1. Solve the following two initial value problems (IVPs) involving second order, linear, constant coefficient ordinary differential equations (ODEs). Assume that the independent variable is t.
(a) $y^{\prime \prime}+5 y^{\prime}+6 y=0, \quad y(0)=4, y^{\prime}(0)=-1$
(b) $y^{\prime \prime}+4 y=0, \quad y(0)=-2, y^{\prime}(0)=1$

There are some resources listed under Read and Watch in the schedule, under today's date, that can help you with this. Be prepared to offer your solution to either of these at the next class meeting.
2. (a) Using the power series for e^{x}, use substitution to obtain the power series of $e^{-2 x}$. Give your answer as the first five terms expanded out (followed by $+\cdots$) AND in summation notation as a series in powers of x.
(b) Repeat part (a) with the series for the sine function to obtain a series for $\sin 4 x$.
3. In this exercise we'll obtain the solution to the IVP from Exercise 1(b) using power series. Let $y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x+\ldots$.
(a) Give the power series for y^{\prime} in expanded form, including the first five terms.
(b) Give the power series for $y^{\prime \prime}$ in expanded form, including the first five terms.
(c) Give the power series for $y^{\prime \prime}+4 y$ by

- distributing 4 into the first seven terms of the series for y and adding the series for $y^{\prime \prime}$ to that, and
- combining terms with like powers of x.
(d) In order for the series you obtained in (c) to be zero (meaning for all values of x), each coefficient must be zero. Set the constant (first) term equal to zero and solve for a_{2} in terms of a_{0}. Then set the coefficient of x equal to zero and solve for a_{3} in terms of a_{1}.
(e) When you set the coefficient x^{2} equal to zero you'll solve for a_{4} in terms of a_{2}. But you know a_{2} in terms of a_{0}, so you can can substitute that in to get a_{4} in terms of a_{0}. In the same way you can find a_{5} in terms of a_{1}. Continue in this manner to get a_{6} and a_{7} in terms of a_{0} and a_{1}.
(f) Substitute the coefficients $a_{2}, a_{3}, \ldots, a_{7}$ into the series $y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+\cdots$. Then group all the terms with a_{0} together, and group the ones with a_{1} together. Factor out the a_{0} and a_{1}.
(g) You probably won't recognize the two series obtained when a_{0} and a_{1} are factored out. Multiply the numerator and denominator of each fraction so that the denominators are the factorial of the corresponding exponent of x.
(h) At this point you may stop if you wish, and we'll finish it together in class. You may recognize the first series; try putting each numerator in the form $(b x)^{n}$ for some number b that is the same for each term. For the second series, you can multiply each term by two if at the same time you divide a_{1} by two. Then try doing the same as was just suggested for the first series.

