t

= 5e−2t

Thus y = C sin 3t+ 5
13e

−2t is a solution to y′′ + 9y = 5e−2t.

To examine further what is going on here it is convenient to develop some terminology and notation.

Differential Operators

A function can be thought of as a “mathematical machine” that takes in a number and, in return,
gives out a number. There are other mathematical machines that take in things other than numbers,
like functions or vectors, usually giving out things like what they take in. These sorts of “machines”
are often referred to as operators. A simple example of an operator that you are quite familiar with is
the derivative operator. When we take the derivative of a function, the result is another function. To

indicate the action of a derivative on a function y = y(t) we will write
dy

dt
as

d

dt
(y),
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which is like the function notation f(x), with d
dt

taking the place of f and y taking the place of
x. The derivative operator has a very special property that you should be familiar with from calculus.
If a and b are any constants and y1 and y2 are functions of t, then

d

dt
(ay1 + by2) =

d

dt
(ay1) +

d

dt
(by2) = a

d

dt
(y1) + b

d

dt
(y2). (2)

Operators that “distribute over addition” and “pass through constants” like this are called linear op-
erators.

You might guess that the second derivative, and other higher derivatives, are linear operators as well,
and that is correct. We are particularly interested in operators that are created by multiplying a function
and some of its derivatives by constants and adding them all together. It is customary to denote such

operators with the letter D, for differential operator. An example would be D = 3
d2

dt2
+ 5

d

dt
− 4,

whose action on a function y = y(t) is defined by

D(y) = 3
d2y

dt2
+ 5

dy

dt
− 4y. (3)

Let’s look at a specific example of how this operator works.

⋄ Example 3.5(b): For the operator D defined by (3), find D(y) when y = t2 − 3t.

Solution: D(y) = 3
d2

dt2
(t2 − 3t) + 5

d

dt
(t2 − 3t)− 4(t2 − 3t)

= 3(2) + 5(2t − 3)− 4(t2 − 3t)

= 6 + 10t− 15− 4t2 + 12t

= −4t2 + 22t− 9

When we combine several mathematical objects by multiplying each by a constant and adding (or
subtracting) the results, we obtain what is called a linear combination of those objects. The operator
D defined by (3) is a linear combination of a function and its first two derivatives. (We can think of
the function itself as the “zeroth derivative,” making all the things being combined derivatives.) You
have seen linear combinations in other contexts; any polynomial function like

f(x) = 3x4 − 7x3 +
1

3
x2 − x+ 5.83

is a linear combination of 1, x, x2, x3, x4,... . Those of you who have had a course in linear algebra
have seen linear combinations of vectors.

Again, we can think of an operator as a machine that takes in a
function and gives out some resulting function that is based somehow
on the input function. This is illustrated to the right for Example 3.5(b).
The next example demonstrates that a differential operator formed as a
linear combination of derivatives is a linear operator.

D

t2 − 3t

−4t2 + 22t− 9

⋄ Example 3.5(c): Show that the operator D defined by

D(y) = 3
d2y

dt2
+ 5

dy

dt
− 4y
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is a linear operator by showing that it satisfies (2).

Solution: To determine whether D is linear we need to apply it to ay1 + by2:

D(ay1 + by2) = 3
d2

dt2
(ay1 + by2) + 5

d

dt
(ay1 + by2)− 4(ay1 + by2)

= 3

(

a
d2y1
dt2

+ b
d2y2
dt2

)

+ 5

(

a
dy1
dt

+ b
dy2
dt

)

− 4ay1 − 4by2

= 3a
d2y1
dt2

+ 3b
d2y2
dt2

+ 5a
dy1
dt

+ 5b
dy2
dt

− 4ay1 − 4by2

= 3a
d2y1
dt2

+ 5a
dy1
dt

− 4ay1 + 3b
d2y2
dt2

+ 5b
dy2
dt

− 4by2

= a

(

3
d2y1
dt2

+ 5
dy1
dt

− 4y1

)

+ b

(

3
d2y2
dt2

+ 5
dy2
dt

− 4y2

)

= aD(y1) + bD(y2)

Because D(ay1 + by2) = aD(y1) + bD(y2), D is a linear operator.

At the second line above we have applied the fact that the first and second derivative are linear operators.
With a bit of thought it should be clear that this, along with the distributive property, is what makes a
linear combination of derivatives a linear operator.

Back to the Example

We return now to considering the ODE

y′′ + 9y = 5e−2t, (1)

for which we have shown that both

y = 5
13e

−2t and y = C sin 3t+ 5
13e

−2t (4)

are solutions. If we now let D be the operator defined by D(y) = y′′ + 9y, then (4) says that

D
(

5
13e

−2t
)

= 5e−2t and D
(

C sin 3t+ 5
13e

−2t
)

= 5e−2t.

Looking a little more closely, we see that

D
(
C sin 3t

)
=

d2

dt2
(
C sin 3t

)
+ 9
(
C sin 3t

)
= −9C sin 3t+ 9C sin 3t = 0.

This explains why D applied to the sum of C sin 3t and 5
13e

−2t is a solution; by linearity of
differential operators,

D
(

y1 +
5
13e

−2t
)

= D
(
y1
)
+D

(
5
13e

−2t
)

= 0 + 5e−2t = 5e−2t

for any function y1 for which D
(
y1
)
= 0 (like C sin 3t, for example). This gives us the following:
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Let D be a linear differential operator with independent variable t. If y2 is a
solution to D(y2) = f(t) and y1 is a solution to D(y1) = 0, then it is also the
case that D(y1 + y2) = f(t).

The general form of equation that we are most interested in is

ay′′ + by′ + cy = f(t), (5)

where a, b and c are constants. Our goal is to find a general solution to this equation, meaning a
solution that encompasses all possible solutions. Such a solution will consist of a particular solution to
(5) that contains no arbitrary constants plus the family of all possible solutions to

ay′′ + by′ + cy = 0. (6)

The solution to (5) without arbitrary constants is of course the particular solution to the equation,
and the family of all possible solutions to (6) is the homogeneous solution. We saw in Section 3.1
how to find the homogeneous solution yh and in Section 3.2 we saw how to find the particular solution
yp. The general solution is then y = yh + yp.

As an example, we know that the ODE

y′′ + 9y = 5e−2t

has homogeneous solution yh = C1 sin 3t + C2 cos 3t and particular solution yp = 5
13e

−2t, so the
general solution is

y = yh + yp = C1 sin 3t+ C2 cos 3t+
5
13e

−2t.

For reasons you will see in Section 4.3, we will always find the homogeneous solution first and then the
particular solution.

Section 3.5 Exercises To Solutions

1. Let the differential operator D be defined on a function y = y(t) by

D(y) =
d2

dt2
(y) + 3

d

dt
(y) + 2y.

Find D(y) for each of the following functions y.

(a) y = t2 + 7t (b) y = 5e−2t (c) y = 5cos 2t (d) y = 5
2 t− 17

4

2. What does your answer to Exercise 1(d) tell us about the ODE y′′ + 3y′ + 2y = 5t− 1?

3. Although you don’t realize why at this point, your answer to Exercise 1(b) is somewhat special.

(a) Does the same thing happen for y = Ce−2t, where C is some constant other than 5? If
so, for what value or values of C?

(b) Does the same thing happen if y = ekt, where k is some constant other than −2? If
so, for what value or values of k?
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4. Let the differential operator D be defined on a function y = y(t) by

D(y) =
d2

dt2
(y) + 6

d

dt
(y) + 9y.

Find D(y) for each of the following functions y.

(a) y = e−3t (b) y = te−3t (c) y = 5e−3t − 2te−3t

5. Let S be an operator on functions. S is linear if

S(af + bg) = aS(f) + bS(g), (7)

where a and b are any constants and f and g are any functions of the sort that S can act
on. (7) is equivalent to the two separate conditions that

S(af) = aS(f) and S(f + g) = S(f) + S(g), (8)

where a, f and g are as before. That is, if both conditions in (8) hold for S, then it is a linear
operator. Now let’s define a specific operator S by S(f(t)) = f(t) + 3 for any function f(t).

(a) What is S(cos t)? S(t2 + 5t− 1)?

(b) What is S(4 cos t)? What is 4S(cos t)? Are both results the same? What does that tell
us about S, in terms of linearity?

(c) Find S(cos t+ e2t) and S(cos t) + S(e2t).
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3.6 Initial Value Problems and Forced, Damped Vibration

Performance Criteria:

3. (j) Solve a second order linear, constant coefficient IVP.

(c) Set up and solve second order initial value problems modeling spring-mass
systems and RLC circuits.

(k) Identify the transient and steady-state parts of the solution to a damped
system with forced vibration.

Now that we know how to find the general solution to ay′′ + by′ + cy = f(t) we are ready to solve
initial value problems whose ODEs are of this form. Here is how the process goes:

Solving the IVP ay′′ + by′ + cy = f(t), y(0) = y0, y′(0) = y′0

1) Find the homogeneous solution yh to ay′′ + by′ + cy = 0.

2) Use the method of undetermined coefficients to find the particular solution
yp of the ODE ay′′ + by′ + cy = f(t).

3) Construct the general solution y = yh + yp.

4) Apply the initial conditions to the general solution to find the values of the
arbitrary constants.

We have already covered the first three steps of the above. It is very important to remember that
the initial conditions are applied to the general solution to find the values of the arbitrary constants.
A common mistake by students is to find the values of the constants based on only the homogeneous
solution - this is incorrect.

Let’s look at an example:

⋄ Example 3.6(a): Solve the IVP

y′′ + 4y′ + 3y = 5 sin 2t, y(0) = 2, y′(0) = −1

Solution: We must first solve the homogeneous equation y′′ + 4y′ + 3y = 0. The roots
of the auxiliary equation are r1 = −1 and r2 = −3 (of course it doesn’t matter which is
which), so the homogeneous solution is yh = C1e

−t + C2e
−3t. Our trial particular solution is

yp = A sin 2t+B cos 2t. This gives us

y′p = 2A cos 2t− 2B sin 2t, y′′p = −4A sin 2t− 4B cos 2t.

so

LHS = (−4A sin 2t− 4B cos 2t) + 4(2A cos 2t− 2B sin 2t) + 3(A sin 2t+B cos 2t)

= (−A− 8B) sin 2t+ (8A−B) cos 2t
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Thus, in order for the left hand side to equal the right hand side, it must be the case that
8A − B = 0 because there is no cosine term in the right hand side, and −A − 8B = 5, so
that the sine terms are equal. Solving the first equation for B and substituting into the second
equation results in A = − 1

13 . Substituting this back into the second equation gives B = − 8
13 .

Our particular solution is then yp = − 1
13 sin 2t− 8

13 cos 2t, and the general solution is

y = yh + yp = C1e
−t + C2e

−3t − 1
13 sin 2t− 8

13 cos 2t

The derivative of the general solution is

y′ = −C1e
−t − 3C2e

−3t − 2
13 cos 2t+

16
13 sin 2t

Applying the initial conditions gives us the two equations

C1 +C2 − 8
13 = 2 and − C1 − 3C2 − 2

13 = −1

Adding these and solving for C2 gives us C2 = −23
26 . Substituting this into either equation

gives C1 =
91
26 . The solution to the IVP is then

y = 91
26e

−t − 23
26e

−3t − 1
13 sin 2t− 8

13 cos 2t

It is often the case that finding the constants C1 and C2 comes down to solving a system of two
equations in two unknowns, as it did here.

Section 3.6 Exercises To Solutions

1. You may have found the particular solution to each of the following ODEs in Exercise 2 of Section
3.4. Give the general solution to each.

(a) y′′ + 3y′ + 2y = 5t− 1 (b) y′′ + 6y′ + 9y = 5cos 3t

(c) y′′ + 9y = 2e5t (d) y′′ − 4y′ − 5y = 6 sin t

(e) 2y′′ + 3y′ + y = 7 (f) y′′ + 3y = 2t+ 3e−t

2. Solve each of the following IVPs by the process described in the box at the start of the section.

(a) y′′ + 9y = 4 sin t , y(0) = 2 , y′(0) = 4

(b) y′′ + 4y′ + 4y = 5e3t , y(0) = 0 , y′(0) = 0

(c) y′′ − 10y′ + 25y = 30t+ 3 , y(0) = 2 , y′(0) = 8

3. Solve each Euler equation.

(a) x2y′′ − 6y = 0 (b) 4x2y′′ + 4xy′ − y = 0

4. Consider the second order initial value problem

y′′ + 2y′ + 10y = 9.4 sin t , y(0) = 5 , y′(0) = 0,

which could model either a spring-mass system or an RLC circuit. In this exercise you will find
the solution to this initial value problem, and you will investigate its behavior. Recall the process
for solving such an equation:
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• Find the homogeneous solution yh. It will contain two constants.

• Use undetermined coefficients (guessing) to find the particular solution yp to the equation.

• Add yc and yp to find the general solution to the equation.

• Apply the two initial conditions to determine the values of the unknown constants. Be sure
to conclude by writing your final solution to the IVP.

(a) Carry out the above process for the given IVP. Give all numbers as decimals, rounded to
the tenth’s place.

(b) Graph the solution on your calculator or an online tool like Desmos, for t = 0 to t = 10.
Sketch your graph.

(c) Look carefully at your solution (the equation itself, not the graph). Recall that the transient
part of a solution is any part that goes to zero as time goes on. Any part that does not
go to zero over time is called the steady-state part of the solution, or just the steady-state
solution. Give the transient and steady-state parts of your solution, telling clearly which is
which.

(d) Graph the steady-state solution together with the complete solution that you already graphed.
The complete solution should approach the steady state solution as time goes on. Add the
graph of the steady-state solution to your graph from (b).
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3.7 Chapter 3 Summary

With the exception of the methods for solving Euler equations, this chapter was primarily con-
cerned with solving initial value problems of the form

ay′′ + by′ + cy = f(t), y(0) = y0, y′(0) = y′0, (1)

with a, b and c being constants, a 6= 0. Here is the procedure for solving the initial value
problem (1):

Solving the IVP ay′′ + by′ + cy = f(t), y(0) = y0, y′(0) = y′0

1) Find the homogeneous solution yh to ay′′ + by′ + cy = 0. There

is a flowchart on the next page, outlining the process for finding the

homogeneous solution.

2) Use the method of undetermined coefficients (see below) to find the
particular solution yp of the ODE ay′′ + by′ + cy = f(t).

3) Construct the general solution y = yh + yp.

4) Apply the initial conditions to the general solution to find the values of
the arbitrary constants.

Undetermined Coefficients

Consider the constant coefficient ODE ay′′ + by′ + cy = f(t), and assume
yh contains no terms that are constant multiples of f(t). The trial particular
solution yp is chosen as follows.

• If f is a polynomial of degree n, then

yp = Ant
n + An−1t

n−1 + · · ·+ A2t
2 + A1t+ A0

• If f(t) = Cekt, then yp = Aekt.

• If f(t) = C1 sin kt+C2 cos kt, then yp = A sin kt+B cos kt. Even

if one of C1 or C2 is zero, yp still contains both the sine and cosine

terms.

We will see in the next chapter how the method of undetermined coefficients needs to be modified
when yh contains any term that is a constant multiple of f .

A couple of additional comments are in order:

• The homogeneous solution has the form yh = C1g(t) + C2h(t), where C1 and C2 are
arbitrary constants and g and h are “different” functions (in a sense that will be
made more precise in the next chapter) that are each solutions to the homogeneous ODE
ay′′ + by′ + cy = 0 by themselves. Every possible solution to the homogeneous ODE looks

like yh = C1g(t) + C2h(t) for the same functions g and h.
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• The particular solution to the ODE in (1) contains no arbitrary constants, which is why it is
called “particular.” Another method for finding the particular solution is called variation of
parameters. The interested reader can find an explanation of this method on the internet
or in any introductory differential equations text.

Here is a flowchart for finding homogeneous solutions:

Solving Second Order, Linear, Constant Coefficient,
Homogeneous ODEs

Differential Equation

ay′′ + by′ + cy = 0

Auxiliary Equation

ar2 + br + c = 0

Is

b2 − 4ac ≥ 0?
yes no

Is b = 0?
yesno

Solve for r = ±λi

by isolating r2 and

and taking the square

root of both sides

Solution to the ODE is

y = C1 sinλt+ C2 cos λt

Solution to the ODE is

y = ekt(C1 sinλt+ C2 cos λt)

Use the quadratic

formula to solve

for r = k ± λi

Solve by factoring

or by using the

quadratic formula

Are
there two roots

r1, r2?

yes

no

Solution

to the ODE is

y = C1e
r1t + C2e

r2t

Solution

to the ODE is

y = C1e
rt + C2te

rt
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3.8 Chapter 3 Exercises

1. Solve each Euler equation.

(a) 3x2
d2y

dx2
+ x

dy

dx
− y = 0 (b) 6x2

d2y

dx2
+ 11x

dy

dx
+ y = 0

2. In Exercise 4 of the Chapter 2 Exercises we saw the Euler equation

r2
d2R

dr2
+ r

dR

dr
− n2R = 0 (1)

which arises in the study of the equilibrium distribution of heat in a circular disk. As pointed out
before, r and R are two different variables; R is the dependent variable, and is a function of
the independent variable r. In Chapter 2 we solved the equation for the case n = 0. Solve it
for any integer n 6= 0.

3. The ODE ay′′ + by′ + cy = 0 is only second order if a 6= 0. We saw in Section 3.3 what the
solution to the ODE looks like when b = 0. In this exercise and the next we will solve, by two
different methods, an equation in which c = 0

(a) In this exercise we will solve 2y′′ + 3y′ = 0. begin by making the substitution y′ = x (so
what then is y′′?) and solving the resulting first order ODE for x.

(b) To determine y you will now need to integrate your answer to (a). DO that, remembering
that your final solution needs to contain two arbitrary constants.

4. Solve 2y′′ +3y′ = 0 by assuming y = ert and following a process like that done for the various
scenarios in Section 3.1.
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4 More on Second Order Differential Equations

Learning Outcome:

4. Understand independence of solutions to ODEs, and know how to use reduci-
ton of order to find second solutions. Understand the nature of solutions to
second order linear, constant coefficient ODEs and IVPs modeling spring-mass
systems or RLC circuits, including resonance and beats.

Performance Criteria:

(a) Demonstrate that two functions f and g are dependent by giving
nonzero constants c1 and c2 for which c1f(x) + c2g(x) = 0.

(b) Use the Wronskian to determine whether two solutions to a second order
linear ODE are independent.

(c) Given one solution to a second order homogeneous ODE, use reduction
of order to find a second solution.

(d) Determine the particular solution to a differential equation of the form
ay′′ + by′ + cy = f(t) when the homogeneous solution has the same
form as f(t).

(e) Determined whether a forced, undamped system will exhibit resonance,
beats, or neither. Determine the solution for such a system.

(f) For a spring-mass system or electric circuit, demonstrate an understand-
ing of the relationships between

• the physical situation (presence and type of damping and/or forcing)

• the form of the ODE, including the function f

• the the analytic and graphical nature of the solution (in particular,
the presence and appearance of transient and steady-state parts of
the solution)

The bulk of our efforts in Chapter 3 were focused on solving second order ODEs of the form

ay′′ + by′ + cy = f(t). (1)

There are three issues that came up that we put off at the time:

• When solving the homogeneous equation ay′′ + by′ + cy = 0 we usually found two “different”
solutions, but when solving an equation like y′′ + 6y′ + 9y = 0 we only found one solution,
y = e−3t.

• In some cases when we attempted to find a particular solution to (1) the “standard” guess for a
trial particular solution failed to give us a result.

• We neglected to address situation in which b = 0 and f(t) 6= 0, which we call forced, undamped
vibration.

Regarding the first item, there are two questions we will address:
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(1) What do we mean by “different” solutions?

(2) In addition to the solution y = e−3t to y′′ + 6y′ + 9y = 0 that we found using the auxiliary
equation, we also saw that y = te−3t is a solution. How is such a solution found?

The first question above addresses the concept of linear indepndence of solutions. If you have had
a course in linear algebra you should be familiar with the idea in that context. This is addressed in
Section 4.1. The second question is answered by a method called reduction of order, which we’ll see
in Section 4.2.

In Section 4.3 we will return to the finding of particular solutions. When one of the solutions to the
homogeneous equation ay′′ + by′ + cy = 0 associated with the ODE

ay′′ + by′ + cy = f(t). (1)

has the same form as f(t), our previously used guesses for particular solutions will not yield a result,
so we must modify our trial particular solution in a way described in Sectoin 4.3.

Finally, we’ll go back to undamped systems, but with nonzero forcing functions f(t), which are
often sine or cosine functions. This will give rise to two phenomena called beats and resonance. These
things will be studied in Section 4.4.
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4.1 Linear Independence of Solutions

Performance Criteria:

4. (a) Demonstrate that two functions f and g are dependent by giving
nonzero constants c1 and c2 for which c1f(x) + c2g(x) = 0.

(b) Use the Wronskian to determine whether two solutions to a second order
linear ODE are independent.

We begin with two questions:

(1) When solving the ODE y′′+3y′+2y = 0, we assumed a solution of the form y = ert for some
constant r and found that r must equal −1 or −2. We then assumed that every solution
to the ODE is of the form y = C1e

−t +C2e
−2t. How do we know that this is the case?

(2) When solving y′′ + 2y′ + y = 0 we found only one solution, y = e−t. We then demonstrated
that y = te−t is also a solution, and we assumed that the general solution to the ODE is
y = C1e

−t + C2te
−t. How might one know or find the second solution without it being given?

In this section we will develop some language and see some theorems that answer the first question,
and in the next section we’ll see a way to use reduction of order (see Chapter 2 exercises) that gives
an answer to the second question.

Linearly Independent Solutions

Linearly Independent Functions

Two functions f and g are linearly dependent on an interval [a, b] if there
exist two non-zero constants c1 and c2 for which

c1f(x) + c2g(x) = 0 for every x in [a, b]. (1)

If (1) is true only when both c1 and c2 are zero, then f and g are linearly
independent on [a, b].

The expression c1f(x) + c2g(x) above is called a linear combination of f and g.

⋄ Example 4.1(a): Show that the two functions y = e−2t and y = e−t are linearly independent
for all values of t.

Solution: Suppose that c1e
−2t + c2e

−t = 0 for some c1 and c2. Then e−2t(c1 + c2e
t) = 0,

but e−2t is never zero so it must be the case that c1+c2e
t = 0, which implies that c1 = −c2e

t.
Because et is not constant, this can only be true if c1 = c2 = 0. Therefore y = e−2t and
y = e−t are linearly independent.
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There may be times that it is difficult to tell, using the definition above, whether two functions are
linearly independent. In those cases we can use a new function created from the two functions, called
the Wronskian, to determine whether the functions are linearly independent.

The Wronskian of Two Functions

The Wronskian W of two functions f and g is

W (x) = f(x)g′(x)− f ′(x)g(x).

Those of you who have had linear algebra may recognize the Wronskian as the determinant of the
2× 2 matrix [

f(x) g(x)

f ′(x) g′(x)

]

Our interest is in determining whether two solutions to an ODE are linearly independent. Note that any
linear second order homogeneous ODE with independent variable t can (almost always, and definitely
in the case that p and q are constant) be written in the form

y′′ + p(t)y′ + q(t)y = 0 (2)

The following tells how the Wronskian is used to determine whether two solutions to an equation of the
form (2) are linearly independent.

The Wronskian and Linearly Independent Solutions

Two solutions f and g of (2) are linearly independent on the interval (a, b) if
there exists some point x in the interval for which W (x) 6= 0.

⋄ Example 4.1(b): Show that the two solutions y = sin 3t and y = cos 3t of y′′+9y = 0 are
linearly independent for all values of t.

