The following statement and two questions are taken from a study guide to the *Fundamentals of Engineering (FE)* exam. **Answer the questions BELOW the box**, not the ones in it.

Under certain conditions the motion of an oscillating spring is described by the differential equation $\frac{d^2x}{dt^2} + 16x = 0$, where x is the displacement in feet of the end of the spring, and t is the time in seconds. At t = 0 seconds, the displacement is $\frac{1}{4}$ foot upward and the velocity is 0 feet per second; that is, $x(0) = \frac{1}{4}$ and x'(0) = 0.

1. What is the general solution of the system? (c_1 and c_2 are constants.)

- (a) $x = c_1 e^{-t} + c_2 e^{-3t}$ (b) $x = c_1 e^{-4t} + c_2 e^{4t}$ (c) $x = c_1 \sin 4t$ (d) $x = c_1 \cos 4t$ (e) $x = c_1 \cos 4t + c_2 \sin 4t$
- 2. The solution that fits the initial conditions is

(a) $x = \frac{1}{4}e^{-4t}$ (b) $x = \frac{1}{3}\sin 4t$ (c) $x = 4\cos 4t$ (d) $x = \frac{1}{4}\cos 4t$ (e) $x = \frac{1}{4}\cos 4t + \frac{1}{3}\sin 4t$

- 1. *Without doing any computations* you can determine that two of the choices cannot be the answer to **of Exercise 1**. Which two are they, and why?
- 2. Determine whether choice (b) of Exercise 1 is a solution to the equation.
- 3. Determine which of the choices for Exercise 2 satisfies the initial conditions.
- 4. Is $y = 2e^{-3t} \frac{1}{13}\sin 2t \frac{8}{13}\cos 2t$ a solution to the initial value problem

$$y'' + 4y' + 3y = 5\sin 2t$$
, $y(0) = \frac{5}{13}$, $y'(0) = -\frac{67}{13}$?

Equation 1:
$$\frac{dy}{dx} + 3y = 0$$
 Equation 2: $x^2y'' + xy' + x^2y = 0$

Equation 3:
$$y'' + 9y = 13e^{-2t}$$
 Equation 4: $15.3\frac{d^4y}{dx^4} = 1.4$

Equation 5:
$$\frac{dy}{dx} = \frac{x}{y}$$
 Equation 6: $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial u}{\partial t}$

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1} y}{dx^{n-1}} + \dots + a_2(x)\frac{d^2 y}{dx^2} + a_1(x)\frac{dy}{dx} + a_0(x)y = f(x)$$

A.
$$\frac{dy}{dx} - \frac{x}{y} = 0$$

B.
$$y' - 2xy = x$$

C.
$$y' + 2y = y^2$$

D.
$$5\frac{dy}{dx} - 3y = \sin x$$

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1} y}{dx^{n-1}} + \dots + a_2(x)\frac{d^2 y}{dx^2} + a_1(x)\frac{dy}{dx} + a_0(x)y = f(x)$$

A.
$$\frac{dy}{dx} - \frac{x}{y} = 0$$

B. $y' - 2xy = x$
C. $y' + 2y = y^2$
D. $5\frac{dy}{dx} - 3y = \sin x$

Autonomous:
$$\frac{dy}{dx} = F(y)$$
 Separable: $\frac{dy}{dx} = g(x)h(y)$