The following statement and two questions are taken from a study guide to the Fundamentals of Engineering (FE) exam. Answer the questions BELOW the box, not the ones in it.

Under certain conditions the motion of an oscillating spring is described by the differential equation $\frac{d^{2} x}{d t^{2}}+16 x=0$, where x is the displacement in feet of the end of the spring, and t is the time in seconds. At $t=0$ seconds, the displacement is $\frac{1}{4}$ foot upward and the velocity is 0 feet per second; that is, $x(0)=\frac{1}{4}$ and $x^{\prime}(0)=0$.

1. What is the general solution of the system? (c_{1} and c_{2} are constants.)
(a) $x=c_{1} e^{-t}+c_{2} e^{-3 t}$
(b) $x=c_{1} e^{-4 t}+c_{2} e^{4 t}$
(c) $x=c_{1} \sin 4 t$
(d) $x=c_{1} \cos 4 t$
(e) $x=c_{1} \cos 4 t+c_{2} \sin 4 t$
2. The solution that fits the initial conditions is
(a) $x=\frac{1}{4} e^{-4 t}$
(b) $x=\frac{1}{3} \sin 4 t$
(c) $x=4 \cos 4 t$
(d) $x=\frac{1}{4} \cos 4 t$
(e) $x=\frac{1}{4} \cos 4 t+\frac{1}{3} \sin 4 t$
3. Without doing any computations you can determine that two of the choices cannot be the answer to of Exercise 1. Which two are they, and why?
4. Determine whether choice (b) of Exercise $\mathbf{1}$ is a solution to the equation.
5. Determine which of the choices for Exercise $\mathbf{2}$ satisfies the initial conditions.
6. Is $y=2 e^{-3 t}-\frac{1}{13} \sin 2 t-\frac{8}{13} \cos 2 t$ a solution to the initial value problem

$$
y^{\prime \prime}+4 y^{\prime}+3 y=5 \sin 2 t, \quad y(0)=\frac{5}{13}, \quad y^{\prime}(0)=-\frac{67}{13} ?
$$

Equation 1: $\frac{d y}{d x}+3 y=0$ Equation 2: $x^{2} y^{\prime \prime}+x y^{\prime}+x^{2} y=0$

Equation 3: $y^{\prime \prime}+9 y=13 e^{-2 t}$
Equation 4: $15.3 \frac{d^{4} y}{d x^{4}}=1.4$

Equation 5: $\frac{d y}{d x}=\frac{x}{y}$
Equation 6: $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\frac{\partial u}{\partial t}$

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=f(x)
$$

A. $\frac{d y}{d x}-\frac{x}{y}=0$
B. $y^{\prime}-2 x y=x$
C. $y^{\prime}+2 y=y^{2}$
D. $5 \frac{d y}{d x}-3 y=\sin x$

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=f(x)
$$

A. $\frac{d y}{d x}-\frac{x}{y}=0$
B. $y^{\prime}-2 x y=x$
C. $y^{\prime}+2 y=y^{2}$
D. $5 \frac{d y}{d x}-3 y=\sin x$

Autonomous: $\frac{d y}{d x}=F(y)$
Separable: $\frac{d y}{d x}=g(x) h(y)$