Solution: The Wronskian of these two functions is

W (t) = (sin 3t)(cos 3t)′ − (cos 3t)(sin 3t)′ = − sin2 3t− cos2 3t = −1,

which is clearly not zero for any value of t. Therefore y = sin 3t and y = cos 2t are linearly
independent for all values of t.

We conclude with why we are interested in all of this.

General Solutions to y′′ + p(t)y′ + q(t)y = 0

If y1 and y2 are linearly independent solutions to y′′ + p(t)y′ + q(t)y = 0, then
the general solution is

y = C1y1 + C2y2

for arbitrary constants C1 and C2.
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Note that the above says that the general solution is a linear combination of the two solutions y1 and
y2.

In the exercises you will show that y = e−t and y = te−t are linearly independent solutions to
y′′ + 2y′ + y = 0, so the above tells us that the general solution is then y = C1e

−t +C2te
−t. In the

next section we’ll find out where the solution y = te−t comes from.

Section 4.1 Exercises To Solutions

1. For each pair of functions, give nonzero constants c1 and c2 for which c1f(x)+c2g(x) = 0 for
all real numbers x if possible. Note that when this can be done, the two functions are dependent.

(a) f(x) = 3x2 − 5, g(x) = 2x+ 1 (b) f(x) = 4x+ 2, g(x) = 2x+ 1

(c) f(x) = 3e5x, g(x) = −2e5x (d) f(x) = 3e5x, g(x) = e2x

2. Use the facts that cos(−x) = cos x and sin(−x) = − sin(x) for the following.

(a) Give nonzero constants c1 and c2 such that c1 cos x+ c2 cos(−x) = 0. Are cosx and
cos(−x) linearly independent?

(b) Repeat part (a) for sinx and sin(−x).

3. For each pair of functions in Exercise 1 that you could not find nonzero constants c1 and c2 for
which c1f(x) + c2g(x) = 0, give the Wronskian and one value of x for which it is not zero.

4. Find the Wronskian for y1 = ekt and y2 = tekt (where k is any nonzero constant) and give a
value of t for which it is not zero. What does this tell us about the functions y1 and y2?

5. Use the Wronskian to determine whether ex and e−x are linearly independent.
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4.2 Reduction of Order

Performance Criteria:

4. (c) Given one solution to a homogeneous second order ODE, use reduction
of order to find a second solution.

Recall the questions with which we begin the previous section:

(1) When solving the ODE y′′+3y′+2y = 0, we assumed a solution of the form y = ert for some
constant r and found that r must equal −1 or −2. We then assumed that every solution
to the ODE is of the form y = C1e

−t +C2e
−2t. How do we know that this is the case?

(2) When solving y′′ + 2y′ + y = 0 we found only one solution, y = e−t. We then demonstrated
that y = te−t is also a solution, and we assumed that the general solution to the ODE is
y = C1e

−t + C2te
−t. How might one know or find the second solution without it being given?

The result in the box at the bottom of page 122 answers the first question. In this section we take up
the second question.

Reduction of order is a method for finding a second solution to a second order differential equation
when one solution is already known. Our main interest in this is finding the second solution when we
have repeated roots, so we will not go into the method in excessive detail. Perhaps the best way to
introduce the method is through an example. The two key ideas are these:

• We will assume that if y1 = y1(t) is a solution, then the second solution has the form y2(t) =
u(t)y1(t) for some function u. We then substitute y2 into the ODE, which results in a new
ODE for u.

• The new ODE for u will contain u′′ and u′ terms, but no u term. If we let v(t) = u′(t) then
v′(t) = u′′(t), and making these two substitutions we get a first order equation in v. (This is
where the name reduction of order comes from - we’ve reduced a second order equation to a first
order equation.) We solve that for v, then solve u′(t) = v(t) to get u.

Now let’s get to that example!

⋄ Example 4.2(a): Use the solution y1(t) = e−t and reduction of order to find a second solution

to y′′ + 3y′ + 2y = 0.

Solution: We begin by assuming y2 = u(t)e−t. Then (using the product rule),

y′2 = −u(t)e−t + u′(t)e−t and y′′2 = u(t)e−t − 2u′(t)e−t + u′′(t)e−t.

Substituting into the ODE we get

y′′2 + 3y′2 + 2y2 =
[
u(t)e−t − 2u′(t)e−t + u′′(t)e−t

]
+ 3
[
− u(t)e−t + u′(t)e−t

]
+ 2u(t)e−t

= u(t)e−t − 2u′(t)e−t + u′′(t)e−t − 3u(t)e−t + 3u′(t)e−t + 2u(t)e−t

= u′′(t)e−t + u′(t)e−t

= e−t(u′′(t) + u′(t))
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Setting the result equal to zero (because we want y2 = u(t)e−t to be a solution to y′′+3y′+2y =
0) and noting that e−t is never zero, we must have u′′(t)+u′(t) = 0. Here we let v(t) = u′(t),
so v′(t) = u′′(t) and this last ODE becomes v′(t)+v(t) = 0. This equivalent to v′(t) = −v(t),
so v(t) = C1e

−t.

We now replace v(t) with u′(t) to obtain u′(t) = C1e
−t. The solution to this is u(t) =

C2e
−t+C3; for reasons to be given later, we can take C2 to be any non-zero value and C3 can

have any value. We’ll take C2 = 1 and C3 = 0. Therefore y2(t) = u(t)e−t = e−te−t = e−2t.
Disregarding the constant (because we will replace it when adding this solution to the one given),
we have the second solution y2 = e−2t.

Forming the linear combination of the given solution and the one that we found using it, we get
y = ae−t + be−2t for constants a and b. We now examine the way that the constants C2 and
C3 were handled in the above. Let’s see what would have happened if we had not let C2 = 1 and
C3 = 0. In that case we would have had

y2 = u(t)y1(t) = (C2e
−t + C3)e

−t = C2e
−2t + C3e

−t.

When we then form a linear combination of y1 and y2 using constants A and B, we’ll get

y = Ae−t +B(C2e
−2t + C3e

−t)

= Ae−t +BC2e
−2t +BC3e

−t

= (A+BC3)e
−t +BC2e

−2t

= ae−t + be−2t,

where a = A + BC3 and b = BC2. If we keep the constants C2 and C3, they essentially get
“absorbed” into the constants for the linear combination of the two solutions.

In Example 4.2(a) there was no need to use reduction of order to determine a second solution
y2 = e−2t from the first solution y1 = e−2t; we could arrive at both solutions via the auxiliary
equation method. However, the above example demonstrates how the method works. In the exercises
you will encounter ODEs for which you will again be asked to find a second solution by this method
when it is unnecessary, but you will also use it for situations where the second solution (and maybe the
first as well) can’t be obtained by methods we have used so far. You will also use reduction of order to
find the second solution to y′′ + 2y′ + y = 0, knowing the first solution y1 = e−t, which is obtained
by the auxiliary equation method.

Section 4.2 Exercises To Solutions

1. Consider the ODE y′′ + 8y′ + 15y = 0.

(a) Given that one solution is y1 = e−5t, use reduction of order to find another solution.

(b) Use the auxiliary equation to find both solutions, to check your answer to (a).

2. Using the auxiliary equation method with y′′+2y′+ y = 0, we get the single solution y1 = e−t.
Use reduction of order to obtain the second solution y2 = te−t.

3. Given that one solution to 2x2y′′ + xy′ − 3y = 0 is y1 =
1
x
, find a second solution y2.

4. Given that one solution to x2y′′ + 2xy′ − 2y = 0 is y1 = x, find a second solution y2.
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4.3 Particular Solutions, Part Two

Performance Criteria:

4. (d) Determine the particular solution for a differential equation of the form
ay′′ + by′ + cy = f(t) when the homogeneous solution has the same
form as f(t).

At this point you have seen the entire process for solving initial value problems for second order,
linear, constant coefficient differential equations. In this section we see one difficulty that can arise, and
how to handle such situations. We begin with an example.

⋄ Example 4.3(a): Determine the values of A and B for which

yp = A sin 3t+B cos 3t

is the particular solution to the ODE y′′ + 9y = 2 sin 3t.

Solution: As usual, we begin by finding the derivatives of yp:

y′p = 3A cos 3t− 3B sin 3t =⇒ y′′p = −9A sin 3t− 9B cos 3t.

We then have

LHS = y′′p + 9yp = −9A sin 3t− 9B cos 3t+ 9(A sin 3t+B cos 3t) = 0.

Thus there are no values of A and B for which y = A sin 3t + B cos 3t is a solution to
y′′ + 9y = 2 sin 3t.

The problem here is that the homogeneous solution to y′′+9y = 2 sin 3t is yh = C1 sin 3t+C2 sin 3t.

Thus we cannot hope to obtain 2 sin 3t when applying the operator D =
d2

dt2
+9 to y = A sin 3t+

B cos 3t, as the result is always zero. However, we will find that a different guess for yp will give us
the particular solution that we seek:

⋄ Example 4.3(b): Determine the values of A and B for which

yp = At sin 3t+Bt cos 3t

is the particular solution to the ODE y′′ + 9y = 2 sin 3t.

Solution: We carefully use the product rule to find the derivatives of yp:

y′p = 3At cos 3t+A sin 3t− 3Bt sin 3t+B cos 3t

and
y′′p = −9At sin 3t+ 3A cos 3t+ 3A cos 3t− 9Bt cos 3t− 3B sin 3t− 3B sin 3t.

Grouping the like terms of the second derivative gives us

y′′p = −9At sin 3t− 9Bt cos 3t− 6B sin 3t+ 6A cos 3t.
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Substituting into the left side of the ODE gives us

y′′p + 9yp = −9At sin 3t− 9Bt cos 3t− 6B sin 3t+ 6A cos 3t+ 9(At sin 3t+Bt cos 3t)

= −6B sin 3t+ 6A cos 3t.

In order for this to equal 2 sin 3t we must have A = 0 and B = −1
3 , so the particular solution

to y′′ + 9y = 2 sin 3t is yp = −1
3t cos 3t.

We already knew the homogeneous solution, so the general solution to y′′ + 9y = 2 sin 3t is

y = C1 sin 3t+ C2 cos 3t− 1
3 t cos 3t.

We can now make an amendment to the listing at the end of Section 3.4 to get the overall summary
for guesses to use for particular solutions.

Undetermined Coefficients

Consider the constant coefficient ODE ay′′ + by′ + cy = f(t), and assume
yh contains no terms that are constant multiples of f(t). The trial particular
solution yp is chosen as follows.

• If f is a polynomial of degree n, then

yp = Ant
n +An−1t

n−1 + · · ·+A2t
2 +A1t+A0

• If f(t) = Cekt, then yp = Aekt.

• If f(t) = C1 sin kt + C2 cos kt, then yp = A sin kt + B cos kt. Even if
one of C1 or C2 is zero, yp still contains both the sine and cosine terms.

When yh contains any term that is a constant multiple of f , yp will be as
above but multiplied by the smallest power of t for which no terms of yp are
of the same form as any terms of yh.

⋄ Example 4.3(c): Find the trial particular solution to y′′ + y′ − 6y = 5t− 3.

Solution: The homogeneous solution is yh = C1e
−3t + C2e

2t, so the trial particular solution is
yp = At+B.

⋄ Example 4.3(d): Find the trial particular solution to y′′ + y′ − 6y = 7cos 5t.

Solution: The homogenous solution is the same as in Example 4.3(c), so trial particular solution
is yp = A sin 5t+B cos 5t.
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⋄ Example 4.3(e): Find the trial particular solution to y′′ + y′ − 6y = 4e2t.

Solution: Again the homogeneous solution is yh = C1e
−3t+C2e

2t. f(t) has the same form as
one of the terms of the homogeneous solution, the trial particular solution is yp = Ate2t.

We conclude this section by further examining homogeneous and particular solutions to an ODE

ay′′ + by′ + cy = f(t). (1)

Let’s denote the left side of (1) using the operator notation D(y). We have found that the homogeneous
solution consists of a linear combination of two functions g(t) and h(t) that are both, by themselves,
solutions to D(g) = 0 and D(h) = 0. By a linear combination we mean

yh = C1g(t) + C2h(t),

where C1 and C2 are ANY constants. When D is applied to the particular solution yp the result
is D(yp) = f(t). The general solution is

y = C1g(t) + C2h(t) + yp(t).

Applying D to the solution then gives

D(C1g + C2h+ yp) = C1D(g) + C2D(h) +D(yp) = 0 + 0 + f(t) = f(t).

Note the use of the fact that D is a linear operator in this computation.

⋄ Example 4.3(f): The general solution to (1) is y = C1e
−2t + C2e

−t + 4cos 5t. Which of the

following are solutions to ay′′ + by′ + cy = 0?

(a) y = 5e−t (b) y = 7e−2t + 4cos 5t (c) y = 7e−2t + 5e−t

Solution: The homogeneous solution is the part containing the arbitrary constants, yh =
C1e

−2t + C2e
−t. It is a solution to ay′′ + by′ + cy = 0 for all choices of C1 and C2,

so the functions in (a) and (c) are both solutions. The function in (b) is a solution to (1), but not
to ay′′ + by′ + cy = 0 because D applied to 7e−2t is zero, but when applied to the particular
solution yp = 4cos 5t the result is f(t), not zero.

⋄ Example 4.3(g): The general solution to (1) is y = C1e
−2t +C2e

−t + 4cos 5t. Which of the

following are solutions to (1)?

(a) y = 4cos 5t (b) y = 8cos 5t (c) y = 7e−2t + 5e−t + 4cos 5t

Solution: We again recognize that the homogeneous solution is yh = C1e
−2t + C2e

−t and the
particular solution is yp = 4cos 5t. Because the particular solution by itself is a solution to (1),
the function in (a) is a solution. Unlike the homogeneous solution, a constant in the particular
solution is not arbitrary, so the function in (b) is not a solution. (Test it to see for sure?) The
function in (c) is a solution, because it is simply the general solution with the arbitrary constants
having the specific values C1 = 7 and C2 = 5.
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Section 4.3 Exercises To Solutions

1. Below are each of the ODEs from Examples 4.3(c), (d) and (e). In each case, substitute the
given trial particular solution from the example into the ODE to determine the value(s) of any
constant(s).

(c) y′′ + y′ − 6y = 5t− 3, yp = At+B

(d) y′′ + y′ − 6y = 7cos 5t, yp = A sin 5t+B cos 5t

(e) y′′ + y′ − 6y = 4e2t, yp = Ate2t

2. Suppose that when you were finding the particular solution to y′′ + y′ − 6y = 4e2t you didn’t
notice that 4e2t was of the same form as one of the terms of yh. Try a particular solution of
yp = Ae2t and see what happens. It will try to tell you that something is wrong!

3. Solve each of the following IVPs by the process described in the box at the start of Section 3.4.

(a) y′′ + y′ − 6y = 1 + 8t− 6t2 , y(0) = 2 , y′(0) = −3

(b) y′′ + 7y′ + 10y = 6e−2t , y(0) = 2 , y′(0) = −11

(c) y′′ + 4y = 3 sin 2t , y(0) = 1
2 , y′(0) = 5

2

4. The functions below are solutions to second order linear, constant coefficient initial value problems.
Give the steady-state and transient parts of each.

(a) y = −2
3 sin 3t+

5
3 cos 3t (b) y = e−3t(4 sin t+ 7cos t) + 3

4 cos 7t

(c) y = 3
5 sin 5t− 6

5 cos 5t+
7
2e

−2t (d) y = 3te−5t − 7e−5t + e−t

5. Suppose that the ODE
ay′′ + by′ + cy = f(t) (1)

has general solution
y = e−2t

(
C1 sin 3t+ C2 cos 3t

)
+ 5e−2t.

Which of the following are then solutions to (1)?

(a) y = 7e−2t sin 3t+ 5e−2t (b) y = e−2t
(
3 sin 3t− 2 cos 3t

)
+ 5e−2t

(c) y = e−2t
(
3 sin 3t− 2 cos 3t

)
(d) y = e−2t

(
3 sin 3t− 2 cos 3t

)
+ 4e−2t

Which of the following are solutions to

ay′′ + by′ + cy = 0? (2)

(e) y = 7e−2t sin 3t+ 5e−2t (f) y = e−2t
(
3 sin 3t− 2 cos 3t

)

(g) y = 7e−2t sin 3t (h) y = e−2t
(
C1 sin 3t+ C2 cos 3t

)
+ 4e−2t
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4.4 Forced, Undamped Vibration

Performance Criterion:

4. (e) Determined whether a forced, undamped system will exhibit resonance,
beats, or neither. Determine the solution for such a system.

Suppose that we have either

• a mass on a spring with no damping, subject to a sinusoidal external force, or

• an inductor and a capacitor (no resistor) in series with a voltage source that is putting out a
sinusoidal current.

How would we expect the functions describing the position of the mass or the charge on the capacitor
to behave? That is what you will investigate in the exercises for this section. You might want to take
a guess as to what you would expect, before the mathematics of the situation answers the question.

Section 4.4 Exercises To Solutions

1. For this exercise and each of the following, work in decimals, rounding all values to the nearest
tenth.

(a) Solve the initial value problem

x′′ + 4.84x = 8cos 5t , x(0) = x′(0) = 0

(b) Graph the solution using some technology, sketch the graph. Be sure to get a viewing window
that is appropriate. Put a scale on your graph.

(c) Discuss the situation of transient and steady-state solutions. Why should we expect this
before even solving the differential equation?

2. (a) Solve the initial value problem

x′′ + 4.84x = 8cos 2.2t , x(0) = x′(0) = 0

(b) Graph the solution using some technology, sketch the graph.

(c) The phenomenon you are observing here is called resonance. In either the mechanical or
electrical case, as the amplitude gets larger and larger, something will fail - the spring or one
of the electrical components. What is it about the situation that is causing this to happen?

Note that the angular frequency of 2.2 that appears in the solution to the IVP comes from the
homogeneous equation, so it depends only on the spring-mass or LC system, not on the forcing function.
That frequency is sometimes called the natural frequency of the system.

3. (a) Solve the initial value problem

x′′ + 4.84x = 8cos 2t , x(0) = x′(0) = 0

(b) Graph your solution from t = 0 to t = 75. Sketch the graph.
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(c) The phenomenon you are observing here is called beats - in electronics this is amplitude
modulation. All I know about this is that the AM in AM radio stands for amplitude
modulation (FM is frequency modulation)! Ask your local EET instructor for details. Look
carefully at how this initial value problem compares with the other two. What do you suppose
it is that is causing the beats?

(d) A trig identity can help us get a little better insight into the solution. You should be able to
write your solution in the form x(t) = A(cosω0t− cosωt). Use the identity

cos u− cos v = 2 sin

(
v − u

2

)

sin

(
u+ v

2

)

to rewrite your solution. The new form of the solution is trying to talk to you. Can you see
what it is trying to tell you?

(e) Graph y = 19 sin(0.1t) and y = −19 sin(0.1t) together with the graph of the solution,
and sketch what you see. Can you now see what the solution to (d) is trying to tell you?
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4.5 Chapter 4 Summary

Performance Criteria:

4. (f) For a spring-mass system or electric circuit, demonstrate an under-
standing of the relationships between

• the physical situation (presence and type of damping and/or forc-
ing)

• the form of the ODE, including the function f

• the the analytic and graphical nature of the solution (in particular,
the presence and appearance of transient and steady-state parts
of the solution)

In this section we will attempt to summarize all that we have seen in Chapters 3 and 4. In particular,
we want to recognize from an ODE, the solution to an ODE, or the graph of the solution to an ODE
whether it models a situation

• in which the system is undamped, under-damped, critically damped or over-damped

• with or without an external forcing function

• for which the solution has transient or steady-state parts, or both

• resulting in or exhibiting resonance or beats

The type of differential equation that we are talking about here is one of the form

ay′′ + by′ + cy = f(t) (1)

where the coefficients a, b and c are constant parameters based on the physical properties of the
system we are considering:

• In a spring-mass system a is the mass, b is the coefficient of damping, and c is the spring
constant.

• In an electric circuit, a is the inductance, b is the resistance and c is the reciprocal of the
capacitance.

It is clear that without a mass and a spring there is no spring-mass system, so for that situation neither
a nor c can be zero. For the electric circuit situation it is reasonable to consider a system with only a
resistance and inductance, but that can be treated as a first order ODE in a manner you have already
seen. For an RLC circuit of the sort we wish to consider, none of the values a, b or c are zero,
although we will consider the case b = 0 as a theoretical possibility.

The Left Side of the ODE

The left hand side of the ODE describes the system itself. In the case of a spring-mass system, it is the
spring, the mass, and the damping. In an electric circuit it is the resistor, inductor and capacitor. The
system doesn’t cause motion or current, it just shapes it by the way it reacts to the forcing function
and/or initial conditions. There will not be any motion or current unless there are nonzero initial
conditions, a forcing function f or E, or both. What is of real concern to us on the left hand side
of the equation (1) is the role of b, which controls the damping. Here is a summary of that:
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• When b = 0 the system is undamped.

• When b2 − 4ac < 0 the system is under-damped. Oscillation will occur, but any oscillation due
to the initial conditions will decay. (The solution will have a transient part if either of the initial
conditions is nonzero.) Any steady-state behavior will be due to the forcing function f .

• When b2 − 4ac > 0 the system will be over-damped, and there will be no oscillation due to
the system itself. The system will again have a transient part, and any steady-state part of the
solution is again due to the external forcing function f .

• When b2 − 4ac = 0 the system is critically damped, and the solution will behave similarly to the
over-damped situation. The transient part will have a te−kt term (k > 0), but still decays over
time because e−kt decays faster than t grows.

Any quick investigation of an ODE of the form (1) should perhaps begin by observing whether a damping
term is present. If it is, computation of b2 − 4ac should follow to determine which of the last three
cases above we are dealing with.

Initial Conditions

In order to solve a second order ODE, we must have two initial conditions. For a spring-mass system
the meaning of the initial conditions is pretty straightforward. The initial position tells us whether the
mass is raised or pulled down at time zero. In either case, there is potential energy due to either gravity
(for y(0) > 0) or the spring (for y(0) < 0) that is converted to kinetic energy of motion when the
mass is let go. y′(0) is the initial velocity imparted to the mass; it is negative if the initial velocity is
downward, and positive if the initial velocity is upward. For an RLC circuit, q(0) is the initial charge
on the capacitor, which has electric potential that can cause current, and i(0) = q′(0) is the initial
current.

The effect of initial conditions is not lasting, unless the system is undamped. For any damped
system, the initial conditions will lead to a transient part of the solution. For an undamped system,
initial conditions will lead to a steady-state part of the solution.

The Forcing Function f

The function f , on the right hand side of (1), is the forcing function that is imposed on the system.
In the case of the spring-mass system it might be something like effect of bumps in the road for a shock
absorber, or perhaps the effect of some vibration added by a motor. For an electrical circuit, it is the
voltage source that is supplying the circuit. Often f will be, in reality, a periodic function made up of
sine or cosine functions. For this reason it is sufficient to understand the behavior of the system when
f is a single trig function.

f provides input to the system over time, unlike the initial conditions, which only supply input right
at time zero. It, of course, leads to the particular solution to (1). At this point we will only consider
decaying exponential or trigonometric forcing functions.

• A decaying exponential function is itself transient, so in a mathematical sense when f is such
a function it leads to a transient part of the solution. (That part of the solution is the particular
solution.) For an undamped system such a forcing function will also act to cause a steady-state
part of the solution as well, even in the absence of initial values. (In that case it acts, in a sense,
like an initial velocity.)

• When f is a periodic function like a trig function, it will provide input to the system forever.
Because of this, it will usually lead to a periodic steady-state part of the solution. The one
exception is for an undamped system, where we find the following behaviors:
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– When the frequency of the forcing function is significantly different from the natural frequency
(sometimes called the resonant frequency) of the system, the result is a steady-state so-
lution with two parts, one with the resonant frequency and one with the frequency of the
forcing function.

