Math 321 Jandary 11 Class Winter 2018

1. Is $y=\frac{1}{2} e^{-3 t}+\frac{1}{2} \sin t+\frac{3}{2} \cos t$ a solution to $y^{\prime}+3 y=5 \cos t$?
2. $y^{\prime}+3 y=5 \cos t, y(0)=2$ is an initial value problem, meaning it consists of

- a differential equation, and
- one or more initial values that come from initial conditions.

A function is a solution to an initial value problem if it satisfies BOTH the differential equation and all initial values.

Is $y=\frac{1}{2} e^{-3 t}+\frac{1}{2} \sin t+\frac{3}{2} \cos t$ a solution to the initial value problem

$$
y^{\prime}+3 y=5 \cos t, \quad y(0)=2 ?
$$

3. Is $y=e^{-5 t}+\frac{1}{5} t-\frac{1}{25} \quad$ a solution to $\quad y^{\prime}+5 y=t, \quad y(0)=1 ?$
4. $y=C_{1} \sin 2 t+C_{2} \cos 2 t+\frac{1}{13} e^{-3 t}$ IS a solution to $y^{\prime \prime}+16 y=e^{-3 t}$.

Determine values of C_{1} and C_{2} for which

$$
y=C_{1} \sin 2 t+C_{2} \cos 2 t+\frac{1}{13} e^{-3 t}
$$

is a solution to

$$
y^{\prime \prime}+16 y=e^{-3 t}, \quad y(0)=0, y^{\prime}(0)=1
$$

5. $y=C_{1} e^{-3 t}+C_{2} e^{-t}+\frac{1}{2} \sin t-\cos t$ is a solution to $y^{\prime \prime}+4 y^{\prime}+3 y=5 \sin t$.

Determine values of C_{1} and C_{2} for which

$$
y=C_{1} e^{-3 t}+C_{2} e^{-t}+\frac{1}{2} \sin t-\cos t
$$

is a solution to

$$
y^{\prime \prime}+4 y^{\prime}+3 y=5 \sin t, \quad y(0)=1, \quad y^{\prime}(0)=-2
$$

6. Determine values of C_{1} and C_{2} for which $y=C_{1} \sin \frac{1}{2} x+C_{2} \cos \frac{1}{2} x$ is a solutions to the boundary value problem

$$
y^{\prime \prime}+\frac{1}{4} y=0, \quad y^{\prime}(0)=-1, y(\pi)=3
$$