– When the frequency of the forcing function is the same as the resonant frequency of the
system, the forcing function will cause part the solution to be trigonometric functions with
linearly increasing amplitude. This is the condition we call resonance.

– When the frequency of the forcing function is close to the resonant frequency of the system,
it will cause vibration with increasing amplitude when the forcing function is in phase with
the vibration. Eventually the forcing function will become out of phase with the natural
vibration, canceling it out. It will then get back in phase, then out, over and over. The
result is the phenomenon called beats.

Exercises on the next page.
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Chapter 4 Exercises To Solutions

1. Here are some equations of the sort we have been discussing:

(i) y′′ + 3y′ + 2y = 0 (v) y′′ + 9y = 0

(ii) y′′ + 4y = sin(9t) (vi) y′′ + 5y′ + 7y = 7.4 sin(2.4t)

(iii) y′′ + 10y′ + 25y = 0 (vii) y′′ + 3y′ + 5y = 0

(iv) y′′ + 25y = 3.1 sin(5t) (viii) y′′ + 16y = 7cos(3.8t) − 4 sin(3.8t)

(a) Which equations model an undamped system? Which model an under-damped system?
Critically damped? Over-damped?

(b) Which equations will have solutions with a transient part? Which will have solutions with a
steady-state part?

(c) Which equations will have solutions that exhibit resonance? Which will have solutions ex-
hibiting beats?

2. Consider the following solutions to differential equations of the type we have been discussing
(second order, constant coefficient).

(i) y = C1e
−t + C2e

−3t

(ii) y = C1e
−2t + c2te

−2t

(iii) y = C1 cos(5.1t) + C2 sin(5.1t)

(iv) y = e−1.2t[C1 cos(5t) + C2 sin(5t)]

(v) y = e−0.4t[C1 cos(2t) + C2 sin(2t)] − 1.3 cos(7t)

(vi) y = C1 cos(3t) + C2 sin(3t) + 0.13 cos(8t)− 1.46 sin(8t)

(vii) y = C1 cos(3t) + C2 sin(3t) + 0.13t cos(3t)− 1.46t sin(3t)

(viii) y = A sin(0.1t) sin(6.1t)

(a) Identify the transient and steady-state parts of each solution. (Some may not have both.)

(b) Which solutions are for differential equations of the form ay′′ + by′ + cy = 0?

(c) Which solutions are for undamped systems? Which are for under-damped systems? Critically
damped? Over-damped?
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3. Below are some graphs of solutions to ODEs of the form ay′′ + by′ + cy = f(t), where either,
or both, of b or f(t) may be zero.

y

t

(i)
y

t

(ii)
y

t

(iii)

y

t

(iv)
y

t

(v)
y

t

(vi)

y

t

(vii)

(a) Which graphs are for solutions to undamped systems? Under-damped systems? Critically or
over-damped systems? (You should not be able to tell the graphs for critically damped or
over-damped apart.)

(b) Which graphs are for ODEs of the form ay′′ + by′ + cy = 0?

4. None of the ODEs in Exercise 1 have a solution equation given in Exercise 2, or solution graph
given in Exercise 3. However, we CAN match up the FORMS of the ODEs, solution equations,
and graphs of solutions. For example, equation (iii) from Exercise 1 matches with solution (ii)
from Exercise 2 and graph (i) from Exercise 3. Find eight other sets of three like this; one graph
will have to be used more than once.
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5 Boundary Value Problems

Learning Outcome:

5. Set up and solve boundary value problems.

Performance Criteria:

(a) Solve a boundary value problem for the deflection of a horizontal beam.

(b) Give the boundary conditions for a horizontal beam.

(c) Predict the shape of the deflection curve for a horizontal beam that is
supported in a given manner.

(d) Determine whether a function is an eigenfunction of a differential oper-
ator. If it is, give the corresponding eigenvalue.

(e) Give eigenfunctions of the first or second derivative, for a given eigen-
value.

(f) Solve a boundary value problem for eigenvalues and the corresponding
eigenfunctions.

(g) Give the boundary conditions for a vertical column.

(h) Find the buckling modes (non-trivial solutions) for a vertical column.

(i) Find the critical loads for a vertical column.

(j) Give the pinning conditions resulting in each of the buckling modes of a
vertical column.

All of the applications that we have studied so far have involved some quantity that is a function of
time; that is, time has been the independent variable. Arbitrary constants have arisen in the process of
solving the associated ODEs, and we have used given initial conditions to determine the values of the
constants. In this chapter we look at deflection (bending) of horizontal beams and vertical columns.
For horizontal beams the deflection is a function of the distance along the beam or column. The
independent variable is then a one dimensional position variable, as discussed in Section 1.4. As seen in
Section 1.7, we use boundary conditions, rather than initial conditions, to determine the values of the
arbitrary constants.

We will designate the variable x to denote the distance along the beam (or column) from one end
or the other. Due to the weight of the beam there will be some deflection y off of the horizontal line
the beam would follow if it had no weight. The deflection will be different at different points along the
beam, so y = y(x). That is, the amount of deflection depends on where one is looking along the
length of the beam. The solution function is obtained from a fourth order ODE having four boundary
conditions. Solving such problems is relatively straightforward.

The situation will be significantly different for vertical columns, in a way that might be somewhat
surprising. We’ll see that such a column will remain straight as more and more weight is added to
it until, at some weight (called the first critical load), it suddenly deflects (“buckles”). It will then
either deform or break as a the load is increased. However, if we prevent the middle of the column from
deflecting, each half will deflect at a load (called the second critical load) that is four times the first
critical load.

Solving the boundary value problems associated with vertical columns requires solving what we call
an eigenvalue problem, which is more nuanced that the boundary value problems associated with
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horizontal beams. We will devote two sectoins of this chapter to eigenvalue problems and vertical
columns. We then conclude the chapter with a look at perhaps the simplest applicatoin of partial
differential equation, heat distribution in a rod. The method of solution leads us two two types of
ODEs, one of which is an eigenvlalue problem.
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5.1 Deflection of Horizontal Beams

Performance Criteria:

5. (a) Solve a boundary value problem for the deflection of a horizontal beam.

(b) Give the boundary conditions for a horizontal beam.

(c) Predict the shape of the deflection curve for a horizontal beam that is
supported in a given manner.

In this section we will take a look at the differential equations associated with beams that are
suspended horizontally in some way. The beams themselves will not be horizontal over their entire
lengths, because the force of gravity will cause some bending. The first thing to understand is the
mathematical setup. Suppose that we have a beam of length 10 feet. We put the cross-sectional center
of its left end at the origin of an x-y coordinate plane, and the cross-sectional center of its right end
at the point (10, 0). The longitudinal axis of symmetry of the beam then runs along the x-axis from
x = 0 to x = 10; see the figure below and to the left.

10

y

x

10

y

x

Now the beam will deflect (a fancy term for “sag”) in some way, due to any weight it is supporting,
including its own weight. The shape it takes will depend on the manner in which it is supported (we
will get into that soon), but one possibility is shown in the figure above and to the right. The points
along what was the original axis of symmetry of the beam now follow the graph of a function, which
we will call y(x). Note that the domain of the function is just the interval [0, 10]. Our goal will be
to find the mathematical equation of the function.

Let us still consider a 10 foot beam, but we will represent it
with just the curve described by the deflection of the longitudi-
nal axis of symmetry. (From now on, when we talk about the
beam, we really mean the deflected original longitudinal axis of
symmetry of the beam.) Suppose also that the ends of the beam
are what we call embedded. This means that they are not only
supported at both ends, but the ends are also held horizontal by
being “clamped” somehow. A good image to keep in mind is a
beam that is stuck into two opposing walls of a structure. See
the diagram to the right.

10

y

x

Figure 5.1(a)

The theory behind obtaining a differential equation to model a horizontal beam is beyond the scope
of this class. Suffice it to say that it involves ideas from the area of statics, like the “bending moment”
of the beam, and the properties of the material from which the beam is built. The differential equation
itself is fourth order:

EI
d4y

dx4
= w(x) (1)
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Here E is Young’s modulus of elasticity for the material from which the beam is made, I is the
moment of inertia of a cross-section of the beam and w(x) is the load per unit length of the beam.
If the beam has uniform cross-section and the only weight that it is supporting is its own weight, then
w(x) is a constant. We will consider only that situation.

Let’s consider the situation shown in Figure 5.1(a), where both ends are embedded. Because the
ODE (1) is fourth order, we will need four boundary conditions to determine all of the constants that
will arise in solving it. We first recognize that because the two ends are supported, there will be no
deflection at either end. Therefore y(0) = y(10) = 0. This will be the case for any horizontal beam
that is supported at both ends. Next we consider the fact that the ends of the beam are embedded
horizontally into a wall. The embedding causes both ends to be horizontal right at the points where they
leave the walls they are embedded in, so the slope of the beam is zero at those points. Mathematically
we express this by y′(0) = y′(10) = 0. When we put the ODE together with these boundary conditions
we get a boundary value problem. Suppose that for our ten foot beam beam E = 10, I = 5 and
w(x) = 100. The boundary value problem that we have is then

50
d4y

dx4
= 100, y(0) = 0, y′(0) = 0, y(10) = 0, y′(10) = 0 (2)

We solve this by simply taking a succession of antiderivatives and finding constants along the way, when
we are able to.

⋄ Example 5.1(a): Solve the boundary value problem (2) above.

Solution: We begin by dividing both sides by 50 to get
d4y

dx4
= 2. Our task now is to keep

integrating both sides until we find y = y(x). Integrating once gives
d3y

dx3
= 2x + C1, and

integrating again gives
d2y

dx2
= x2+C1x+C2. Next we find that

dy

dx
= 1

3x
3+ 1

2C1x
2+C2x+C3,

and applying the initial condition y′(0) = 0 gives C3 = 0. Substituting this value and integrating
one more time we get y = 1

12x
4 + 1

6C1x
3 + 1

2C2x
2 + C4, and applying the boundary condition

y(0) = 0 results in
y = 1

12x
4 + 1

6C1x
3 + 1

2C2x
2. (3)

We now apply the initial condition y(10) = 0 to get 0 = 10,000
12 + 1000

6 C1 +
100
2 C2, and the

initial condition y′(10) = 0 to get 0 = 1000
3 + 100

2 C1 + 10C2. To solve this system we multiply
the first equation by 12 and the second by 6 to get the system to the left below, which can be
solved in the manner shown in the other steps:

2000C1 + 600C2 = −10, 000

300C1 + 60C2 = −2000
=⇒

20C1 + 6C2 = −100

−30C1 − 6C2 = 200

− 10C1 = 100

C1 = −10

Substituting this value for C1 and solving for C2 gives us C2 = −40
3 . Putting these values

into (3), the solution to the IVP is y = 1
12x

4 − 5
3x

3 − 20
3 x

2.

Use your calculator or an online grapher like Desmos to graph the solution from x = 0 to x = 10,
using a y scale that allows you to actually see the deflection of the beam. Does the result surprise
you? (It should!) One annoying feature of the differential equation is that it is based on taking down
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to be the positive direction. To see what the actual shape of the beam will be, multiply your solution
by −1, then graph it. Now the result should look something like Figure 5.1(a).

Suppose again that we have a 10 foot beam, but now it
is supported by a fulcrum at each end, and each end is free
to pivot around the fulcrum. We will call the beam simply
supported in this case. Civil engineers might call this “pinned-
pinned.” See the diagram to the right. In this case, we will have
y(0) = y(10) = 0, just like the embedded case. However, we
can see that we will not have y′(0) = 0 or y′(10) = 0.

x = 0 x = 10

So how do we get two more boundary conditions? Note that the downward force of gravity in the
interior and the upward force of the supports at the ends bend the beam into a concave up shape.
(Remember concavity from differential calculus?) The upward concavity here means that it must be
the case that y′′(x) > 0 for values of x between, but not equal to 0 and 10. However, there are no
opposing forces to bend the beam right at its ends. Thus there is no concavity right at the ends of the
beam, resulting in the conditions y′′(0) = y′′(10) = 0.

The final situation we will consider for now is a beam that
is embedded at the left end and free at the right end, as shown.
The left end of the beam is embedded, so we know the values
y(0) = y′(0) = 0. We know neither the displacement nor
the slope of the right end, but what we do know there is that
there is no concavity there, so y′′(10) = 0. This gives us
three boundary conditions, but of course we need four. The last
condition comes from some theory we won’t go into here, but it
is y′′′(10) = 0.

x = 0 x = 10

Let us now summarize the the possible boundary conditions for a horizontal beam:

• At an embedded end both y and y′ are zero.

• At a simply supported end y and y′′ are zero.

• At a free end y′′ and y′′′ are zero.

I expect you be able to give any of those conditions - you should be able to figure all of them out
each time you need them, without memorization, with the possible exception of the third derivative just
discussed.

Section 5.1 Exercises To Solutions

1. For each beam pictured below, list the boundary conditions. Assume that the height of the left
end of each is zero.

(a) (b)

12 ft

8 ft
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(c) (d)

20 ft x = 0 x = 15

2. Suppose that you have a beam that is 8 feet long. For each of the scenarios given, determine first
whether it would make any sense physically to have the beam supported in the manner given. If
not, explain why. If it does make sense, give the four boundary conditions.

(a) Left end embedded horizontally, right end simply supported.

(b) Left end simply supported, right end free.

(c) Both ends free.

3. Find the deflection function y = y(x) for an eight foot beam that is embedded at both ends,
carrying a constant load of w(x) = 150 pounds per foot. Suppose also that E = 30 and
I = 80, in the appropriate units.

(a) Give the appropriate boundary value problem (differential equation plus boundary conditions).

(b) Solve the differential equation and apply the boundary conditions in order to determine the
constants. What is the final solution?

(c) Graph your solution on the appropriate x interval, using a y scale that allows you to
actually see the deflection of the beam. Remember to multiply the right side of your solution
from (b) by negative one so that it appears the same way that the beam will.

(d) Where do you believe the maximum deflection should occur? Find the deflection there - you
need not give units with your answer, since I have been somewhat vague about the units of
the constants E and I.

4. (a) Sketch a graph of the deflection of a beam that is embedded at its left end and free at its
right end.

(b) Suppose that the beam is 10 feet long, with values of w0, E and I of 100, 10 and 5,
respectively. Solve the boundary value problem.

(c) Graph your solution and compare with your sketch in part (a). Of course they should be the
same.

(d) What is the maximum deflection of the beam, and where does it occur?

5. Repeat parts (a)-(d) of Exercise 4 for a 10 foot beam that is simply supported on both ends.
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6. Repeat steps (a)-(c) of Exercise 4 for an eight foot beam, with the same parameters as in Exercise
3, that is embedded on the left end and simply supported on the right end. Then do the following:

(d) It was intuitively clear where the maximum deflection occurred for the two previous situations,
but it is not so clear in this case. Take a guess as to about where you think it should occur for
this case. Then use the graph on your calculator, along with the trace function, to determine
where the maximum deflection occurs, and how much it is.

7. The graphs below are those of some fourth degree polynomials. The points labeled A, D, E, H, I
and L are maxima for their respective functions, and the points labeled B, C, F, G, J and K are
inflection points. For each of the following boundary situations, give the endpoints of a section
of graph that has the shape the deflection curve would take. Assume that both ends of the beam
are supported at the same level, and that the dashed lines are horizontal.

(a) Simply supported at the left end, embedded at the right end.

(b) Embedded at both ends.

(c) Simply supported at both ends.

A

B C

D E

F G

H I

J K

L
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5.2 Second-Order Boundary Value Problems, Eigenfunctions and Eigenvalues

Performance Criteria:

5. (d) Determine whether a function is an eigenfunction of a differential oper-
ator. If it is, give the corresponding eigenvalue.

(e) Give eigenfunctions of the first or second derivative, for a given eigen-
value.

We begin by returning to a boundary value problem that we saw in Section 1.7. It is similar to a sort
of problem that comes up often in applications. The main thing that distinguishes this from an initial
value problem is that the idependent variable is postion, x, rather than time. Another difference we
will usually see in boundary value problems is that we are given values of the function at two different
values of the independent variable, in this case at zero and π.

⋄ Example 5.2(a): Solve the boundary value problem

y′′ + 1
4y = 0, y(0) = 3, y(π) = −4.

Solution: The auxiliary equation for the differential equation is r2 + 1
4 = 0, which has the

solution r = ±1
2 i. This gives us the solution

y = C1 sin
1
2x+ C2 cos

1
2x (1)

to the differential equation. To find the values of the constants we apply the boundary conditions
y(0) = 3, y(π) = −4. For the boundary condition y(0) = 3 we substitute x = 0 and
y = 3 into (3) to get

3 = C1 sin
1
2 (0) + C2 cos

1
2(0).

This gives us C2 = 3. Substituting x = π and y = −4 into (1) gives us C1 = −4. Therefore
the solution to the boundary value problem is y = −4 sin 1

2x+ 3cos 1
2x.

Differential Operators, Again

Recall from Section 3.5 that a mathematical object that “works on” a function to produce another
function is called an operator, and the derivative is probably the simplest example of an operator. Of
course the second derivative is an operator as well. In that section we also showed that we can combine
derivatives to get other operators.

⋄ Example 5.2(b): The second derivative
d2

dx2
is an operator. You should be quite familiar with

its action:
d2

dx2
(
5x3 + 7x2 − 2x+ 4

)
= 30x+ 14
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⋄ Example 5.2(c): We can create new operators by forming something called a linear combination
of derivatives. As an example, we can define an operator

D = 3
d2

dt2
+ 5

d

dt
− 4

by its action on a function y = y(t):

D(y) = 3
d2y

dt2
+ 5

dy

dt
− 4y.

So, for example, if y = e−2t,

D
(
e−2t

)
= 3

d2

dt2
(
e−2t

)
+ 5

d

dt

(
e−2t

)
− 4e−2t = 12e−2t − 10e−2t − 4e−2t = −2e−2t

You saw such operators when we studied second order linear ODEs.

⋄ Example 5.2(d): You may know that when we multiply the matrix A =

[
−4 −6
3 5

]

times

the vector
⇀

u =

[
1
3

]

we get

A
⇀

u =

[
−4 −6
3 5

] [
1
3

]

=

[
(−4)(1) + (−6)(3)
(3)(1) + (5)(3)

]

=

[
−22
18

]

Similarly, for the vector
⇀

v =

[
2

−1

]

,

A
⇀

v =

[
−4 −6
3 5

] [
2

−1

]

=

[
−2
1

]

We can think of A as an operator that acts on vectors with two components to create other
vectors with two components.

Recall that the derivative operator is what we call a linear operator. What this means is that if
f and g are functions, and c is a constant, then

d

dx
[f(x) + g(x)] =

df

dx
(x) +

dg

dx
(x) and

d

dx
[cf(x)] = c

df

dx
(x)

This behavior is not unique. If A is a matrix,
⇀

u and
⇀

v are vectors, and c is a scalar (constant),

A(
⇀

u +
⇀

v) = A
⇀

u +A
⇀

v and A(c
⇀

u) = cA
⇀

u

Linear operators have these two properties, of “distributing over addition” and “passing through con-
stants.” (This is where the the language “linear” in linear algebra comes from.) Many operators used
in applications are linear operators.
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Eigenfunctions and Eigenvalues

Let’s go back to the differential equation y′′ + 1
4y = 0 from Example 5.2(a). Note that we can

arrange the differential equation as
d2y

dx2
= −1

4y. (2)

When we seek a solution to this differential equation, the equation tells us that we are looking for
a function y = y(x) whose second derivative is one-fourth the function itself. We looked at such
equations in Section 1.2, and established by guessing and checking that a function of the form

y = C1 sin
1
2x+ C2 cos

1
2x (3)

is a solution for any values of C1 and C2. Of course we now know how to solve (2) using its
auxiliary equation, and we know also that every solution to (2) must have the form (3). The fact that
the action of the second derivative operator the function (3) is to simply multiply the the function by
−1

4 is something fairly special. That’s not the case for most other functions when the second derivative
operator “works on” them. Here’s an example of a more complicated operator and two functions, one
of which has this property that the operator acting on it is the same as multiplying by a number, and
the another function for which this is not the case.

⋄ Example 5.2(e): Let L be the differential operator defined on a function y = y(x) by

L(y) = (x2 − 1)
d2y

dx2
+ 2x

dy

dx
.

Apply this operator to the functions p(x) = x2 − 5x+ 2 and q(x) = 5x3 − 3x.

Solution: We see that

L
(
x2 − 5x+ 2

)
= (x2 − 1)

d2

dx2
(
x2 − 5x+ 2

)
+ 2x

d

dx

(
x2 − 5x+ 2

)

= (x2 − 1)(2) + 2x(2x − 5)

= 6x2 − 10x − 2

and

L
(
5x3 − 3x

)
= (x2 − 1)

d2

dx2
(
5x3 − 3x

)
+ 2x

d

dx

(
5x3 − 3x

)

= (x2 − 1)(30x) + 2x(15x2 − 3)

= 60x3 − 36x

There is nothing special about the result when the operator L of the previous example is applied
to p(x) = x2 − 5x+ 2, but we see that

L
[
q(x)

]
= L

(
5x3 − 3x

)
= 60x3 − 36x = 12(5x3 − 3x) = 12q(x).

Note that the ultimate effect of L on q is to multiply it by twelve. When an operator operates
on a function and the result is to simply multiply the function by a constant, we call the function an
eigenfunction of the operator:
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Eigenfunctions and Eigenvalues

Let A be an operator that operates on functions and let y be a nonzero function
for which there is a constant λ such that

Ay = λy.

Then y is an eigenfunction of the operator A, with corresponding eigenvalue
λ. Note that λ = 0 is allowable, but y = 0 is not.

⋄ Example 5.2(f): For the operator L of Example 5.2(e), give an eigenfunction and the corre-
sponding eigenvalue.

Solution: Because L
[
q(x)

]
= 12q(x), q(x) = 5x3 − 3x is an eigenfunction of L with

eigenvalue 12.

⋄ Example 5.2(g): Consider again the second derivative
d2

dx2
, and note that

d2

dx2
(sin 1

2x) = −1
4 sin

1
2x.

The effect of the derivative on sin 1
2x is to simply multiply the function by −1

4 , so sin 1
2x is

an eigenfunction for the operator
d2

dx2
, with corresponding eigenvalue −1

4 .

⋄ Example 5.2(h): Note that in Example 5.2(d), the result of A times
⇀

v was simply −1 times

⇀

v. We say that
⇀

v =

[
2

−1

]

is an eigenvector (instead of eigenfunction) for the matrix

A =

[
−4 −6
3 5

]

, with eigenvalue −1.

⋄ Example 5.2(i): Because the derivative of a constant is zero, which is also zero times the

function, every nonzero constant function is an eigenfunction of the first derivative operator
d

dx
,

with corresponding eigenvalue zero. This emphasizes that even though the zero function isn’t
allowed as an eigenfunction, eigenfunctions are allowed to have eigenvalues of zero.

Eigenfunction Problems

Here we see how eigenfunctions are important to us in our study of differential equations. The
differential equation

d

dx

[

(1− x2)
dy

dx

]

+ n(n+ 1)y = 0 (4)
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is called Legendre’s Differential Equation and arises when modeling steady-state heat distribution in
a solid medium using polar coordinates. If we let n(n+ 1) = λ, move the term n(n + 1)y = λy to
the right side, apply the derivative outside the brackets on the left (product rule!) and negate both
sides, (4) becomes

(x2 − 1)
d2y

dx2
+ 2x

dy

dx
= λy. (5)

If we then let L be the operator of Example 5.2(e) defined by

L(y) = (x2 − 1)
d2y

dx2
+ 2x

dy

dx
.

then (5) becomes the eigenfunction/eigenvalue equation

L(y) = λy. (6)

Solving (4) then is equivalent to finding eigenfunctions and eigenvalues of the operator L. This is
what we mean by solving the eigenvalue problem (5).

We now make some observations related to Example 5.2(g), where we saw that y = sin 1
2x is

an eigenfunction for the second derivative with eigenvalue −1
4 , and Example 5.2(a). First, for any

constant C,
d2

dx2
(C sin 1

2x) = −1
4C sin 1

2x = −1
4(C sin 1

2x). (7)

This indicates that any constant multiple of an eigenfunction is also an eigenfunction, with the same
eigenvalue. This holds for eigenvectors as well; we don’t really think of such multiples as new eigen-
functions or eigenvectors. We also see that

d2

dx2
(cos 1

2x) = −1
4 cos

1
2x, (8)

showing that an operator can have more than one eigenfunction (beyond just constant multiples) with
the same eigenvalue. This also holds for matrices and eigenvectors.

Finally, combining (7) and (8) gives us that any function of the form

y = C1 sin
1
2x+ C2 cos

1
2x

is an eigenfunction of the second derivative with eigenvalue −1
4 . This indicates that solving the

differential equation y′′ + 1
4y = 0 amounts to finding eigenfunctions of the second derivative with

eigenvalue −1
4 .

Section 5.2 Exercises To Solutions

1. In this exercise you will be considering the first derivative operator
d

dx
.

(a) The function y = e3x is an eigenfunction for the operator. What is the corresponding
eigenvalue?

(b) Give the eigenfunction of the operator that has eigenvalue −5.

(c) Based on your answers to parts (a) and (b), what is the general form of any eigenfunction
of the first derivative operator and what is the corresponding general eigenvalue?
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2. Now consider the second derivative operator
d2

dx2
. There are three general forms of the eigen-

functions for this operator, depending on whether the eigenvalues are positive, negative or zero.

(a) Give a specific function that has eigenvalue zero; that is, the second derivative of the function
is zero.

(b) Give the most general form of function whose eigenvalue is zero.

(c) Give two different functions (neither of them being a multiple of the other) that are eigen-
functions of the second derivative with eigenvalue −4.

(d) Give two different functions, neither of them being a multiple of the other, that are eigen-
functions of the second derivative with eigenvalue −3.

(e) Give two different functions, neither of them being a multiple of the other, that are eigen-
functions of the second derivative with eigenvalue −λ2, where λ is a positive real number.

(f) Give the eigenfunctions that will have eigenvalue nine; there are two of them!

(g) Give the general form of the eigenfunctions of the operator that have positive eigenvalues,
and give the general eigenvalue.

3. Let D be the operator D =
d2

dt2
+ 2

d

dt
− 3, whose action on a function y = y(t) is defined

by Dy =
d2y

dt2
+ 2

dy

dt
− 3y.

(a) Show that y = e−2t is an eigenfunction for this operator, and determine the corresponding
eigenvalue.

(b) In general, any function of the form ekt is an eigenfunction for D. Determine the general
eigenvalue.

(c) Give two values of k for which ekt is an eigenfunction of D with eigenvalue zero.

(d) Give two values of k for which ekt is an eigenfunction of D with eigenvalue five.

4. A very important ODE in many applications is y′′ + λ2y = 0. Note that this can be rearranged
to get y′′ = −λ2y, which says that any y that is a solution to the differential equation is an
eigenfunction with eigenvalue −λ2.

(a) Give the eigenfunctions of the second derivative with eigenvalue −λ2.

(b) (Challenge) Let S be the set of functions y = f(x) that have continuous second derivatives
on the interval [0, 2π] and for which f(0) = f(2π) = 0. Determine ALL eigenfunctions
of the second derivative with eigenvalue −λ2 that are in S.
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5. Let L be the differential operator defined on a function y = y(x) by

L(y) = x
d2y

dx2
+ (1− x)

dy

dx
.

Determine which of the following are eigenfunctions of L. For those that are, give the corre-
sponding eigenvalue.

(a) y = x2 + 3x (b) y = 1− x

(c) y = x3 − 9x2 + 18x− 6 (d) y = 2x+ 3

(e) y = x2 − 4x+ 2

6. Example 5.2(d) showed that the function P3(x) = 5x3 − 3x is an eigenfunction of the operator
L defined by

L(y) = (x2 − 1)
d2y

dx2
+ 2x

dy

dx
,

with eigenvalue 12. The function P3(x) is called a Legendre polynomial. There are more
Legendre polynomials, each of which is an eigenfunciton for L - here are a few of them:

P1(x) = x, P2(x) = 3x2−1, P4(x) = 35x4−30x2+3, P5(x) = 63x5−70x3+15x.

(a) Determine the corresponding eigenvalue for each of the eigenfunctions given above.

(b) Make a table of n values for n = 1, 2, 3, 4, 5 and the corresponding eigenvalues.

(c) There should be a pattern to the eigenvalues, but you may find it difficult to figure out. Give
it a try, and take a guess as to what the eigenvalue is for n = 7. The eigenfunction is
P7 = 429x7 − 693x5 +315x3 − 35x - apply L to it to check your guess for the eigenvalue.

(d) What is the eigenvalue for the nth Legendre polynomial Pn(x)?
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5.3 Eigenvalue Problems, Deflection of Vertical Columns

Performance Criteria:

5. (f) Solve a boundary value problem for eigenvalues and the corresponding
eigenfunctions.

(g) Give the boundary conditions for a vertical column.

(h) Find the buckling modes (non-trivial solutions) for a vertical column.

(i) Find the critical loads for a vertical column.

(j) Give the pinning conditions resulting in each of the buckling modes of a
vertical column.

When solving the equation
d2y

dx2
= −1

4y

we see that we are looking for eigenfunctions of the second derivative with eigenvalue −1
4 . In many

applications we are looking for eigenfunctions without knowing what the eigenvalue is. This seems like
an impossible problem to solve, but it isn’t, as we see in the following example.

⋄ Example 5.3(a): Solve the boundary value problem

y′′ + λ2y = 0, y(0) = 0, y′(2π) = 0, (1)

where λ is a positive value to be determined.

Solution: The auxiliary equation for the differential equation is r2 + λ2 = 0, which leads to
r2 = −λ2, so r = ±λi. The solution to the ODE is then

y = C1 sinλx+ C2 cosλx.

Applying the first boundary condition y(0) = 0 gives us C2 = 0, so the solution is

y = C1 sinλx.

From this we can compute y′ = C1λ cos λx, and applying the second boundary condition gives
us

C1λ cos 2πλ = 0.

There are three possibilities here: C1 = 0, λ = 0, or cos 2πλ = 0. The first two result in a
solution of y = 0 for the boundary value problem. This is a valid solution, but quite uninteresting!
For this reason we will refer to it as the trivial solution. To get a non-trivial solution it must be
the case that cos 2πλ = 0. Now cos θ = 0 when θ = π

2 ,
3π
2 , 5π2 , .... Thus we have

2πλ = π
2 ,

3π
2 , 5π

2 , ...

λ = 1
4 ,

3
4 ,

5
4 , ...

(2)

Changing C1 to just C, the non-trivial solutions to the boundary value problem (1) are then

y = C sin 1
4x, y = C sin 3

4x, y = C sin 5
4x, ..., (3)

each corresponding to one of the values of λ determined in (2).
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As stated, each of the solutions (3) to the BVP (1) corresponds to a particular value of λ. Let’s
verify one of those solutions.

⋄ Example 5.3(b): Verify that y = C sin 5
4x is a solution to the boundary value problem

y′′ + λ2y = 0, y(0) = 0, y′(2π) = 0 (1)

when λ = 5
4 .

Solution: The differential equation in this case is y′′ + 25
16y = 0. We see that

y = C sin 5
4x =⇒ y′ = 5

4C cos 5
4x =⇒ y′′ = −25

16C sin 5
4x, (4)

so
y′′ + 25

16y = −25
16C sin 5

4x+ 25
16(C sin 5

4x) = 0,

showing that y = C sin 5
4x is a solution to the differential equation.

We must now show that y = C sin 5
4x satisfies the boundary conditions. Note that we found

y′ in (4).

y(0) = C sin 5
4(0) = 0 and y′(2π) = 5

4C cos 5
4(2π) =

5
4C cos 5π

2 = 0.

Because y = C sin 5
4x satisifies both the differential equation and boundary conditions, it is a

solution to the BVP (1) when λ = 5
4 .

We note two ways our solution to the boundary value problem from Example 5.3(a) differs from the
initial value problems we’ve solved, and the particular boundary value problems that we have solved up
to now:

• There are infinitely many solutions to this boundary value problem, each corresponding to a specific
choice of λ.

• There is an arbitray constant whose value we cannot determine from the information given.

For the particular application that we will look at in this section, we consider only one of the solutions

y = C sin 1
4x, y = C sin 3

4x, y = C sin 5
4x, ..., (3)

at a time. For other applications we need at some point to consider instead the arbitray linear combi-
nation of solutions

y = C1 sin
1
4x+ C2 sin

3
4x+ C3 sin

5
4x+ · · · (5)

When these applications occur (in the solving of partial differential equations), there is additional
information that can be used to determine the values of all these constants. Some of you may recognize
(5) as a Fourier series.

We now examine Example 5.3(a) in the context of eigenvalues and eigenfunctions. Note that the
differential equation from the BVP can be written

d2

dx2
(y) = −λ2x,

which is saying we are looking for functions that are eigenfunctions of the second derivative with
eigenvalues −λ2. This is called an eigenvalue problem, and it is typical that we need to find both
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the eigenvalues and eigenfuctions. (Any of you who have had linear algebra may recall that in that
course you had to find both eigenvalues and eigenvectors.) The result of Example 5.3(a) gives us the
eigenvalues (using the results of (2))

−λ2 = − 1
16 , − 9

16 , − 25
16 , ...,

with corresponding eigenfunctions

y = C sin 1
4x, y = C sin 3

4x, y = C sin 5
4x, ...

We now look at one application of these ideas that some of you may have encountered in a strengths
of materials course.

Deflection of Vertical Columns

Now we will examine the behavior of a vertical column
when a load is applied directly downward on its top, as shown
in the first picture to the right. We will begin by considering
columns that are pinned; this means we will allow the top
and bottom of the column to be at angles other than ver-
tical. We will require the top and bottom of the column to
be vertically aligned with each other - later we will consider
a situation where we will relax this condition. So, for exam-
ple, when enough force is applied downward the column will
deflect horizontally as shown in the second picture to the
right.

⇓
Load
Force ⇓

We will set up a coordinate system as shown below and to the right, with x indicating the distance
upward from the bottom of the column and y = y(x) representing the horizontal deflection of the
column at any point x. The differential equation governing the deflection of the column is

EI
d2y

dx2
= −Py, (1)

where the parameters E and I are again the modulus of elasticity and cross-sectional moment of
inertia of the column. They are properties that could vary along the column (with the variable x), but
this would be unusual. We’ll only consider columns where they do not
change. P is the (positive) force exerted downward on the top of the
column, and we will look at the effects of different values of P , but
for purposes of solving the ODE it is a constant. (It is a parameter
rather than a variable, but its value is to be determined when solving
the ODE.) Because the ODE is second order we will need two conditions
to determine the solution. If the length of the column is denoted by L,
we have the boundary conditions y(0) = 0 and y(L) = 0. If we
rearrange the equation and combine it with the boundary conditions we
get the boundary value problem (BVP)

x = L
y(L) = 0

y(0) = 0

x

y (pos)

d2y

dx2
+

P

EI
y = 0, y(0) = 0, y(L) = 0. (2)

We will see that solving this boundary value problem is somewhat different than solving the kind of
BVPs we saw for horizontal beams, in the previous section. This is because we can rearrange the ODE
(1) to get the eigenvalue problem

d2y

dx2
= − P

EI
y. (3)
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Note that y is an eigenfunction of the second derivative, with eigenvalue − P
EI

, where P , E and
I are all positive. As we now know very well, y must be of the form

y = C1 sin ax+ C2 cos ax

for some constant a yet to be determined. Let’s now go through the details for a specific case:

⋄ Example 5.3(c): Solve the boundary value problem

d2y

dx2
+

P

EI
y = 0, y(0) = 0, y(20) = 0, (4)

with E = 800, I = 150 and P > 0.

Solution: Substituting the values for E and I into the ODE gives us

d2y

dx2
+

P

120, 000
y = 0 (5)

Using our methods from Chapter 3, this equation has auxiliary equation r2 + P
120,000 = 0 and,

because P > 0, its roots are r = ±i
√

P
120,000 . The solution to (4) is then

y = C1 sin
√

P
120,000 x+ C2 cos

√
P

120,000 x

Applying the boundary condition y(0) = 0 gives us C2 = 0, so the solution is then

y = C sin
√

P
120,000 x.

(I’ve omitted the subscript for simplicity.) Now here is where things start to get interesting! The
other boundary condition tells us that

0 = C sin
√

P
120,000 (20) (6)

which, in turn, tells us that either C = 0 or sin
√

P
120,000 (20) = 0. The first possibility gives

us the “trivial” solution y = 0 - it satisfies the differential equation and boundary conditions,
but it isn’t particularly interesting! Considering the second possibility, sin θ = 0 for θ =
0, π, 2π, 3π, ..., nπ, ... so, for C 6= 0, (6) will be true for

√
P

120,000 (20) = 0, π, 2π, 3π, . . . , nπ, . . . , (7)

the first of which also gives us the trivial solution y = 0. Therefore, in theory at least (we’ll
talk later about what all this means from a practical point of view), we can only have nonzero
solutions to the BVP if √

P
120,000 = π

20 ,
2π
20 ,

3π
20 , . . . , nπ

20 , . . .

This gives us the nonzero solutions

y = C sin π
20 x, y = C sin 2π

20 x, y = C sin 3π
20 x, . . . , y = C sin nπ

20 x, . . .

to the boundary value problem.
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This isn’t really the end of the story, but we need to pause to catch our breath and develop some
terminology before resuming. At this point what we know about the boundary value problem

d2y

dx2
+

P

EI
y = 0, y(0) = 0, y(20) = 0, (4)

is that y = 0 is a solution, called the trivial solution (because it is mathematically uninteresting),

and we only have nontrivial solutions for discrete values of
√

P
120,000 ; those solutions are the ones the

example concluded with. The non-trivial solutions are called buckling modes (for reasons you’ll soon
see). The first non-trivial solution is called the first buckling mode, the second is the second buckling
mode, and so on. The only values of P for which we can have nontrivial solutions are those that
satisfy

√
P

120,000 (20) = π, 2π, 3π, . . . , nπ, . . . . (7)

Solving for P gives us

P = 120000
( π

20

)2
, 120000

(
2π

20

)2

, 120000

(
3π

20

)2

, . . . , 120000
(nπ

20

)2
, . . .

= 300π2, 300(2π)2, 300(3π)2, . . . , 300(nπ)2, . . .

= 300π2, 4(300π2), 9(300π2), . . . , n2(300π2), . . .

These values of P are called critical loads. Like the buckling modes, they are numbered, so 300π2 is
the first critical load, 4(300π2) is the second critical load, etc. The word “load” refers to the load
held up by the column. Note that the second critical load is four (two squared) times the first critical
load, the third critical load is nine (three squared) times the first critical load, and so on.

What happens physically is this: When there is no load on the column it is perfectly straight (the
solution y = 0), and it remains that way as we increase the load, until the first critical load is reached.
At that point the column will deflect sideways, taking the shape of the curve y = C sin π

20 x, shown at
the left below. In reality, as the load increases beyond the first critical load, the deflection will remain
the same shape, but with increasing amplitude, until the column fails.

If we were able to prevent the middle point of the column, at x = 10, from deflecting, the column
would be able to support the second critical load. Because the column is held with y(10) = 0, the
deflection of the column will take the shape of a full period of the sine function, as shown in the middle
picture below - this is the second buckling mode. The act of preventing deflection is sometimes called
“pinning.” If we pin the column at points one-third and two-thirds of the way along its length, the
column would be able to support the third critical load, and the shape of the deflection would be given
by the third buckling mode, shown to the right below.

20

1st buckling mode

10

20

2nd buckling mode

1

3
(20)

2

3
(20)

20

3rd buckling mode
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Let’s revisit the boundary conditions y(0) = y(L) = 0, where L is the length of the column. We
should first note that the only requirement we really had was that the top and bottom of the column
were vertically aligned. We could just as well have put y(0) = y(L) = 2, as shown in the diagram to
the left below; however, the mathematics involved are a bit simpler if we instead use y(0) = y(L) = 0,
as we did. Physically we must still insist that the top and bottom be aligned. Without this restriction,
any horizontal shifting of the “ceiling” would result in hinging and a collapse. The beginning of such a
collapse is indicated by the three diagrams to the right below.

L

y(0) = y(L) = 2

x

y (pos)

⇓
Load

⇓ ⇓

Now suppose the top and bottom were embedded, rather than being pinned. If the column still has
length L, we then have the boundary conditions

y′(0) = y′(L) = 0. (5)

This gives us two boundary conditions, which is what we should need in order to solve the second order
ODE

d2y

dx2
+

P

EI
y = 0,

and leaves us without any conditions on y(0) and y(L). In this situation, we could conceivably allow
the “ceiling” to “drift” laterally without collapse, because the column being held in a vertical alignment
at the bottom and top would provide enough rigidity to prevent collapse. The first three buckling
modes for this situation are shown below; if the ceiling were prevented from drifting, the second mode
would then become the first, the fourth would become the second, and so on. You will investigate this
situation, along with the corresponding critical loads, in the exercises.

1st buckling mode 2nd buckling mode 3rd buckling mode
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Section 5.3 Exercises To Solutions

Give all answers in exact form. When asked for the first ... buckling modes or critical loads,
give only nonzero modes or values.

1. For each of the following, boundary values are given to go with the ODE y′′ + λ2y = 0, which
has the solution

y = C1 sinλx+ C2 cosλx.

Use the method of Example 5.3(a) to determine the first four nonzero values of λ for which the
boundary value problem has a solution, and give the corresponding four solutions.

(a) y(0) = 0, y(5) = 0 (b) y′(0) = 0, y′(3π) = 0

(c) y(0) = 0, y′(π) = 0 (d) y′(0) = 0, y(7) = 0

(e) y′(0) = 0, y′(10) = 0 (f) y(0) = 0, y(5π) = 0

2. A 12 foot vertical column is pinned at both ends. For the material it is made of we have
E = 500 and, from its design, we have I = 200, both in the appropriate units.

(a) Give the first four nonzero buckling modes, showing all steps of solving the IVP to get them.

(b) Give the first four nonzero critical loads.

(c) How many times larger is the third nonzero critical load than the first nonzero critical load?

3. Now suppose we have a 6 foot vertical column with E = 500, I = 200, and both ends pinned.

(a) Give the first four nonzero buckling modes, and find the corresponding critical loads.

(b) Compare your critical loads with those from the 12 foot length (Exercise 1). How do the
corresponding critical loads for the six foot column compare with those for the 12 foot
column? Does that make sense intuitively?

(c) The first nonzero buckling mode for the six foot column is the same as a six foot section of
which buckling mode for the 12 foot column? Draw a picture showing what is going on
here.

4. Consider now a 12 foot vertical column with E and I values of 500 and 200 again, but
this time with both ends embedded. Suppose also that the “ceiling” is not allowed to drift, so
the top and bottom of the column are vertically aligned.

(a) Give the first three nonzero buckling modes.

(b) Give the first three nonzero critical loads.

(c) How does the third nonzero critical load compare to the first? (That is, how many times
larger is it?)

(d) How does the first nonzero critical load compare with the first nonzero critical load for the
12 foot column with pinned ends? (See Exercise 1(a).) How about the other critical loads?
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5. Repeat the previous exercise, but with the assumption that the ceiling is allowed to drift. (Hint:
You should be able to use your computations from Exercise 4, rather than re-doing all of them.)

6. Repeat parts (a) and (b) of Exercise 2 for a vertical column of length L that is pinned at both
ends, with modulus of elasticity E and moment of inertia I. This will give a general form of
the buckling modes and critical loads for pinned ends.

7. Repeat parts (a) and (b) of Exercise 5 for a vertical column of length L that is embedded at
both ends, with the ceiling allowed to drift. Again use a modulus of elasticity E and moment of
inertia I. This will give a general form of the buckling modes and critical loads for embedded
ends.
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5.4 The Heat Equation in One Dimension

In this section we will consider the physically impossible but mathematically convenient situation: We
have a metal rod of length L (see picture below) that is perfectly insulated along its length, so that
no heat can enter or escape along its length, but for which
heat can enter or leave the ends. At any time t greater
than zero and any position x along the rod, the function
u(x, t) gives the temperature at that point x and time t .
(We will think of the rod as being “infinitely thin,” so that

x = 0 x = L

the rod has only one point at each x position. If you are not happy with this, an alternative is to think
that if the rod had some thickness the temperature at every point in a cross-sectional slice at some x is
the same, so we need not consider the other two space dimensions.) Suppose that at time zero there
is some distribution of temperatures along the rod, given by a the function f(x) for 0 ≤ x ≤ L, and
suppose also that the ends of the rod are held at temperature zero at all times t ≥ 0. The function
f gives an initial condition for each point x along the length of the rod, and the conditions that the
ends are held at temperature zero are boundary conditions.

What we would like to know is whether, and how, we can determine the temperature at any point
x with 0 < x < L (we know the temperatures at x = 0 and x = L are always zero), at any
time t > 0. Here the dependent variable u depends on the two independent variables x and t.
Some physical principles concerning heat give us a differential equation for this situation and, due to
there being two independent variables, it is a partial differential equation. The equation (called the heat
equation), and the conditions given above can all be stated as

∂u

∂t
= k

∂2u

∂x2
, u(0, t) = u(L, t) = 0, u(x, 0) = f(x) (1)

Here the conditions u(0, t) = u(L, t) = 0 are boundary conditions and u(x, 0) = f(x) is essentially an
initial condition (for every point along the rod). Thus we have a problem that is a sort of combination
initial value/boundary value problem. But we can really think of it as a boundary value problem for this
reason: If we were to think of the Cartesian plane as representing position
x along the horizontal axis and time t along the vertical axis we get a
picture like the one to the right, where each point in the shaded region
represents a point x in the rod and some time t. Our goal is then to find
the temperature at each of those points; in this way we can think of trying
to find function values in a region that is bounded by the line from zero to
L on the x-axis and the two “half-infinite” lines from zero to infinity in the
t direction at x = 0 and x = L. The condition u(x, 0) = f(x) can be
thought of as a boundary condition along the bottom, and the conditions
u(0, t) = u(L, t) = 0 are boundary conditions along the two sides.

x

t

L

Recall that if we have the function f(x, y) = x2y3, to get the partial derivative
∂f

∂x
we simply

take the derivative of x2y3, treating y (and therefore y3) as a constant. Similarly, we get
∂f

∂y
by

treating x as a constant, so we have

∂f

∂x
= 2xy3 and

∂f

∂y
= 3x2y2

Let’s try another.

⋄ Example 5.4(a): Find
∂u

∂x
and

∂u

∂t
for u(x, t) = e−2t sin 3x.
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Solution: When finding
∂u

∂x
we consider t to be a constant, so e−2t is as well. The derivative

is then
∂u

∂x
= 3e−2t cos 3x.

When finding
∂u

∂t
, sin 3t is essentially a constant, so

∂u

∂t
= −2e−2t sin 3x.

Now we’ll see that we have a solution to the heat equation!

⋄ Example 5.4(b): Show that u(x, t) = e−2t sin 3x satisfies the heat equation
∂u

∂t
= k

∂2u

∂x2
.

Solution: We already have

∂u

∂x
= 3e−2t cos 3x and

∂u

∂t
= −2e−2t sin 3x.

from the previous example. Taking the partial derivative of the first of these with respect to
x again gives us

∂2u

∂x2
= −9e−2t sin 3x

so
∂u

∂t
= −2e−2t sin 3x =

2

9

(
−9e−2t sin 3x

)
= k

∂2u

∂x2
, k = 2

9

We will soon see that u(x, t) = e−2t sin 3x is not the most general solution to the equation.
Those who’ve had a multivariable calculus course will perhaps recall that the computation of partial

derivatives can be significantly more complicated (and therefore difficult) than the ones done above,
but if we understand the two examples just given we are ready to understand how

∂u

∂t
= k

∂2u

∂x2
, u(0, t) = u(L, t) = 0, u(x, 0) = f(x) (1)

is solved. The method for doing it is called separation of variables, which is similar in execution, up
to a point, to the method of the same name we used to solve separable first order ODEs up to a point.
After that point we must proceed differently.

To begin, we assume that the function u(x, t) is actually a product of a function of x alone and
another function of t alone. There is no practical reason to think this might be the case, but the
method works, so we’ll use it! (This method was invented/discovered in the 1700s by Daniel Bernoulli,
part of a family of a number of accomplished mathematicians and scientists. Daniel was also involved in
the derivation of the ODE we used for horizontal beams.) If we let X be the function of x and T be
the function of t, then u(x, t) = X(x)T (t). (This use of a capital letter for a function and the lower
case of the same letter for the independent variable is common practice in the study partial differential
equation solution methods.) Now remember that if we are taking the derivative of X(x)T (t) with
respect to x, T (t) is treated as a constant, and when taking the derivative with respect to t, X(x) is
treated as a constant, so

∂u

∂t
= X(x)T ′(t) and

∂2u

∂x2
= X ′′(x)T (t).
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The differential equation in (1) then becomes X(x)T ′(t) = kX ′′(x)T (t). If we divide both sides by
kX(x)T (t) we get

T ′(t)
kT (t)

=
X ′′(x)
X(x)

. (2)

Here is where we deviate from the procedure for solving first order separable equations. (2) needs to be
true for all values of x and t, and this is likely only the case if both sides of (2) are equal to some
constant (again, we’ll see that it works!) that we will call −λ2. For reasons we won’t go into here,
λ is positive. Setting each side equal to −λ2 and multiplying by the denominators we get

dT

dt
(t) = −kλ2T (t) and

d2X

dx2
(x) = −λ2X(x). (3)

In addition to this, we also have the boundary conditions X(0) = X(L) = 0 for the second equation.
The first equation in (3) tells us that T (t) is an eigenfunction for the first derivative operator, with
eigenvalue −kλ2, and we know that T (t) is then any constant multiple of e−kλ2t. That is,

T (t) = C1e
−kλ2t.

The second equation says that X(x) is an eigenfunction of the second derivative operator with
eigenvalue −λ2. Because λ is positive, the eigenfunctions are constant multiples of sinλx and
cos λx, as determined in the previous section, and we have

X(x) = C2 sinλx+ C2 cosλx.

The general solution to the heat equation then looks like

u(x, t) = X(x)T (t) = e−kλ2t(A sin λx+B cos λx) (4)

where A = C1C2 and B = C1C3.
Let’s focus a bit more on the second ODE in (3) and its boundary values X(0) = X(L) = 0. The

general solution to the ODE is X(x) = A sinλx+B cos λx. Applying the condition X(0) = 0 gives
us B = 0, so the solution is X(x) = A sinλt. (At this point this story should be starting to feel
familiar!) We now consider the boundary condition X(L) = 0, which gives us 0 = A sinλL. As
before, when considering vertical columns, we don’t want to let A = 0, so we must have sinλL = 0.
This implies that

λL = 0, π, 2π, 3π, ... =⇒ λ = 0,
π

L
,
2π

L
,
3π

L
, ...

and the solutions to the boundary value problem (disregarding constants and the zero solution arising
from λ = 0) are

sin
π

L
x, sin

2π

L
x, sin

3π

Lx
, ...

The solution T then becomes T (t) = e−
kπ

2

L2
t, e−

4kπ
2

L2
t, e−

9kπ
2

L2
t, ... depending on λ, so we get a

sequence of solutions u(x, t) = X(x)T (t):

u(x, t) = e−
kπ

2

L2
t sin π

L
x, e−

4kπ
2

L2
t sin 2π

L
x, e−

9kπ
2

L2
t sin 3π

L
x, ... (5)

Recall that when solving an ODE like y′′ + 3y′ + 2y = 0 we assumed y = ert for some constant
r. From this we obtain y = e−t or y = e−2t, but we saw that the sum of constant multiples of
these two, y = C1e

−t+C2e
−2t is the most general solution. By the same reasoning, the most general

solution to the PDE we’re looking at is an infinite sum of the solutions in (5):

u(x, t) = A1e
− kπ

2

L2
t sin π

L
x+A2e

− 4kπ
2

L2
t sin 2π

L
x+A3e

− 9kπ
2

L2
t sin 3π

L
x+· · ·+Ane

−n
2
kπ

2

L2
t sin nπ

L
x+· · · (6)
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This story goes on quite a bit longer, but let’s end it with the following. In order to try to meet the
condition u(x, 0) = f(x) we must have

f(x) = A1 sin
π
L
x+A2 sin

2π
L
x+A3 sin

3π
L
x+ · · ·An sin

nπ
L
x+ · · · (7)

The right hand side of (7) is something called a Fourier series. This brings up the question

In what way (or ways) do we interpret the equal sign in (7), and for what functions
f can such interpretation(s) be made?

Attempts to answer this question gave birth to a large amount of mathematics over many years, starting
with Joseph Fourier’s work in the early 1800s, and with a major result proved as late as 1966. Perhaps
some of you will investigate this subject more in later coursework.
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5.5 Chapter 5 Summary

• Boundary value problems arise when the independent variable of an ODE is length. Applications
include the deflection of horizontal beams and vertical columns along their lengths.

• The differential equation for a horizontal beam is fourth order, and the solution is a fourth order
polynomial with four arbitrary constants.

• There are two boundary conditions at each of the two ends of a horizontal beam, giving four
conditions used to determine the values of the constants.

• There are three possible end conditions for each end of a horizontal beam:

– Embedded: This is when the end of the beam is “clamped” horizontally. The mathematical
conditions for such an end are y = 0 and y′ = 0.

– Simply Supported (Pinned): This is when the beam is held up but allowed to pivot.
Mathematically, y = 0 and y′′ = 0.

– Free: This is when an end is completely unsupported, and the other end must be embedded.
The mathematical conditions for such an end are y′′ = 0 and y′′′ = 0.

• Let A be an operator that operates on functions and y a nonzero function. If there is a constant
λ such that

Ay = λy

then y is an eigenfunction of the operator A, with corresponding eigenvalue λ.

• The ODE for a vertical column is second order, and the solution is either a sine function or a
cosine function, depending on the end conditions:

– When the ends are pinned (hinged) the solution is a sine function.

– When the ends are embedded the solution is a cosine function.

• Mathematically, there are infinitely many solutions for a vertical column that is pinned at its ends.

– Each is some multiple of a half period of a sine function beginning at x = 0.

– The first solution, called the first buckling mode, is a single half-period of the sine function.
This occurs physically when the column is allowed to deflect over its entire length.

– Each additional solution (buckling mode) consists of n
2 periods of the sine function for

n = 2, 3, 4, 5, .... Physically, the solution consisting of n
2 periods of the sine function

occurs when the the column is pinned along its length at n− 1 equally spaced points.

• Mathematically, there are infinitely many solutions for a vertical column that is embedded at its
ends.

– Each is some multiple of a half period of a cosine function beginning at x = 0.

– In the case that the ends of the column are embedded, it is physically possible that the
ceiling can float (move laterally).

– If the ceiling is allowed to float the first buckling mode is a single half-period of the cosine
function. Each additional buckling mode consists of n

2 periods of the cosine function for
n = 2, 3, 4, 5, ....
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– If the ceiling is NOT allowed to float the first buckling mode is a single period of the cosine
function. Each additional buckling mode consists of n periods of the cosine function for
n = 2, 3, 4, 5, ....

• The load that causes the first buckling mode is called the first buckling load, and the nth
buckling load leads to the nth buckling load.

• The nth buckling load is n2 times the first buckling load.
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A Formula Sheet

Exponents and Logarithms:

xaxb = xa+b, (xa)b = xab, x−n =
1

xn
, x

1

n = n
√
x

loga(uw) = loga u+ loga w loga

( u

w

)

= loga u− loga w log(uc) = c log u

elnu = u, ln eu = u

Trigonometric Functions:

tanu =
sinu

cos u
cot u =

cos u

sinu
sec u =

1

cos u
csc u =

1

sinu

Trigonometric Identities:

sin2 θ + cos2 θ = 1 tan2 θ + 1 = sec2 θ 1 + cot2 θ = csc2 θ

sin 2θ = 2 sin θ cos θ cos 2θ = cos2 θ − sin2 θ = 2cos2 θ − 1 = 1− 2 sin2 θ

Useful Trigonometric Factoid: A sinωt+B cosωt = C sin(ωt+ φ), where

C =
√

A2 +B2 and φ = tan−1 B

A
if A > 0, φ = π + tan−1 B

A
if A < 0

If A = 0, then B cosωt = B sin
(
ωt+ π

2

)

Euler’s Relations: eiθ = cos θ + i sin θ e−iθ = cos θ − i sin θ

Product Rule: [uv]′ = uv′ + vu′ or
d[uv]

dx
= u

dv

dx
+ v

du

dx
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Derivatives of Trig, Exponential and Log Functions:

[sin(u)]′ = [cos(u)](u)′, (sin at)′ = a cos at [cos(u)]′ = [− sin(u)](u)′, (cos at)′ = −a sin at

[eu]′ = [eu](u)′, (eat)′ = aeat [ln(u)]′ =
1

u
(u)′

A Few Integration Formulas: All formulas should include an arbitrary constant, which I have left off
here to keep things a little cleaner.

∫

dx = x

∫

cf(x) dx = c

∫

f(x) dx

∫

k dx = kx

∫

[f(x) ± g(x)] dx =

∫

f(x) dx ±
∫

g(x) dx

∫

un du =
1

n+ 1
un+1 as long as n 6= −1

∫

u−1 du =

∫
1

u
du = ln |u|

∫
1

ax+ b
dx =

1

a
ln
∣
∣ ax+ b

∣
∣

∫

eu du = eu
∫

eat dt =
1

a
eat

∫

t eat dt =
eat(at− 1)

a2

∫

t2eat dt =
eat(a2t2 − 2at+ 2)

a3

∫

sinu du = − cos u

∫

sin at dt = −1

a
cos at

∫

cos u du = sinu

∫

cos at dt =
1

a
sin at

∫

eat sin bt dt =
eat

a2 + b2
(a sin bt− b cos bt)

∫

eat cos bt dt =
eat

a2 + b2
(a cos bt+ b sin bt)

Solving
dy

dx
+ p(x)y = q(x) Using an Integrating Factor:

• Compute u =

∫

p(x) dx, multiply both sides of the equation by eu

• The left side becomes
d[euy]

dx
. Multiply both sides by dx and integrate.
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B Review of Calculus and Algebra

B.1 Review of Differentiation

Performance Criteria:

B. 1. Apply the rules of differentiation, along with provided formulas, to find
the derivatives of functions.

The purpose of this appendix is to remind you of how to find the derivatives of some functions of
the sorts that we will encounter as we go on. For this we will usually take the independent variable
to be x and the dependent variable y; the statement y = f(x) indicates that y is a function of

x; recall also the notations y′ = f ′(x) =
dy

dx
for the derivative. Let’s begin by giving the derivatives

of some common functions, and some basic rules of taking derivatives. The notation ( )′ means the
derivative of the quantity in the parentheses, and k represents an arbitrary constant.

Derivatives of Some Functions

(k)′ = 0 (x)′ = 1 (xn)′ = nxn−1 (ex)′ = ex

(sinx)′ = cos x (cos x)′ = − sinx (lnx)′ =
1

x

For the following, k again represents an arbitrary constant, and f(x), g(x), u = u(x) and
v = v(x) are functions of the independent variable x.

Derivative Rules

[kf(x)]′ = kf ′(x) [u ± v]′ = u′ ± v′

(uv)′ = uv′ + vu′
(u

v

)′
=

vu′ − uv′

v2

f [g(x)]′ = f ′[g(x)]g′(x)

You’ll recall the third and fourth items above as the product rule and quotient rule, and the last
item is the chain rule. The first two rules above tell us that the derivative is something called a linear
operator. This is the same idea as a linear transformation, for those of you who have had linear algebra.
Now we’ll see how to use some of the rules and derivatives of common functions to find derivatives of
some combinations of those functions.

Derivatives of Polynomials

You’ll recall that to find the derivative of a polynomial like f(x) = 5x3 − 3
4x

2 − 7x+ 2 we simply
use the various basic derivatives and rules as follows: Multiply the coefficient of each term by the
corresponding power of x, and decrease the power by one, remember that the derivative of a constant
is zero.
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⋄ Example B.1(a): Find the derivative of f(x) = 5x3 − 3
4x

2 − 7x+ 2.

f(x) = 5x3 − 3

4
x2 − 7x+ 2 =⇒ f ′(x) = 15x2 − 3

2
x− 7

Second Derivatives

For certain applications we will need to take the derivative of the derivative of a function. You’ll
recall that such a derivative is called the second derivative (so the kind of derivative you did above is
called a first derivative). The notation is this: If the first derivative is y′ or f ′(x), then the second

derivative is y′′ or f ′′(x). If the first derivative is
dy

dx
, then the second derivative is

d2y

dx2
. Note

the different placement of the “exponents” in the numerator and denominator of this expression - there
is a reason for this, but it’s not too exciting, so I won’t go into that here.

Other Applications of the Power Rule

Since we can write things like 1
x2 and

√
x using negative and fractional exponents, we can use

the power rule to find their derivatives. Here are some examples:

⋄ Example B.1(b): Find the derivative of y =
5

x3

y =
5

x3
= 5x−3 ⇒ dy

dx
= −15x−4 =

15

x4

⋄ Example B.1(c): Find the derivative of f(x) =
3
√
x

4

f(x) =
3
√
x

4
=

1

4
x

1

3 ⇒ f ′(x) =
1

12
x−

2

3 =
1

12
3
√
x2

Note that the four in the denominator is a constant, but it is really 1
4 , not 4.

The Chain Rule

This is perhaps the most confusing (but also most important!) of the derivative rules. Let’s use an
example to try to explain it; suppose that y = (x5 + 2x− 4)8. Now if you knew x = 3 and wanted
to compute y it would be sort of a two step process. First you would compute 35 + 2(3) − 4, then
you would take the result to the eighth power. To do the derivative, you do the derivative of the last
part first

[( stuff )8]′ = 8( stuff )7 ,

and multiply by the derivative (x5 + 2x− 4)′ = 5x4 + 2:

⋄ Example B.1(d): Find the derivative of y = (x5 + 2x− 4)8.

y′ = 8(x5 + 2x− 4)7 · (x5 + 2x− 4)′ = 8(x5 + 2x− 4)7(5x4 + 2)
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In the notation of the rule in the box on the previous page, g(x) = x5 + 2x− 4 and f(u) = u8.

⋄ Example B.1(e): Find the derivative of f(t) = 5.6 sin(4.2t − 1.3).

f ′(t) = 5.6[cos(4.2t − 1.3)] · (4.2t − 1.3)′ = 5.6[cos(4.2t− 1.3)] · (4.2) = 23.6 cos(4.2t − 1.3)

In this last example there is the additional constant 5.6 that is just multiplied by the result of the
derivative of the rest of the function. Note that the result of the derivative of 4.2t− 1.3 is brought to
the front and multiplied by the original constant at the end of the process. More on this in a bit.

In light of what you have seen, we can revise some of our basic derivatives some. Again, u is a
function of x: u = u(x).

Derivatives of Some Functions

d

dx
(eu) = eu

du

dx

d

dx
(lnu) =

1

u

du

dx

d

dx
(sinu) = cosu

du

dx

d

dx
(cos u) = − sinu

du

dx

Proper Manners(!) for Writing Functions

You will often have functions that are products of constants, powers of x and exponential, trig or log
functions. In the case of such a function, the correct order to write the factors is

constant, power of x, exponential function, trigonometric function

Occasionally you will have a logarithmic function, but these will not generally occur with trigonometric
functions; a logarithmic function goes where the trigonometric function is listed above.

The Product Rule

Since (u+ v)′ = u′ + v′, one might hope that (uv)′ = u′v′. A simple example shows that this is
not true:

⋄ Example B.1(f): Let u(x) = x2 and v(x) = x3, and find [u(x)v(x)]′ and u′(x)v′(x).

We see that

[u(x)v(x)]′ = [x2x3]′ = (x5)′ = 5x4 and u′(x)v′(x) = (2x)(3x2) = 6x3.

Therefore [u(x)v(x)]′ is NOT equal to u′(x)v′(x)!
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So how do we find the derivative of a product of two functions? Well, we use the product rule,
which says that if u = u(x) and v = v(x) are two functions of x, then

(uv)′ = uv′ + vu′ or
d(uv)

dx
= u

dv

dx
+ v

du

dx

⋄ Example B.1(g): Find the derivative of y = 3x2 sin 5x.

y′ = (3x2)(sin 5x)′ + (sin 5x)(3x2)′

= (3x2)(5 cos 5x) + (sinx)(6x)

= 15x2 cos 5x+ 6x sinx

The Quotient Rule

The quotient rule is similar to the product rule. For two functions u and v of x,

(u

v

)′
=

v u′ − u v′

v2

⋄ Example B.1(h): Find the derivative of f(x) =
e2x

x5

f ′(x) =
(x5)(e2x)′ − (e2x)(x5)′

(x5)2

=
(x5)(2e2x)− (e2x)(5x4)

x10

=
2x5e2x − 5x4e2x

x10

Section B.1 Exercises To Solutions

1. Find the derivative of each polynomial:

(a) y = 3x5 − 7x4 + x2 − 3x+ 2 (b) h(t) = −16t2 + 23.7t + 3.5

(c) f(x) = 2
3x

4 + 5x3 − 1
8x

2 + 3 (d) s(t) = t3 − 2t2 + 3t− 5

2. Find the second derivative of each of the functions in Exercise 1.

3. Find the derivative of each of the following. Give your final answers without negative or fractional
exponents.

(a) f(x) =
3

x2
(b) g(t) =

t2

6
− 6

t2
(c) y = 1

5

√
x (d) h(x) =

4
3
√
x

4. Find the second derivatives of the functions from 3(a) and (b).
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5. Find the derivative of each of the following, utilizing the suggestions provided.

(a) g(x) =
√
16− x2 - If you write the square root as an exponent you will have something

very much like the first example above.

(b) y = 3cos
(π

2
t
)

(c) A(t) = 500e−0.3t - This is a two-step process (again, ignoring the constant of 500), with
the first step being −0.3t and the second step being the exponential. Remember that the
derivative of ex is ex.

6. Find the derivative of each of the following.

(a) y = 5e2x (b) x = 4 sin(3t) (c) g(x) =
2

(x2 − 4x)7

(d) s(t) = cos(25t) (e) y = ex
2

7. For each of the following, put the product in the correct order.

(a) e5t
3 · 15t3 (b) 3[− sin(5x− 2)] · 5 (c) 4 sin(5t+3) · (e−2t)

8. For each of the following, multiply and put the final product in the correct order.

(a) 4 sin(5t+ 3) · (−2e−2t) (b) 7e−t cos(3t− 1) · 2t (c) (3 ln x)(4x3)

9. Use the product rule to find the derivative of each of the following.

(a) f(t) = t2e7t (b) y = 3x cos 2x (c) h(t) = 2e−3t sinπt

10. Find the derivative of each of the following.

(a) f(x) =
3 sin 2t

e7t
(b) y =

4e−5t

t2
(c) g(x) =

cos 6x

2x3

11. Use the quotient rule and the fact that tan x =
sinx

cos x
to determine the derivative of tan x.
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B.2 Review of Integration

Performance Criteria:

B. 2. Apply rules of integration, along with formulas, to find indefinite inte-
grals of functions.

In this course we need on occasion to find anti-derivatives, or indefinite integrals, of functions. As
you learned in integral calculus, doing so is often a challenging endeavor! Fortunately we only need to be
able to find indefinite integrals of a handful of types of functions in our study of differential equations.
We can use some simple formulas, found on the formula sheet (Appendix A), that are derived from
methods you learned before, like substutution and integration by parts. We begin with linearity of the
indefinite integral and the most basic antiderivative:

Linearity of the Indefinite Integral

Let c be any constant, and let f and g be functions.

∫

c f(x) dx = c

∫

f(x) dx,

∫
[
f(x)± g(x)

]
dx =

∫

f(x) dx±
∫

g(x) dx

Indefinite Integral of xn

∫

xn dx =
1

n+ 1
xn+1 + C if n 6= −1,

∫
1

x
dx = ln |x|+ C,

where C is an arbitrary constant.

We note at this point that any indefinite integral includes the addition of an arbitrary constant, as shown
above, but we will not alwways include the constant in future formulas, even though it belongs in all of
them.

Here are a couple of special examples of two of the above things:

⋄ Example B.2(a): Find the integrals

∫

dx and
∫
k dx, where k 6= 0 is a constant.

Solution:

∫

dx =

∫

x0 dx =
1

0 + 1
x0+1 +C = x+C,

∫

k dx = k

∫

dx = k(x+C) = kx+C

Note that when we write k(x+ C) = kx+ C, the two constants C are actually different, but it is
common to abuse notation this way.

The results of Example B.2(b) and the integral of xn, n 6= −1 are commonly used when finding
the integral of a polynomial. You probably don’t think of it quite like this, but here is what happens:
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⋄ Example B.2(b): Find

∫

(5x2 − 6x+ 4) dx.

Solution:
∫

(5x2 − 6x+ 4) dx =

∫

5x2 dx−
∫

6x dx+

∫

4 dx

= 5

∫

x2 dx− 6

∫

x dx+

∫

4 dx

= 5
(
1
3x

3
)

− 6
(
1
2x

2
)

+ 4x+ C

= 5
3x

3 − 3x2 + 4x+ C

It is not necessary that you show all of the above steps when doing such an integral - anything is pretty
much alright as long as you arrive at the correct result!

We will occasionally see integral slike the following, which are quite easy if we use the results from
the previous page and negative exponents.

⋄ Example B.2(c): Find

∫
7

x4
dx.

Solution: Using the fact that
1

x4
= x−4 and noting that when we add one to −4 we get −3,

we have the following:

∫
7

x4
dx = 7

∫
1

x4
dx = 7

∫

x−4 dx = 7 · 1

−3
x−3 + C = − 7

3x3
+ C

Exponential functions are extremely important in applications, and a large part of their importance
is the result of the fact that they are essentially their own derivatives and integrals:

Indefinite Integral of eax

∫

eax dx =
1

a
eax + C

⋄ Example B.2(d): Find

∫

e−5x dx.

Solution:

∫

e−5x dx = 1
−5 e

−5x + C = −1
5 e

−5x +C.

Note that, unlike the integral of x−5, the exponent does not change when we integrate an exponential
function. This holds true for the integrals of trigonometric functions as well. When working with
applications of differential equations, we usually only need the following.
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Indefinite Integrals of Sine and Cosine

∫

sin ax dx = −1

a
cos ax+ C,

∫

cos ax dx =
1

a
sin ax+ C

⋄ Example B.2(e): Find

∫

3 sin π
2x dx.

Solution:
∫

3 sin π
2x dx = 3

∫

sin π
2x dx = 3

(

− 1
π
2

cos π
2x+ C

)

= − 6
π
cos π

2x+ C.

Note that the second C above is really three times the first C!
There are a number of somewhat specialized formulas on the formula sheet that we will use fairly

often. We’ll give an example of the use of one of them here, and the others will be addressed in the
exercises. Here is the formula we’ll use in the next example:

∫

eat cos bt dt =
eat

a2 + b2
(a cos bt+ b sin bt) + C (1)

Note that the variable is t, rather than x. This will be common for us.

⋄ Example B.2(f): Find and simplify

∫

3e−5t cos 2t dt.

Solution: First we note that, in the context of formula (1), a = −5 and b = 2. Pulling the
constant 3 out of the integral and applying the formula we get

∫

3e−5t cos 2t dt = 3

[
e−5t

(−5)2 + 22
(
− 5 cos 2t+ 2 sin 2t

)
]

+ C

=
3e−5t

29

(
− 5 cos 2t+ 2 sin 2t

)
+C

= e−5t
(
− 15

29 cos 2t+
6
29 sin 2t

)
+ C

Section B.2 Exercises To Solutions

1. We will commonly encounter integrals for which this formula is useful:

∫
1

ax+ b
dx =

1

a
ln
∣
∣ ax+ b

∣
∣+ C

Use the formula to compute the following integrals.

(a)

∫
5

2x+ 3
dx (b)

∫
2

3− 5x
dx (c)

∫
1

1.6− 0.08A
dA
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2. Evaluate each of the following indefinite integrals, using the formula sheet as you need. For
exercises involving decimals, round to two significant figures. Be sure to note and use the
correct variable, in the case (upper or lower) given.

(a)

∫

(x2 − 7x+ 3) dx (b)

∫

7 sin 3t dt

(c)

∫

3te−2t dt (d)

∫
3

x2
dx

(e)

∫
dA

2.0 − 0.1A
(f)

∫

3e−t sin 5t dt

(g)

∫
3 dx

5x− 1
(h)

∫

5t2e−3t dt

(i)

∫

e−4t cos 3t dt (j)

∫

5 cos π
2 t dt
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B.3 Solving Systems of Equations

In this course we will often need to solve systems of two equations in two unknowns, and it is im-
portant to be able to do this quickly and correctly. There are two methods, the addition method
and the substitution method. Each has its own advantages and disadvantages; both methods will be
demonstrated here.

The Addition Method

We’ll begin with the addition method, going from the easiest scenario to the most difficult (which
still isn’t too hard).

⋄ Example B.3(a): Solve the system
3x− y = 5
2x+ y = 15

.

The basic idea of the addition method is to add the two equations together so that one of the
unknowns goes away. In this case, as shown below and to the left, nothing fancy need be done.
The remaining unknown is then solved for and placed back into either equation to find the other
unknown as shown below and to the right.

3x− y = 5 3(4) − y = 5

2x+ y = 15 12− y = 5

5x = 20 12 = y + 5

x = 4 7 = y

The solution to the system is (4, 7).

What made this work so smoothly is the −y in the first equation and the +y in the second; when
we add the two equations, the sum of these is zero and y “has gone away.” In the next two examples
we see what to do in slightly more difficult situations.

⋄ Example B.3(b): Solve the system
3x+ 4y = 13
x+ 2y = 7

.

We can see that if we just add the two equations together we get 4x+ 6y = 20, which doesn’t
help us find either of x or y. The trick here is to multiply the second equation by −3 so
that the the first term of that equation becomes −3x, the opposite of the first term of the first
equation. When we then add the two equations the x terms go away and we can solve for y:

3x+ 4y = 13 =⇒ 3x+ 4y = 13 x+ 2(4) = 7

x+ 2y = 7 =⇒ −3x− 6y = −21 x+ 8 = 7
times− 3 −2y = −8 x = −1

y = 4

The solution to the system of equations is (−1, 4). Note that we could have eliminated y first
instead of x:

3x+ 4y = 13 =⇒ 3x+ 4y = 13 −1 + 2y = 7

x+ 2y = 7 =⇒ −2x− 4y = −14 2y = 8
times− 2

x = −1 y = 4
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Three things need to be pointed out at this time:

• There is no need for the equations to have the forms

ax+ by = e
cx+ dy = f

.

All that is necessary is that the unknown to be eliminated is on the same side of both equations.

• The unknowns in this course will usually be denoted by letters other than x and y, like C1,
C2, A and B.

• Often both equations must be multiplied by a value in order to eliminate an unknown.

The following example illustrates both of these points.

⋄ Example B.3(c): Solve the system
4 = 3A− 5B + 1
0 = −5A− 3B − 2

.

In this case we will chose to eliminate A because its coefficients already have opposite signs
in the two equations. We’ll multiply the first equation by 5 and the second by 3 so that the
coefficients of A will be the same, but with opposite signs. When we then add the two equations
the A terms go away and we can solve for B:

times 5
4 = 3A− 5B + 1 =⇒ 20 = 15A − 25B + 5

0 = −5A− 3B − 2 =⇒ 0 = −15A− 9B − 6
times 3

20 = −34B − 1
21 = −34B

−21
34 = B

Ordinarily we would substitute this value into one of the original equations and solve for A at
this point. However, when one of the unknowns is a messy fraction it is often easier to repeat the
same procedure, but eliminate the other unknown. Let’s multiply the first equation by 3 and the
second by −5:

times 3
4 = 3A− 5B + 1 =⇒ 12 = 9A− 15B + 3

0 = −5A− 3B − 2 =⇒ 0 = 25A+ 15B + 10
times− 5

12 = 34A+ 13
−1 = 34A
− 1

34 = A

The solution to the system is A = − 1
34 , B = −21

34 .

Let’s summarize the steps for the addition method, which you’ve seen in the above examples.
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The Addition Method

To solve a system of two linear equations by the addition method,

(1) Multiply each equation by something as needed in order to make the coeffi-
cients of one unknown the same but opposite in sign in the two equations.

(2) Add the two equations and solve the resulting equation for whichever unknown
remains.

(3) Substitute that value into either original equation and solve for the other
unknown OR repeat steps (1) and (2) for the other unknown.

The Substitution Method

We will now describe the substitution method, then give an example of how it works.

The Substitution Method

To solve a system of two linear equations by the substitution method,

1) Pick one of the equations in which the coefficient of one of the unknowns is
either one or negative one. Solve that equation for that unknown.

2) Substitute the expression for that unknown into the other equation and solve
for the unknown.

3) Substitute that value into the equation from (1), or into either original equa-
tion, and solve for the other unknown.

⋄ Example B.3(d): Solve the system of equations
x− 3y = 6

−2x+ 5y = −5
using the substitution

method.

Solving the first equation for x, we get x = 3y+6. We now replace x in the second equation
with 3y+ 6 and solve for y. Finally, that result for y can be substituted into x = 3y+6 to
find x:

−2(3y + 6) + 5y = −5

−6y − 12 + 5y = −5 x− 3(−7) = 6

−y − 12 = −5 x+ 21 = 6

−y = 7 x = −15

y = −7

The solution to the system of equations is (−15,−7).
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When solving a system of three equations in three unknowns, matrix methods are usually employed.
However, we will encounter certain systems of three equations in three unknowns for which the substi-
tution method yields a solution rather easily. The next example illustrates this.

⋄ Example B.3(e): Solve the system of equations
9A = 3

12A + 8B = 0
3A+ 6B + 12C = 8

using the sub-

stitution method.

We divide both sides of the first equation by 9 to obtain A = 1
3 . Substituting this into the

second equation we get
12(13 ) + 8B = 0

4 + 8B = 0
8B = −4
B = −1

2

We can now substitute A = 1
3 and B = −1

2 into the third equation to get

3(13 ) + 6(−1
2 ) + 12C = 8

1− 3 + 12C = 8
12C = 10

C = 5
6

The solution to the system is A = 1
3 , B = −1

2 , C = 5
6 .

Section B.3 Exercises To Solutions

1. Solve each of the following systems by both the addition method and the substitution method.

(a)
2x+ y = 13

−5x+ 3y = 6
(b)

2x− 3y = −6

3x− y = 5
(c)

x+ y = 3

2x+ 3y = −4

2. Solve each of the following systems by the addition method.

(a)
7x− 6y = 13

6x− 5y = 11
(b)

5x+ 3y = 7

3x− 5y = −23
(c)

5x− 3y = −11

7x+ 6y = −12

3. Consider the system of equations
2x− 3y = 4

4x+ 5y = 3
.

(a) Solve for x by using the addition method to eliminate y. Your answer should be a fraction.

(b) Ordinarily you would substitute your answer to (a) into either equation to find the other
unknown. However, dealing with the fraction that you got for part (a) could be difficult and
annoying. Instead, use the addition method again, but eliminate x to find y.

4. Consider the system of equations
1
2x− 1

3y = 2
1
4x+ 2

3y = 6
. The steps below indicate how to solve such

a system of equations.
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(a) Multiply both sides of the first equation by the least common denominator to “kill off” all
fractions.

(b) Repeat for the second equation.

(c) You now have a new system of equations without fractional coefficients. Solve that system
by the addition method.

5. Solve each of the following systems of equations.Each is of the sort that arise in solving various
initial value and boundary value problems.

(a)
4 = C1 + C2

−3 = −2C1 − 5C2 + 7
(b)

7A− 2B = 4

−2A− 7A = 0

(c)

8A = 4

10A+ 8B = −3

4A+ 5B + 8C = 10

(d)
−3 = C1 + C2 − 3

2 = −4C1 −C2 + 1

(e)
3A− 8B = −2

−8A− 3B = 1
(f)

0 = 800
12 + 800

6 C1 +
80
2 C2

0 = 800
3 + 80

2 C1 + 8C2
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B.4 Partial Fraction Decomposition

There are times when we wish to take an expression of the form
Ax+B

(x− x1)(x− x2)
, where either (but

not both) of A or B might be zero, and find two expressions

C

x− x1
and

D

x− x2
(1)

such that
Ax+B

(x− x1)(x− x2)
=

C

x− x1
+

D

x− x2
. (2)

The sum to the right of the equal sign in (2) is called the partial fraction decomposition of the
expression to the left of the equal sign there. The process of obtaining the right hand side is also called
partial fraction decomposition, and we illustrate it in the following example.

⋄ Example B.4(a): Find two expressions of the form (2) whose sum is
x+ 17

x2 + 4x− 5
.

First we note that
x+ 17

x2 + 4x− 5
=

x+ 17

(x− 1)(x+ 5)
,

so we are looking for
C

x− 1
and

D

x+ 5
such that

C

x− 1
+

D

x+ 5
=

x+ 17

x2 + 4x− 5
.

But
C

x− 1
+

D

x+ 5
=

C(x+ 5)

(x− 1)(x+ 5)
+

D(x− 1)

(x− 1)(x+ 5)
=

Cx+ 5C +Dx−D

(x− 1)(x+ 5)

Now if this last expression is to equal
x+ 17

(x− 1)(x+ 5)
, then the numerators of both fractions

must be equal (because they both have the same denominator). Note that both fractions have
the same denominator, so the two fractions will be equal only if their numerators are equal:

Cx+ 5C +Dx−D = x+ 17

By “grouping like terms,” this can be rewritten (be sure you see how) as

(C +D)x+ (5C −D) = 1x+ 17,

and these will be equal only if C + D = 1 and 5C −D = 17. Now we have two equations
in two unknowns, which we know how to solve (see Appendix B.3). If we add the two equations
together we get 6C = 18, so C = 3. Substituting this into the first equations gives D = −2.
Thus

x+ 17

x2 + 4x− 5
=

3

x− 1
+

−2

x+ 5
=

3

x− 1
− 2

x+ 5
.

The method of partial fractions has many complications that can arise when the expression to be
decomposed has other forms. Those complications are dealt with by varying the above process slightly,
but for our needs the above method is sufficient.
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Section B.4 Exercises To Solutions

1. Add
3

x− 1
and

−2

x+ 5
. Check your answer with the original expression from Example B.3(a).

2. Find the partial fraction decomposition of each expression.

(a)
4x+ 7

x2 + 5x+ 6
(b)

−14

x2 − 3x− 10

(c)
11 − x

x2 − x− 2
(d)

4x− 10

x2 − 1
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B.5 Series and Euler’s Formula

Try the following: Set your calculator for radians (as you always should in this course) and find sin(0.05),
sin(0.1) and sin(0.5). You should get (to five places past the decimal) 0.04998, 0.09983 and 0.47943,
respectively. These numbers are fairly close to the numbers that you were finding the sine of, with the
one closest to zero being the best approximation. This seems to indicate that

sinx ≈ x

for values of x near zero. Since of course sin(5) must be a number between −1 and 1 this will
certainly not hold in that case!

Now consider the function f(x) = x− 1
6x

3 + 1
120x

5. Here we find that if we round to five places
past the decimal we get f(0.5) = 0.47943, the value of sin(0.5) when rounded to the same number
of decimal places. Let’s try something bigger:

f(1.3) = 0.96477, sin(1.3) = 0.96356 f(2.0) = 0.93333, sin(2.0) = 0.90930

It appears that this function f comes pretty close to approximating the sine function, especially for
values of x nearer to zero.

The fraction coefficients in the equation for the function f appear to be a bit mysterious, but it
turns out that 6 = 3 ·2 ·1 and 120 = 5 ·4 ·3 ·2 ·1. We call the quantity n(n−1)(n−2) · · · 3 ·2 ·1 “n
factorial,” denoted by n! So 6 = 3!, 120 = 5! and

sinx ≈ x− x3

3!
+

x5

5!

It turns out that (in a sense that you really must take a course in sequences and series to understand)

sinx = x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− · · ·

This is called the (infinite) series representation of the sine function. As you have seen, for values of
x near zero, very good approximations of sinx can be obtained by using just the first term or few
terms of this series. For values farther from zero, more terms must be used to get a good approximation.

Cosine and the exponential function have series representations as well:

cos x = 1− x2

2!
+

x4

4!
− x6

6!
+

x8

8!
− · · ·

and

ex = 1 + x+
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+

x6

6!
+ · · ·

Recall now i, the imaginary unit (j for you electrical engineering students), for which i2 = −1.
We can also compute things like

i1 = i, i3 = i2 · i = −i, i4 = i3 · i = −i · i = −i2 = 1, i5 = i4 · i = 1i = i
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and so on. Because we can compute these, we can now find something like eiθ by using the series
representation of ex:

eiθ = 1 + iθ +
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+

(iθ)5

5!
+

(iθ)6

6!
+ · · ·

= 1 + iθ +
i2θ2

2!
+

i3θ3

3!
+

i4θ4

4!
+

i5θ5

5!
+

i6θ6

6!
+ · · ·

= 1 + iθ − θ2

2!
− i

θ3

3!
+

θ4

4!
+ i

θ5

5!
− θ6

6!
+ · · ·

=

(

1− θ2

2!
+

θ4

4!
− θ6

6!
+ · · ·

)

+

(

iθ − i
θ3

3!
+ i

θ5

5!
+ · · ·

)

=

(

1− θ2

2!
+

θ4

4!
− θ6

6!
+ · · ·

)

+ i

(

θ − θ3

3!
+

θ5

5!
+ · · ·

)

= cos θ + i sin θ

A similar computation can be done for e−iθ. The result of the two of these is

Euler’s Relations:

eiθ = cos θ + i sin θ e−iθ = cos θ − i sin θ
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C Numerical Solutions to ODEs

Performance Criteria:

C. (1) Given a first order IVP, a recursion formula, and a step size, generate
a numerical sequence of solution values.

(2) Given the direction field for a first order ODE and an initial value,
sketch the solution generated by Euler’s method.

The point of numerical methods is that they can be used to solve IVPs that cannot be solved
analytically. (We will sometimes use numerical methods with IVPs that we CAN solve analytically, so
that we can compare numerical solutions with analytical solutions.) So numerical methods are needed
when we want a function y = y(t) that we can’t use algebra and calculus methods to find an
equation for. The use of numerical methods (both for solving IVPs and for other things) is a huge
part of mathematics, science and engineering. Here you will be introduced to some methods for finding
solutions to first order initial value problems. The simplest method is called Euler’s method; the name
comes from Leonhard Euler (pronounced “oiler”), a very prolific Swiss mathematician who lived in the
1700s. You will see that this is not a very good method, but we will study it because it is simple to
implement, it illustrates what are called iterative techniques, and the ideas behind it are the same ones
that make some better methods work.

Before actually finding a numerical solution to an IVP, let’s go over what a solution will consist of,
and the special notation we’ll be using in this section. Suppose that we have an IVP

dy

dt
= f(t, y), y(t0) = y0;

the solution to the IVP is some unknown function y = y(t). Consider the sequence of times t =
0, 0.2, 0.4, 0.6, 0.8, ... seconds, which we’ll denote as t0, t1, t2, t3, t4, .... Note that these times are
spaced apart by the increment of 0.2 seconds - we could just as well have used an increment of 0.1
seconds, which would give us instead

t0 = 0, t1 = 0.1, t2 = 0.2, t3 = 0.3, ...

The increment used is denoted by the letter h, so for the first sequence of times listed above h =
0.2 and for the second sequence h = 0.1. We will refer to the value of h as the step size, meaning
that time advances in steps of size h. Regardless of the value of h, we always start with a known
value of t0 (usually zero) and h, then we use the relations

t1 = t0 + h, t2 = t1 + h = t0 + 2h, t3 = t2 + h = t0 + 3h, t4 = t3 + h = t0 + 4h, ...

to determine the other time values.
Let’s continue this discussion for the first sequence of times, t0 = 0, t1 = 0.2, t2 = 0.4, t3 = 0.6,

and so on. If we knew the exact solution y = y(t), we could compute the values of y(0.2), y(0.4),
y(0.6), ... (we already know the value of y(0) = y0). Because we don’t know the exact solution, we
instead come up with a sequence y1, y2, y3, ... where

y1 ≈ y(t1) = y(0.2), y2 ≈ y(t2) = y(0.4), y3 ≈ y(t3) = y(0.6), ...

Each value in the sequence must be determined before the following term can be found, so we use the
known value of y0 to find y1, then use that value of y1 to find y2, use that to find y3, and so on,
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as far as we wish to have values for y. It should be noted that to find any value in the y sequence we
always use the previous value of y, but might also use other prior y values and perhaps some time
values as well.

Any method that proceeds sequentially like this is called an iterative method. To carry it out we
need an iteration formula that tells us how to obtain a y value from previous y values and perhaps
previous time values. The simplest such formula, as mentioned before, is the one for Euler’s method:

yn+1 = yn + h
dy

dt

∣
∣
∣
∣
(tn,yn)

= yn + hf(tn, yn) (1)

Let’s think about what this tells us. It says that to get the next y value yn+1 we take the “current”
y value yn and add the product of the increment h and the derivative evaluated at our current t and

y values. But because the ODE can be put in the form
dy

dt
= f(t, y), we use the final expression

above to compute each new y value.
You may (understandably) be totally confused by now! Let’s look at a specific example.

⋄ Example C(1): Use the Euler’s method equation (1) to find y0, y1, y2, y3 and y4 for the initial
value problem

dy

dt
= t− y, y(0) = 2,

using a step size of h = 0.2.

First we identify t0 = 0 and y0 = 2 (from the initial value), t1 = 0.2, t2 = 0.4, ... from t0 and
h, and f(t, y) = t− y (from the ODE). By (1),

y1 = y0 + hf(t0, y0) = 2 + (0.2)(0 − 2) = 1.6

We then use this value and (1) again to obtain

y2 = y1 + hf(t1, y1) = 1.6 + (0.2)(0.2 − 1.6) = 1.32

Continuing, we get

y3 = y2 + hf(t2, y2) = 1.32 + (0.2)(0.4 − 1.32) = 1.136,

y4 = y3 + hf(t3, y3) = 1.136 + (0.2)(0.6 − 1.136) = 1.0288.

More y values, if desired, could be obtained by continuing in the same way.

You might be wondering why the formula yn+1 = yn + h
dy

dt

∣
∣
∣
∣
(tn,yn)

works. Recall the definition of

the derivative
dy

dt
= lim

h→0

y(t+ h)− y(t)

h
.

This says that as h approaches zero, the quantity on the right approaches the derivative. Thus, for
small values of h,

dy

dt
≈ y(t+ h)− y(t)

h
.

Multiplying both sides by h and solving for y(t+ h) gives us

y(t+ h) ≈ y(t) + h
dy

dt
,
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and if t = tn, then t+ h = tn+1; substituting these into the above gives us

y(tn+1) ≈ y(tn) + h
dy

dy

∣
∣
∣
∣
t=tn

.

But y(tn+1) ≈ yn+1 and y(tn) ≈ yn, and our expression f(t, y) for the derivative may contain both
t and y, so we must evaluate the derivative at (tn, yn), giving us the final result

yn+1 = yn + h
dy

dt

∣
∣
∣
∣
(tn,yn)

= yn + hf(tn, yn). (1)

This formula can also be derived using something called a Taylor polynomial, which many of you
have not yet seen. For this reason we will not go into it here but, if you are interested, you can see the
derivation of Euler’s method from a Taylor polynomial in most any introductory differential equations
book. Using Taylor polynomials has a couple advantages:

• Their use can lead to better formulas than the one for Euler’s method.

• Their use can give us a bound for the error that occurs when using a numerical method.

The distinction is a bit subtle and often blurred, but when we just use an iterative formula, as we
will, we are performing a numerical method. When we try to analyze our method for how accurate it
is, we are doing something called numerical analysis.

There is also a geometric explanation for how and why Euler’s method works. Suppose that we have
the initial value problem

dy

dt
= f(t, y), y(t0) = y0

with solution y = y(t). Figure C(1) on the next page shows the solution curve (which is really
unknown) through (t0, y0) and the points on that curve corresponding to two times t1 and t2 as
described previously. We can think of generating the approximate numerical solution consisting of a
sequence y0, y1, y2, y3, ... as follows:

• We are given the initial value y0.

• We construct a line through (t0, y0) that is tangent to the solution curve - its slope is the derivative
at (t0, y0). See Figure C(2). The point on that line with t-coordinate t1 is y1 (Figure C(3)).

• We construct a line through (t1, y1) that is tangent to the solution curve passing through that
point. Its slope is the derivative at (t1, y1), and the point on the line with t-coordinate t2 is
y2. See Figure C(4).

• Continue in this manner to obtain the values y3, y4, ....
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y

t1h
t2h

y(t1)

y(t2)

︸ ︷︷ ︸ ︸ ︷︷ ︸

(t0, y0)

(t1, y(t1))

(t2, y(t2))

solution y = y(t)

Figure C(1)

t

y

t1 t2

(t0, y0)
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dy

dt

∣
∣
∣
∣
(t0,y0)

Figure C(2)

t

y

(t0, y0)

(t1, y(t1))

t1 t2

(t1, y1)

Figure C(3)

t

y

(t0, y0)

(t1, y(t1))

(t2, y(t2))

t1 t2

(t1, y1)

(t2, y2)

slope =
dy

dt

∣
∣
∣
∣
(t1,y1)

Figure C(4)
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We should make a couple observations/comments:

• It should be clear from Figure C(2) that a smaller value of h would give us a value of y1 that
is closer to the true value y(t1).

• The error in the approximate solution does not necessarily grow as t gets larger.

The following summarizes the idea of how Euler’s method works.

Euler’s Method

To solve the first order IVP
dy

dt
= f(t, y), y(t0) = y0 for some x increment

h, use the recursive relation

yn+1 = yn + h
dy

dt

∣
∣
∣
∣
(tn,yn)

= yn + hf(tn, yn) (1)

as follows:

1) y0 = y(t0)

2) Use the above relation with n = 0 to find y1.

3) Use the relation with n = 1, remembering that t1 = t0 + h, to find y2.

4) Repeat as long as desired, remembering that tn = t0 + nh.

There other methods besides Euler’s method for generating approximate solutions to IVPs. The
general method for applying them is the same as Euler’s method, but the iteration formula (1) is
different for them. You will see some of those other methods in the exercises.

Appendix C Exercises To Solutions

For Exercises 1 and 2 you will be considering the ODE
dy

dt
= y − t.

1. In this exercise you will use Euler’s method to construct a numerical solution for an initial value
of y(0) = 2 and a step size of h = 0.2

(a) Build a table with three columns, the first for n = 0, 1, 2, ..., the second for tn, and the
third for yn. Complete the second column for t = 0 to t = 1, and finish the top row by
putting in the initial value y0 = y(0).

(b) Use the recursion formula yn+1 = yn + hf(tn, yn) and the values in the first row of your
table to find y1. Put the result in your table. Then continue computing yn values up to
time one. Do not round any of your answers and use all digits of each yn to find
yn+1.

(c) Solve the IVP, using the integrating factor method to solve the ODE.

(d) Add a fourth column to your table for the exact solution values y(t0), y(t1), y(t2), ...
Compute those values, rounding to four places past the decimal using your answer to (c),
and add them to your table.
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(e) The percent error is percent error =
100 × | approximate value− actual value |

| actual value | . Find

the percent error for each of your approximations, and add them to the table in a fifth
column. Round to the nearest hundredth of a percent.

2. (a) Find a recursion formula for the given ODE and a step size h = 0.05 as follows: For the
formula given in 1(b), insert 0.05 for h and apply the function f(t, y) = y− t to tn and
yn. Distribute the 0.05 and combine like terms. Your final result should be something of
the form yn+1 = ayn + btn, for some constants a and b.

(b) Repeat Exercise 1, but for an initial value of y(0) = 1.4, a step size of h = 0.05, and from
t = 0 to t = 0.2, using your formula from part (a) to find each successive yn. Round
both the yn and y(tn) values to four places past the decimal, and the percent
error to two places past the decimal.

3. Consider the IVP
dy

dt
+ ty = 0, y(0) = 2.

(a) Using Euler’s method, which is the recursion formula given in Exercise 1(b), find the first
four approximate solutions (including y0, which is really exact) to the IVP using a step size
of h = 0.1. Compile your results in a table, like you have been doing.

(b) Use separation of variables to solve the IVP. Use your answer to add a column to your table
for the exact values y(tn).

So far you have approximated solutions to an ODE using an iterative method called Euler’s method.
Now you will use two other methods that give better approximations. For any first order equation, written

in the form
dy

dt
= f(t, y), Euler’s method uses the recursion formula given in Exercise 1(b) to find

each successive solution approximation from the previous approximation.bEuler’s method is the simplest
of a variety of methods called Runge-Kutta methods. The derivation of these methods is beyond the
scope of our course, but we’ll use two of them without necessarily understanding their derivations. The
first method we’ll look at is called the midpoint method, which has a fairly straightforward geometric
interpretation that we’ll go over in class. Here is the formula for the method:

yn+1 = yn + hf

(

tn +
h

2
, yn +

h

2
f(tn, yn)

)

(1)

4. Let’s use the midpoint method to obtain an approximate solution to the initial value problem

dy

dt
= y − t, y(0) = 2,

with a step size of h = 0.2, from t = 0 to t = 1. As in Exercise 2, you will first derive a
recursion formula specific to this problem.

(a) Simplify the expression yn+
h

2
f(tn, yn) for our particular ODE and step size, in the manner

you did for Exercise 2(a).

(b) Insert your answer from (a) into the appropriate place in (1) and simplify (1) for our ODE.
Go until you obtain something of the form yn+1 = ayn + btn + c for some constants a,
b and c.

190



(c) Use your answer to (b) to fill out a table of values like you did for Exercise 1, up to time t = 1.
As before, include a column at the right for exact values of the solution, rounded to four
places past the decimal. (Remember that the exact solution for this IVP is y = t+1+ et.)

(d) How do the percent errors for this method compare with those for Euler’s method?

The most commonly used Runge-Kutta method uses a set of equations to obtain each successive
approximation. These could all be combined into one equation like (1), but it would be very cumbersome.
Instead we use

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4) ,

where

k1 = hf(tn, yn), k2 = hf

(

tn +
h

2
, yn +

1

2
k1

)

, k3 = hf

(

tn +
h

2
, yn +

1

2
k2

)

, k4 = hf(tn+1, yn+k3)

The values k1, k2, k3 and k4 must be computed each time you iterate to find a new yn+1.

5. Now we’ll use the above method to approximate a solution to the same IVP
dy

dt
= y−t, y(0) = 2.

(a) Find simplified forms of k1 through k4 for our particular ODE, again with a step size of
h = 0.2.

(b) Build a table of values with columns for n, tn, yn, k1, ... , k4 and fill it out up through
time t = 1. As before, round to four places past the decimal when necessary.

(c) Compare your approximate values with the exact values in your table for Exercises 1 and 4.
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D Solutions to Exercises

D.1 Chapter 1 Solutions

Section 1.1 Solutions Back to 1.1 Exercises

1. (a) The independent variable is time, and the dependent vari-
able is the amount of radioactive material.

(b) See graph to the right.

A

t

2. (a) The independent variables are time t and the distance x out from the edge of the table,
and the dependent variable is the deflection of the ruler at any point and time.

(b) 0 ≤ t, 0 ≤ x ≤ 6, where x is measured in inches. (Substitute 0.5 for 6 if measuring
in feet instead of inches.)

3. 0 ≤ r ≤ 5 inches, 0 ≤ θ ≤ 2π, 0 ≤ t Note that, unless we are doing right triangle trigonometry,
angles will be measured in radians.

4. If measuring in feet, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1.

5. (a) See graph to the right.

(b) The shape is a parabola, opening downward.

(c) We would model the height with a quadratic function.

(d) In this case the domain is finite, of the form 0 ≤ t ≤ a for the
time a when the rock hits the ground, whereas in Exercise 1(b)
the domain was infinite, from time zero “to infinity.”

5
0 time (seconds)

h
ei
g
h
t
(f
ee
t)

Exercise 5(a)

6.

40

80

T (◦F)

t

(a)

40
30

T (◦F)

t

(b)

40

T (◦F)

t

(c)

7.

0
t

y(a)

0
t

y(b)
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8. (a) Time is independent, number of individuals is dependent.

t

N
(b)

3000

t

N
(c)

3000

t

N
(d)

9. (c) Changing A affects the amplitude, changing w affects the period. The phase is not
affected by changing A or w.

(d) Changing A affects both the amplitude and the phase, and changing w affects only the
period. Changing B also affects both the amplitude and phase.

11. (b) a is the value of the horizontal asymptote, and it also affects the y-intercept. b affects the
y-intercept and (sort of) affects the rate at which the function approaches the asymptote.
r affects only the rate at which the function approaches the asymptote.

12. (a) a = 30, b = −20, r cannot be determined.

13. (b) a = 70, b = 90, r cannot be determined.

14. (a) t = 0 at the y-intercept, the y-intercept is a+ b.

(b) The limit of y as t goes to infinity is a , so the graph has a horizontal aymptote of
y = a.

16. (a) III (b) I (c) II

Section 1.2 Solutions Back to 1.2 Exercises

1. (a)
dy

dx
= 6cos 3x (b) y′ = −2e−0.5t (c) x′ = 2t+ 5

(d) y′ = −4.42 sin(1.3t − 0.9) (e)
dy

dt
= −3te−3t + e−3t

(f) x′ = 12e−2t cos(3t+ 5)− 8e−2t sin(3t+ 5)

2. (a)
d2y

dx2
= −18 sin 3x (b) y′′ = e−0.5t (c) x′ = 2

3. At seven minutes, the temperature is increasing at 2.7◦F per minute.

4. At 12.5 minutes, the amount of salt in the tank is decreasing at 1.3 pounds per minute.

5. (a) At 2 seconds the mass is moving downward at 5 inches per second.

(b) At 2 seconds the mass is accelerating upward at 3 inches per second per second (in/sec2).

(c) At 2 seconds the mass is slowing down because the acceleration is in the direction opposite
the velocity.

6. At 5.4 hours, the number of bacteria in the dish is increasing at a rate of 430 bacteria per hour.
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7. (a) For x > 0 the derivative will be positive, because the deflection increases as x increases.

(b) The absolute value of the derivative at x2 will be greater than the absolute value of the
derivative at x1.

8. (a) y = e−3x, y = Ce−3x for any constant C.

(b) y = sin 3t or y = cos 3t. Any function of the form y = C1 sin 3t+C2 cos 3t will do it, for
any constants C1 and C2.

(c) y = e3t, y = Ce3t for any constant C.

(d) y = sin
√
5x or y = cos

√
5x. Any function y = C1 sin

√
5x+C2 cos

√
5x will do it, for

any constants C1 and C2.

9. (a)
dy

dx
= −3y (b)

d2y

dt2
= −9y (c)

d2x

dt2
= 9x (d)

d2y

dx2
= −5y

Section 1.3 Solutions Back to 1.3 Exercises

1. (a) The parameters are the the initial temperature T0, the temperature Tm of the medium,
and the constant k.

(b) The independent variable is time t.

(c) The dependent variable is temperature T .

2. The parameters are the amount of the mass, the stiffness of the spring (the spring constant), the
amount the mass is pulled downward before letting it go, and the viscosity of the oil in the oil
bath. The shape of the mass is probably a parameter as well.

3. The independent variable is time t and the dependent variable is current i. The parameters
are the inductance L, the resistance R, the voltage E and the initial current i0.

4. (a) The independent variables are time and the distance along the string.

(b) Some parameters would be physical properties of the material the string is made of, the
thickness and cross-section of the string (which is probably circular, but could be different)
and the tension in the string.

5. (a) The independent variable is time, and the dependent variable is the amount of salt in the
tank.

(b) The parameters are the rate at which fluid is entering and leaving the tank, and the con-
centration of the incoming fluid. We might think that the amount of salt in the tank to
begin with is a parameter, but it is instead what we call an initial value. It is a value of the
dependent variable when the independent variable is zero.

Section 1.4 Solutions Back to 1.4 Exercises

1. (a) y = 7 when x = 0, y′ = −3 when x = 0

(b) x = 1 when t = 0, x′ = 5 when t = 0

(c) y = 0 when x = 0, y′′ = 0 when x = 0, y = 0 when x = 15, y′ = 0 when x = 0

2. (a) y(0) = −5, y′(0) = 0 (b) y(0) = 0, y′(0) = −2

(c) y(0) = 1, y′(0) = 2 (d) y(0) = −3, y′(0) = 1
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3.

−5

0

5(a)

0

(b)

−1

1

(c)

−3

0

3
(d)

4. (a) y(0) = y(20) = 0, y′′(0) = 0, y′(20) = 0 (b) y(0) = y(12) = 0, y′′(0) =
y′′(12) = 0

5. u(0) = 32, u(70) = 115

Section 1.5 Solutions Back to 1.5 Exercises

1. (a) Independent variable: x Dependent variable: y

(b) Independent variable: can’t determine Dependent variable: y

(c) Independent variables: x1, x2, x3, t Dependent variable: u

(d) Independent variable: t Dependent variable: y

(e) Independent variable: x, t Dependent variable: u

(f) Independent variable: x Dependent variable: u

(g) Independent variable: x Dependent variable: y

(h) Independent variable: x Dependent variable: y

(i) Independent variable: r, t Dependent variable: u

2. (a) Independent variable: x Dependent variable: y

(b) Independent variable: t Dependent variable: y

3. no 4. yes 7. A = 36
65 , B = 28

65 .

9. (a) no (b) y = ce3x is only a solution if c = 2 (c) y = 2e3x

(d) y = cex is a solution for any value of c

Section 1.6 Solutions Back to 1.6 Exercises

1. (a), (b), (d), (f), (g), (h)

2. (a), (c), (e) and (i) are first order. (b), (d), (f) and (g) are second order, and (h) is fourth order.

3. (a) F (x, y) = 2y (c) F (x, y) = y − y2 (e) F (x, y) = x− xy (i) F (x, y) = 1− xy

4. (a) f(x) = 0, a0(x) = −2, a1(x) = 1

(b) f(x) = 0, a0(x) = −1, a1(x) = 0, a2(x) = 1
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(c) not linear

(d) f(t) = 26e−2t, a0(t) = 9, a1(t) = 0, a2(t) = 1

(e) f(x) = 1, a0(x) = 1, a1(x) =
1
x

(f) f(t) = 10 sin t, a0(t) = 6, a1(t) = −5, a2(t) = 1

(g) not linear

(h) f(x) = w, a0(x) = a1(x) = a2(x) = a3(x) = 0, a4(x) = 1

(i) f(x) = 1, a0(x) = x, a1(x) = 1

5. (a) g(x) = 1, h(y) = 2y (c) g(x) = 1, h(y) = y − y2

(e) g(x) = x, h(y) = 1− y (i) not separable

6. (a) and (c)

Section 1.7 Solutions Back to 1.7 Exercises

2. Yes, it is a solution.

3. (a) Not a solution, y′(0) 6= 1 and y is not a solution to the ODE.

(b) Not a solution, y is not a solution to the ODE.

(c) Solution. (d) Solution.

4. (a) y = 2e−2t + 3cos 2t (b) x = −14
3 e

−t + 5
3e

−4t + 3t+ 1

(c) y = 2
3
√
5
sin

√
5t− 3 cos

√
5t (d) y = −1

2 sin 2t+ 6cos 2t+ e−3t

5. (a) C1 = 2, C2 = −4 (b) C1 = 6, C2 = 5

6. (a) The function is not a solution to the BVP, it doesn’t satisfy the boundary condition y′(5) = 0.

(b) The function is a solution to the BVP.

(c) The function is a solution to the BVP.

(d) The function is not a solution to the BVP, it doesn’t satisfy the ODE.

(e) The function is a solution to the BVP.

(f) The function is not a solution to the BVP, it doesn’t satisfy the boundary condition y(0) = 0.
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D.2 Chapter 2 Solutions

Section 2.1 Solutions Back to 2.1 Exercises

1. (a) sin y = −1
2x

2 + C (b)
1

2
y2 =

1

2x2
+ C or

y2 =
1

x2
+ C

(c) 1
5y

5 = −1
3x

3 + C or (d) ln |y| = 1
2 ln |2x+ 3|+ C

3y5 = −5x3 + C

(e) −e−y = − 1
x
+ C or (f) 1

2y
2 = 5

2x
2 + 3x+ C or

e−y = 1
x
+ C y2 = 5x2 + 6x+ C

2. (a) ln |y| = 1
2x

2 + ln 3− 1
2 (b) 1

2x
2 = −5

2t
2 + 3t+ 12 or

x2 = −5t2 + 6t+ 24

(c) ey = 3
2x

2 + e2 (d) − 1

3y3
= sin t− 1

24

3. (a) y = 4e3x (b) not separable

(c) ln |y| = 2x2 + ln 2 (d) y = 7
e2
e

1

2
x2 − 2

(e) not separable (f) y = 1
2x+ 5

2

4. (a) y = ln(x2 + x+ 1) (b) y = ln(x2 + x+ e3 − 2)

5. (b) y = Ce−t2 (c) y = 7e−t2

6. The final solution is v =
C

x
.

7. (a) y = ln |x(x+ 3)|+ C (b) y = ln

∣
∣
∣
∣

x

x+ 3

∣
∣
∣
∣
+ C

(c) y = ln

(
x+ 2

x− 5

)2

+ C

8. (a)
|y|

|y − 3| = x+ C or

∣
∣
∣
∣

y

y − 3

∣
∣
∣
∣
= x+ C (b)

y

y − 3
= Cex

(c) y =
3C

C − e−x
(d) In order, the constants are C = 1

7 , 0, − 1
2 , 4 and the

solutions are y =
3

1− 7e−x
, y = 0, y =

3

1 + 2e−x
, y =

12

4− e−x

(f) y → 3 as x → ∞ in all cases

(g) The value of the constant cannot be determined - the equation to be solved has no solution.

198



Section 2.2 Solutions Back to 2.2 Exercises

1. Constants for each initial value are given

below, graph is to the right.

(a) C = 3

(b) C = 1

(c) C = 0

(d) C = −2

4

-2

2

3. (a) II (b) I (c) III (d) IV

5. (a) The top, U-shaped curve is for initial value y(0) = 1. The next curve down has initial value
y(0) = −1, and the one below that has initial value y(0) = −2.

(b) Using the point (2,−1), the value obtained for C is −2. If instead one uses the point
(−2,−1), the same value of C is obtained!

(c) When the solution is graphed for C = −2, the graph includes the U-shaped curve as well
as the two curves in the lower left and lower right. They are all parts of the same graph,
which has vertical asymptotes at x = −

√
2 and x =

√
2.

8.

- 1 0 1 2

- 2

- 1

0

1

2

t

x(a)

0 1 2 3 4

- 2

- 1

0

1

2

3

4

x

y(b)

0 1 2 3 4

- 2

- 1

0

1

2

3

4

x

y(c)

- 2 - 1 0 1 2

- 2

- 1

0

1

2

t

y(d)
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9. 10.

- 6 - 4 - 2 0 2 4 6

- 6

- 4

- 2

0

2

4

6

x

y(a)
(b)

(c)

- 3 - 2 - 1 0 1 2 3

- 3

- 2

- 1

0

1

2

3

y

(a)

(b)

(c)

Section 2.3 Solutions Back to 2.3 Exercises

1. y = −3
2e

3x + 1
2e

5x

2. (a) y = 0.4te−2t + Ce−2t (b) y = 0.4te−2t + 3e−2t

3. (a) and (b) y = Ce
1

2
x (c) y = 3

2e
1

2
x

4. (a) y = 6
29 sin 2t− 15

29 cos 2t+ Ce5t (b) y = 6
29 sin 2t− 15

29 cos 2t− 101
29 e

5t

5. (a) y = Ce−3t + 1
3 t

2 + 13
9 t− 22

27 (b) y = 76
27e

−3t + 1
3t

2 + 13
9 t− 22

27

6. (a) y = 1
2e

3x + 7
2e

x (b) y = x lnx+ 2x 7. y = 7
e2
e

1

2
x2 − 2

8. (a) r = 5 (b) y = 6
29 sin 2t− 15

29 cos 2t (c) y = 6
29 sin 2t− 15

29 cos 2t+Ce5t

Section 2.4 Solutions Back to 2.4 Exercises

1. The ODEs in parts (a), (c), (d) and (f) are autonomous.

2.

0

y

0 t

y
(a)

y = 0 is an unstable equilibrium

3

0

y

0

3

t

y

y = 0 is an unstable equilibrium
y = 3 is a stable equilibrium

(c)
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5

2

y

2

5

y

y = 2 is a stable equilibrium
y = 5 is an unstable equilibrium

(d)

3

0 t

y

0

3

y

y = 0 is an unstable equilibrium
y = 3 is a semi-stable equilibrium

(f)

3. (a) y = 0 is a stable equilibrium, y = 2 is an unstable equilibrium, y = 6 is a stable
equilibrium

(b) y = 1 is a semi-stable equilibrium, y = 4 is a stable equilibrium

(c) y = 0 is an unstable equilibrium, y = 2 is a stable equilibrium, y = 5 is an unstable
equilibrium

4.

6

2

0

y
(a)

1

4

y(b)

0

2

5

y(c)

5. 6. (c)

(a)
dy

dt
= −y(y − 2)(y − 6)

(b)
dy

dt
= −(y − 4)(y − 1)2

(c)
dy

dt
= y(y − 2)(y − 5)

3

0

y

−1

0

2

3

4

x

y

6. We can factor the right side of the ODE to get
dy

dx
= −1

3y(y − 3).

(a) y = 3 is a critical value, so there is an equilibrium solution of y = 3.

(b) y = 3 is a stable equilibrium solution, y = 0 is an unstable equilibrium solution.

(c) See above and to the right.
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Section 2.5 Solutions Back to 2.5 Exercises

1. (a) A(0) = 80 (b) A = 0 is a stable equilibrium solution

(c) k = −0.104, A = 80e−0.104t

2. (a)
dA

dt
= − 3

10
A, A(0) = 87 (b) A = 87e−

3

10
t (c) t = 9.52 hours

(d) The transient solution is 87e−
3

10
t and the steady state solution is zero. (Saying there is no

steady-state solution could be considered correct as well.)

3. (a) T = 70 + Ce−kt (b) C = −38, so T = 70− 38e−kt

(c) k = ln 19
6 ≈ 1.15 (d) Steady-state: 70 Transient: −38e− ln 19

6
t ≈ −38e−1.15t

4. (a) i = 6
5 − 6

5e
−20t or i = 6

5(1− e−20t)

(b) i = 5
101 (20 sin 2t− 2 cos 2t)− 10

101e
−20t or i = 100

101 sin 2t− 10
101 cos 2t− 10

101e
−20t

(c) The transient part is − 10
101e

−20t and the steady-state part is 5
101 (20 sin 2t − 2 cos 2t) or

101
101 sin 2t− 10

101 cos 2t.

5. (a) If T0 = Tm the temperature will not change because the initial temperature of the object will
be the same as the temperature of the medium; the solution will be completely steady-state.

(b) The steady-state solution is Tm.

(c) The transient solution is (T0 − Tm)e−kt

6. (a) A = 24 is a stable equilibrium solution

(b) See to the right.
24

t

A (lbs)

7. (a)
dT

dt
= −k(T − 73), T (0) = 29

(b) There will be a steady state solution of T = 73.

(c) T = 73− 44e−kt (d) T = 73− 44e−0.263t

8. (a) Initial value problem: 3
4

di

dt
+ 15i = 6cos 2t, i(0) = 2

Solution: i = 2
101 (20 cos 2t+ 2 sin 2t) + 162

101e
−20t

(b) Steady-state: 2
101 (20 cos 2t+ 2 sin 2t) Transient: 162

101e
−20t

9. (b) Initial value problem:
dA

dt
= 7− 7A

150
, A(0) = 450 Solution: A = 150+300e−

7

150
t

(a) Steady-state: 150 Transient: 300e−
7

150
t

10. (a) i = 5e−54t

(b) The transient part of the solution is 5e−54t and there is no steady-state part.
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D.3 Chapter 3 Solutions

Section 3.1 Solutions Back to 3.1 Exercises

1. (a) y = C1x+C2x
4 (b) y = C1x

−1 +C2x
−2 (c) y = C1x+C2x

1

3

2. (a) y = C1e
3t + C2e

−t (b) y = e−t(C1 sin 3t+ C2 cos 3t)

(c) y = C1e
−5t + C2te

−5t (d) y = e−3t(C1 sin 2
√
2 t+ C2 cos 2

√
2 t)

(e) y = C1e
−t + C2e

−2t (f) y = C1 sin
√
2 t+ C2 cos

√
2 t

(g) y = C1e
−t + C2te

−t (h) y = C1 sin 4t+ C2 cos 4t

(i) y = e−1.55t(C1 sin 1.45t+ C2 cos 1.45t)

3. (a) r2 + 25 = 0 and r2 + 25r = 0 (b) y = C1 + C2e
−25t

4. (a) y = C1 sinλt+ C2 cos λt (b) y = C1e
r1t +C2e

r2t

(c) y = ekt(C1 sinλt+C2 cos λt) (d) y = C1e
rt + C2te

rt

5. (a) y = Cx2

Section 3.2 Solutions Back to 3.2 Exercises

1. 2. 3.

−2.5

2.5

y

t

y

t

−2

2

y

t

y(0) = 2.5, y′(0) = 0 y(0) = 0, y′(0) = 3 y(0) = 2, y′(0) = −8

4. (a) 3
4y

′′ + 15y = 0, y(0) = 2.5, y′(0) = 0

(b) y = 2.5 cos 4.47 t (d) y = 2.5 sin(4.47 t+ 1.57)

(e) amplitude is 2.5, angular frequency is 4.47, period is 1.41, frequency is 0.71, phase shift is
-0.35

5. (a) y = −1.79 sin(4.47 t) + 2.00 cos(4.47 t)

(c) y = 2.68 sin(4.47 t+ 2.30)

(d) amplitude is 2.68, angular frequency is 4.47, period is 1.41, frequency is 0.71, phase shift is
-0.51

6. (a) 4
10y

′′ + 4y = 0, y(0) = −4, y′(0) = 9

(b) y = 2.85 sin 3.16 t− 4.00 cos 3.16 t =⇒ y = 4.91 sin(3.16 t− 0.95)

(c) amplitude 4.91, angular frequency 3.16, period 1.99, frequency 0.50, phase shift 0.30

Section 3.3 Solutions Back to 3.3 Exercises

1. (a) y(t) = e−0.6t(−1.2 sin 4.0t+ 2.0 cos 4.0t) ⇒ y(t) = 2.3e−0.6t sin(4.0t + 4.2)

2. (a) y(t) = 11
3 e

−2t − 5
3e

−8t

3. (a) β = 40 (b) y(t) = 2e−4t + 14te−4t
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5.
y

t

(a)
y

t

(b)
y

t

(c)
y

t

(d)

6. (a) The system is underdamped because R2 − 4L · 1
C
< 0.

(b) q(t) = e−1670t(2.18 × 10−5 sin 1530t + 2.00 × 10−5 cos 1530t) coulombs

(c) q(t) = 2.96 × 10−5e−1670t sin(1530t + 0.742) coulombs

(d) i(t) =
dq

dt
= −4.94× 10−2 cos(1530t + 0.742) amperes

Section 3.4 Solutions Back to 3.4 Exercises

1. (a) yp = At+B (b) yp = A sin 3t+B cos 3t (c) yp = Ae5t

(d) yp = A sin t+B cos t (e) yp = A (f) yp = At+B + Ce−t

2. (a) yp =
5
2t− 17

4 (b) yp =
12
169 sin 2t+

5
169 cos 2t (c) yp =

1
17e

5t

(d) yp = − 9
13 sin t+

6
13 cos t (e) yp = 7 (f) yp =

2
3t+

3
4e

−t

5. (a) y = e−2t(C1 sin 5 t+ C2 cos 5 t) (b) y = C1e
−5t + C2e

− 1

2
t

(c) y = C1e
−3t + C2te

−3t (d) y = C1 sin
√
3 t+ C2 cos

√
3 t

Section 3.5 Solutions Back to 3.5 Exercises

1. (a) D(y) = 2t2 + 20t+ 23 (b) D(y) = 0

(c) D(y) = −10 cos 2t− 30 sin 2t (d) D(y) = 5t− 1

2. y = 5
2t− 17

4 is a particular solution to the ODE y′′ + 3y′ + 2y = 5t− 1.

3. (a) D(Ce−2t) = 0 for all values of C.

(b) D(ekt) = 0 only when k = −2 or k = −1.

4. D(y) = 0 in all three cases.

5. (a) S(cos t) = cos t+ 3, S(t2 + 5t− 1) = t2 + 5t+ 2

(b) S(4 cos t) = 4 cos t+ 3, 4S(cos t) = 4(cos t + 3) = 4 cos t+ 12 These are not the same,
so S is not linear.

(c) S(cos t+ e2t) = cos t+ e2t + 3, S(cos t) + S(e2t) = cos t+ 3 + e2t + 3 = cos t+ e2t + 6
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Section 3.6 Solutions Back to 3.6 Exercises

1. (a) y = C1e
−2t + C2e

−t + 5
2t− 17

4 (b) yh = C1e
−3t + C2te

−3t + 5
18 sin 3t

(c) yh = C1 sin 3t+ C2 cos 3t+
1
17e

5t (d) yh = C1e
−t + C2e

5t − 9
13 sin t+

6
13 cos t

(e) yh = C1e
− 1

2
t + C2e

−t + 7 (f) yh = C1 sin
√
3t+ C2 cos

√
3t+ 2

3t+
3
4e

−t

2. (a) y = 7
6 sin 3t+ 2cos 3t+ 1

2 sin t (b) y = −1
5e

−2t − te−2t + 1
5e

3t

(c) y = 7
5e

5t − 1
5e

5t + 6
5t+

3
5

3. (a) y = C1x
−2 +C2x

3 (b) y = C1x
1

2 + C2x
− 1

2

4. (a) y = e−t(1.4 sin 3t+ 5.2 cos 3t) + sin t− 0.2 cos t

(c) Transient part: e−t(1.4 sin 3t+ 5.2 cos 3t) Steady-state part: sin t− 0.2 cos t
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D.4 Chapter 4 Solutions

Section 4.1 Solutions Back to 4.1 Exercises

1. (a) linearly independent (b) c1 = 1, c2 = −2

(c) c1 = 2, c3 = 3 (d) linearly independent

2. (b) c1 = 1, c2 = −1 (c) c1 = 1, c3 = 1

3. (a) W (x) = −6x2 − 6x− 10 Any value of x will give W (x) 6= 0.

(b) W (x) = −9e7x Any value of x will give W (x) 6= 0.

4. W (t) = e2kt Any value of t will give W (t) 6= 0.

5. W (t) = −2 Any value of t will give W (t) = −2 6= 0.

Section 4.2 Solutions Back to 4.2 Exercises

3. y2 = x
3

2 4. y2 =
1

x2

Section 4.3 Solutions Back to 4.3 Exercises

1. (a) yp = −5
6t− 13

36 (b) yp =
35
986 sin 5t− 217

986 cos 5t (c) yp =
4
5te

2t

3. (a) y = −1
5e

−2t − te−2t + 1
5e

3t (b) y = −e−2t + 3e−5t + 2te−2t

(c) y = 13
8 sin 2t+ 1

2 cos 2t− 3
4t cos 2t

4. (a) Steady-state: −2
3 sin 3t+

5
3 cos 3t Transient: none

(b) Steady-state: 3
4 cos 7t Transient: e−3t(4 sin t+ 7cos t)

(c) Steady-state: 3
5 sin 5t− 6

5 cos 5t Transient: 7
2e

−2t

(d) Steady-state: none Transient: 3te−5t − 7e−5t + e−t

5. (a) solution (b) solution (c) solution (d) not a solution

(e) not a solution (f) solution (g) solution (h) not a solution

Section 4.4 Solutions Back to 4.4 Exercises

1. (a) x(t) = 0.4 cos 2.2t− 0.4 cos 5t

(c) We should expect no transient solution. There is no damping, so the homogeneous solution is
periodic, hence steady-state. Because the forcing function is periodic with different frequency
than the homogeneous solution, it results in a periodic particular solution, so the general
solution is then periodic, so steady-state.

2. (a) x(t) = 1.8t sin 2.2t

(c) What causes the resonance is that the frequency of the forcing function f(t) = 8 cos 2.2t is
the same as the natural frequency of the system, which is seen in the homogeneous solution.
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3. (a) x(t) = 9.5 cos 2t− 9.5 cos 2.2t

(c) The beats are being caused by the fact that the frequency of the forcing function is close to,
but not the same as, the natural frequency of the system.

(d) x(t) = 19 sin(0.1t) sin(2.1t) The first sine function (and the factor of 19) acts as a sort
of “variable amplitude” for the higher frequency second sine function.

Chapter 4 Exercises Solutions Back to Chapter 4 Exercises

1. (a) Undamped: ii, iv, v, viii Under-damped: vi, vii

Critically damped: iii Over-damped: i

(b) Transient: i, iii, vi, vii Steady-state: ii, iv, v, vi, viii

(c) Resonance: iv Beats: viii

2. (a) (i) entire solution is transient (ii) entire solution is transient

(iii) entire solution is steady-state (iv) entire solution is transient

(v) Transient: e−0.4t[C1 cos 2t+ C2 cos 2t] Steady-state: −1.3 cos 7t

(vi) entire solution is steady-state (vii) Steady-state: C1 cos 3t+ c2 sin 3t

(viii) entire solution is steady-state

(b) i, ii, iii, iv

(c) Undamped: iii, vi, vii, viii Under-damped: iv, v

Critically damped: ii Over-damped: i

3. (a) Undamped: ii, iii, v, vii Under-damped: iv, vi Critically or over-damped: i, vi

(b) i, vi

(c) Equation Solution Graph

i i i

ii vi ii

iii ii i

Equation Solution Graph

iv vii vii

v iii iii

vi v iv

vii iv vi

viii viii v
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D.5 Chapter 5 Solutions

Section 5.1 Solutions Back to 5.1 Exercises

1. (a) y(0) = 0, y′′(0) = 0, y(12) = 0, y′(12) = 0

(b) y(0) = 0, y′(0) = 0, y′′(8) = 0, y′′′(8) = 0

(c) y(0) = 0, y′(0) = 0, y(20) = 0, y′′(20) = 0

(d) y(0) = 0, y′′(0) = 0, y(15) = 0, y′′(15) = 0

2. Only (a) is possible, y(0) = 0, y′(0) = 0, y(8) = 0, y′′(8) = 0

3. (a) (30)(80)
d4y

dx4
= 150, y(0) = y′(0) = y(8) = y′(8) = 0

(b) y = 1
384x

4 − 1
24x

3 + 1
6x

2

(d) The maximum deflection should appear at the middle of the beam (x = 4). The deflection
there is 2

3 .

4. (b) y = 1
12x

4 − 10
3 x

3 + 50x2

(d) The maximum deflection is 2500 at x = 10, the right hand end of the beam.

5. (b) y = 1
12x

4 − 5
3x

3 + 250
3 x

(d) The maximum deflection is 3125
12 at x = 5

6. (a) (30)(80)
d4y

dx4
= 150, y(0) = y′(0) = y(8) = y′′ = 0

(b) y = 1
384x

4 − 5
96x

3 + 1
4x

2

(d) The maximum deflection is about 1.39 at x = 4.6

7. (a) J and L (b) E and H (c) F and G

Section 5.2 Solutions Back to 5.2 Exercises

1. (a) The eigenvalue is λ = 3. (b) y = e−5x

(c) Eigenfunction: y = ekx Eigenvalue: k

2. (a) y = 3x, y = 5, y = 2x− 1, etc. (b) y = Ax+B

(c) y = sin 2x, y = cos 2x (d) y = sin
√
3x, y = cos

√
3x

3. (a) D(e−2t) = 4e−2t − 4e−2t − 3e−2t = −3e−2t, the eigenvalue is −3

(b) D(ekt) = k2ekt + 2kekt − 3ekt = (k2 + 2k − 3)ekt, the eigenvalue is k2 + 2k − 3

(c) k = −3, 1 (d) k = −4, 2
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Section 5.3 Solutions Back to 5.3 Exercises

1. (a) λ = π
5 ,

2π
5 , 3π

5 , 4π
5 , ..., y = C sin π

5x, C sin 2π
5 x, C sin 3π

5 x, C sin 4π
5 x, ...

(b) λ = 1
3 ,

2
3 ,

3
3 ,

4
3 , ..., y = C cos 1

3x, C cos 2
3x, C cos 3

3x, C cos 4
3x, ...

(c) λ = 1
2 ,

3
2 ,

5
2 ,

7
2 , ..., y = C sin π

5x, C sin 2π
5 x, C sin 3π

5 x, C sin 4π
5 x, ...

(d) λ = π
14 ,

3π
14 ,

5π
14 ,

7π
14 , ..., y = C cos π

14x, C cos 3π
14x, C cos 5π

14x, C cos 7π
14x, ...

(e) λ = π
10 ,

2π
10 ,

3π
10 ,

4π
10 , ..., y = C cos π

10x, C cos 2π
10x, C cos 3π

10x, C cos 4π
10x, ...

(f) λ = 1
5 ,

2
5 ,

3
5 ,

4
5 , ..., y = C sin 1

5x, C sin 2
5x, C sin 3

5x, C sin 4
5x, ...

2. (a) y = C sin π
12 x, y = C sin 2π

12 x, y = C sin 3π
12 x, y = C sin 4π

12 x, . . .

(b) P = 6250
9 π2, 4(62509 π2), 9(62509 π2), 16(62509 π2), . . .

(c) The third critical load is nine times the first critical load.

3. (a) y = C sin π
6 x, y = C sin 2π

6 x, y = C sin 3π
6 x, y = C sin 4π

6 x, . . .

P = 25000
9 π2, 4(250009 π2), 9(250009 π2), 16(250009 π2), . . .

(b) Each critical load is four times the corresponding critical load for the twelve foot column.

(c) The first buckling mode for the six foot column is the same as the second buckling mode
for the twelve foot column, but is half as high, so it only includes half a period of the sine
function, whereas the twelve foot column’s second buckling mode has a full period of the
sine function.

4. (a) y = C cos 2π
12 x, y = C cos 4π

12 x, y = C cos 6π
12 x, . . .

(b) P = 4(62509 π2), 16(62509 π2), 36(62509 π2), . . .

(c) The third critical load is nine times the first critical load.

(d) Each critical load is four times the corresponding critical load for the column with pinned
ends.

5. (a) y = C cos π
12 x, y = C cos 2π

12 x, y = C cos 3π
12 x, y = C cos 4π

12 x, . . .

(b) P = 6250
9 π2, 4(62509 π2), 9(62509 π2), 16(62509 π2), . . .

(c) The third critical load is (again!) nine times the first critical load.

(d) The critical loads are the same as those for the pinned ends.

6. (a) y = C sin π
L
x, y = C sin 2π

L
x, y = C sin 3π

L
x, y = C sin 4π

L
x, . . .

(b) P = EI
L2 π

2, 4(EI
L2 π

2), 9(EI
L2 π

2), 16(EI
L2 π

2), . . .

7. (a) y = C cos π
L
x, y = C cos 2π

L
x, y = C cos 3π

L
x, y = C cos 4π

L
x, . . .

(b) P = EI
L2 π

2, 4(EI
L2 π

2), 9(EI
L2 π

2), 16(EI
L2 π

2), . . .
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D.6 Solutions for Appendices

Section B.1 Solutions Back to B.1 Exercises

1. (a) y′ = 15x4 − 28x3 + 2x− 3 (b) h′(t) = −32t+ 23.7

(c) f ′(x) = 8
3x

3 + 15x2 − 1
4x (d) s′(t) = 3t2 − 4t+ 3

2. (a) y′′ = 60x3 − 84x2 + 2 (b) h′′(t) = −32

(c) f ′′(x) = 8x2 + 30x− 1
4 (d) s′′(t) = 6t− 4

3. (a) f ′(x) = − 6

x3
(b) g′(t) =

1

3
t+

12

t3

(c) y′ =
1

10
√
x

(d) h′(t) = − 4

3
3
√
x4

4. (a) f ′′(x) =
18

x4
(b) g′′(t) =

1

3
− 36

t4

5. (a) g(x) =
x√

16 − x2
(b) y′ = −3π

2 sin
(
π
2 t
)

(c) A′(t) = −150e−0.3t

6. (a) y′ = 10e2x (b) x′ = 12 cos 3t (c) g′(x) = − 14(2x−4)
(x2−4x)7

(d) s′(t) = −2
5 sin

(
2
5 t
)

(e) y′ = 2xex
2

7. (a) 15t3e5t
3

(b) −15 sin(5x− 2) (c) 4e−2t sin(5t+ 3)

8. (a) −8e−2t sin(5t+ 3) (b) 14te−t cos(3t− 1) (c) 12x3 lnx

9. (a) f ′(t) = 7t2e7t + 2te7t (b) y′ = −6x sin 2x+ 3cos 2x

(c) h′(t) = 2πe−3t cosπt− 6e−3t sinπt

10. (a) f ′(x) =
6e7t cos 2t− 21e7t sin 2t

e14t
(b) y′ =

−20t2e−5t − 8te−5t

t4

(c) g′(x) =
−12x3 sin 6x− 6x2 cos 6x

4x6

Section B.2 Solutions Back to B.2 Exercises

1. (a) 5
2 ln

∣
∣2x+ 3

∣
∣+C (b) −2

5 ln
∣
∣3− 5x

∣
∣+C (c) −12.5 ln

∣
∣1.6− 0.08A

∣
∣+C

2. (a) 1
3x

3 − 7
2x

2 + 3x+ C (b) −7
3 cos 3t+ C

(c) −3
2te

−2t − 3
4e

−2t + C (d) −3

x
+ C

(e) −10 ln
∣
∣2.0− 0.1A

∣
∣ + C (f) −e−t

(
3
26 sin 5t+

15
26 cos 5t

)
+ C

(g) 3
5 ln

∣
∣5x− 1

∣
∣+ C (h) −5

3t
2e−3t − 10

9 te
−3t − 10

27e
−3t + C

(i) e−4t
(

3
25 sin 3t− 4

25 cos 3t
)
+ C (j) 10

π
sin π

2 t+ C
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Section B.3 Solutions Back to B.3 Exercises

1. (a) (−15,−7) (b) (3, 4) (c) (13,−10)

2. (a) (1,−1) (b) (−1, 4) (c) (−2, 13)

3. (2922 ,− 5
11 ) 4. (8, 6)

5. (a) C1 =
10
3 , C2 =

2
3 (b) A = 28

53 , B = − 8
53

(c) A = 1
2 , B = −1, C = 13

8 (d) C1 = −1
3 , C2 =

1
3

(e) A = −14
73 , B = 13

73 (f) C1 = −19, C2 =
185
3

Section B.4 Solutions Back to B.4 Exercises

1. (a)
4x+ 7

x2 + 5x+ 6
=

5

x+ 3
+

−1

x+ 2
=

5

x+ 3
− 1

x+ 2

(b)
−14

x2 − 3x− 10
=

−2

x− 5
+

2

x+ 2

(c)
11− x

x2 − x− 2
=

−4

x+ 1
+

3

x− 2

(d)
4x− 10

x2 − 1
=

7

x+ 1
+

−3

x− 1
=

7

x+ 1
− 3

x− 1

Appendix C Solutions Back to Appendix C Exercises

1. 2. (a) yn+1 = 1.05yn − 0.05tnn tn yn y(tn) % error

0 0.0 2 2 0
1 0.2 2.4 2.4214 0.88
2 0.4 2.84 2.8918 1.79
3 0.6 3.328 3.4221 2.75
4 0.8 3.8736 4.0255 3.77
5 1.0 4.48832 4.7183 4.87

n tn yn y(tn) % error

0 0.00 1.4 1.4 0.00
1 0.05 1.47 1.4705 0.03
2 0.10 1.541 1.5421 0.07
3 0.15 1.6131 1.6147 0.10
4 0.20 1.6863 1.6886 0.14

(b)

3. (a) n tn yn y(tn) % error

0 0.0 2 2 0.00
1 0.1 2 2.01 0.50
2 0.2 2.02 2.0404 1.00
3 0.3 2.0604 2.0921 1.52

(b) y = 2e−
1

2
t2
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4. (a) 1.1yn − 0.1tn (b) yn+1 = 1.22yn − 0.22tn − 0.02

(c) n tn yn y(tn) % error

0 0.0 2 2 0
1 0.2 2.42 2.4214 0.06
2 0.4 2.8884 2.8918 0.12
3 0.6 3.4158 3.4221 0.18
4 0.8 4.0153 4.0255 0.25
5 1.0 4.7027 4.7183 0.33

(d) The error using the midpoint method are much smaller than those obtained using Euler’s
method with the same step size.

5. (a) k1 = .2yn − .2tn, k2 = 0.22yn − 0.22tn − 0.02, k3 = 0.222yn − 0.222tn − 0.022,

k4 = 0.2444yn − 0.0444tn − 0.044 − 0.2tn+1

Note the appearance of both tn and tn+1 in k4.

(b) n tn yn k1 k2 k3 k4

0 0.0 2 0.4 0.42 0.422 0.4444
1 0.2 2.4214 0.4443 0.4687 0.4712 0.4985
2 0.4 2.8918 0.4984 0.5282 0.5312 0.5646
3 0.6 3.4221 0.5644 0.6009 0.6045 0.6453
4 0.8 4.0255 0.6451 0.6896 0.6941 0.7439
5 1.0 4.7182

(c) The approximations obtained using this method are very close to the exact values.
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Index

ambient temperature, 74
ampere, 75
amplitude, 98
analytical solution, 3
angular frequency, 98
autonomous equation, 37, 66
auxiliary equation, 91

beats, 120
bending moment, 139
Bessel equation, 36
boundary conditions, 24, 27, 42, 140
boundary value, 27
boundary value problem, 140
boundary values, 42
buckling mode, 155

capacitance, 84
carrying capacity, 14
characteristic equation, 91
charge, 84
coulombs, 84
critical load, 155
critical point, 67
critically damped, 89
current, 75

damping, 29
deflection, of a beam or a column, 139
deflection, of a beam or column, 137
dependent variable, 10
differential equation, 3, 18, 20, 30
differential operator, 108, 109
direction field, 58
domain, 5, 11

eigenfunction, 146, 147
eigenvalue, 147
eigenvalue problem, 137, 152
electric circuit, 75
electromotive force, 75, 76
elliptic partial differential equation, 48
embedded, end of a beam or column, 17, 27, 139
equilibrium, 10, 47
equilibrium solution, 66
Euler equation, 35, 88, 90
Euler’s formula, 93
Euler’s method, 185

family of solutions, 32
farad, 84
first critical load, 137
forced, 89
forced, undamped vibration, 130
forcing function, 76, 88, 89
Fourier series, 152, 162
free boundary condition, 141
free vibration, 89, 96
free, damped vibration, 100
free, end of a beam, 17
free, undamped vibration, 96
frequency, 98

general solution, 33, 88, 111

heat equation, 48, 159
henries, 75
homogeneous equation, 33, 37, 87, 88
homogeneous solution, 88, 111
hyperbolic partial differential equation, 48

independent variable, 10
inductance, 75
inductor, 75
initial conditions, 4, 23, 26, 40
initial value, 27, 40, 195
initial value problem, 4, 40, 113, 116
integrating factor, 50, 63
iterative method, 186

Laplace’s equation, 47, 48
Legendre’s equation, 148
Leibniz notation, 18
linear combination, 109, 121, 152
linear differential equation, 36
linear independence, 120
linear operator, 109, 145
linearly independent functions, 121
linearly independent solutions, 121
logistic equation, 55, 83
logistic growth, 14

midpoint method, 190
mixing problem, 72
modulus of elasticity, 24, 140

Newton’s Law of Cooling, 74
non-homogeneous equation, 33, 37
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non-linear differential equation, 37
numerical analysis, 187
numerical method, 185, 187

ohms, 75
one-parameter family of solutions, 33
operator, 108, 144
order of a differential equation, 20, 26, 30, 36
ordinary differential equation, 11, 30, 36
overdamped, 89
overdamped vibration, 102

parabolic partial differential equation, 48
parameter, 23, 98, 101
partial differential equation, 11, 28, 30, 36
partial fraction decomposition, 181
particular solution, 33, 88, 89, 104, 111
period, 12, 98
phase portrait, 67
phase shift, 97, 98
pinned boundary condition, 153
pinned, end of a beam or column, 17, 29
population growth, 71

qualitative solution, 3

radioactive decay, 71
reduction of order, 82, 120, 121, 124
relation, 51
resistance, 75
resistor, 75
resonance, 120
response, 76
RLC circuit, 100
Runge-Kutta method, 190

second critical load, 137
semi-stable equilibrium, 68
separable equation, 37
separation of variables, 50, 51
simple harmonic motion, 12, 21
simply supported, 17, 29, 141
slope field, 58
solution curve, 56, 57
solution to a differential equation, 4, 20, 31
solution to an initial value problem, 40
spring constant, 20
stable critical point, 67
stable equilibrium, 67
steady-state heat equation, 47
steady-state response, 77
steady-state solution, 77

step size, 185
system, 18, 76
system response, 76, 89

Taylor polynomial, 187
terminal velocity, 85
transient response, 77
transient solution, 77
two-parameter family of solutions, 33

undamped vibration, 89, 96
underdamped vibration, 89, 102
undetermined coefficients, 88, 104
unstable critical point, 67
unstable equilibrium, 67

variable, 7, 9, 23
variation of parameters, 117
vertical column, 153
voltage source, 75
volts, 75

wave equation, 36, 48
Wronskian, 122
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