\diamond Example 1: When we take the second derivative of the series $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ we get $y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}$. (Make sure you see how this is obtained!) Make a change of the index variable n to get a series with terms involving x^{n}.

We will let $m=n-2$, so that the terms x^{n-2} become x^{m}. Note that if $m=n-2$, then $n=m+2$ and $n(n-1) a_{n} x^{n-2}$ becomes $(m+2)[(m+2)-1] a_{m+2} x^{m}=(m+2)(m+1) a_{m+2} x^{m}$. Also, when $n=2$ we have $m=0$, and $m=\infty$ when $n=\infty$ as well. Thus the summation $\sum_{n=2}^{\infty}$ becomes $\sum_{m=0}^{\infty}$. Putting all this together, we have

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{m=0}^{\infty}(m+2)(m+1) a_{m+2} x^{m}
$$

The variable m in the second summation is just a "dummy" variable, so in the end we can change it back to n.

1. Rewrite each series so that the general term involves x^{n}.
(a) $\sum_{n=1}^{\infty} n a_{n} x^{n+2}$
(b) $\sum_{n=0}^{\infty} a_{n} x^{n+2}$
(c) $\sum_{n=2}^{\infty}(n+1) n a_{n} x^{n-2}$
(d) $\sum_{n=0}^{\infty} a_{n} x^{n+1}$
(e) $\sum_{n=3}^{\infty}(2 n-1) a_{n} x^{n-3}$
2. If we have two series that are indexed the same and whose corresponding terms have the same power of x, they can be added like this:

$$
\begin{equation*}
\sum_{n=a}^{\infty} a_{n} x^{m}+\sum_{n=a}^{\infty} b_{n} x^{m}=\sum_{n=a}^{\infty}\left[a_{n} x^{m}+b_{n} x^{m}\right]=\sum_{n=a}^{\infty}\left[a_{n}+b_{n}\right] x^{m} \tag{1}
\end{equation*}
$$

Now consider the sum $\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+4 \sum_{n=0}^{\infty} a_{n} x^{n}$. Simplify the sum as follows:

- Distribute the 4 into the second series.
- Change the index of summation of the first series so that the terms involve x^{m}, then change the variable back to n.
- Use (1) to combine the two series into one.

Sometimes when we change the index variables of sums to get series with x^{n} terms, the summations don't start in the same place. Here's how we handle that:
\diamond Example 2: Simplify the expression $\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+x \sum_{n=0}^{\infty} a_{n} x^{n}$ by combining the two series.
When we change the index of summation in the first series to get terms involving x^{n} we get $\sum_{m=0}^{\infty}(m+2)(m+1) a_{m+2} x^{m}$. Distributing the x into the second series and changing its index gives us $\sum_{m=1}^{\infty} a_{m-1} x^{m}$. We can "pull out" the first term of the first series, then add the resulting series:

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+x \sum_{n=0}^{\infty} a_{n} x^{n} & =\sum_{m=0}^{\infty}(m+2)(m+1) a_{m+2} x^{m}+\sum_{m=1}^{\infty} a_{m-1} x^{m} \\
& =2 a_{2}+\sum_{m=1}^{\infty}(m+2)(m+1) a_{m+2} x^{m}+\sum_{m=1}^{\infty} a_{m-1} x^{m} \\
& =2 a_{2}+\sum_{m=1}^{\infty}\left[(m+2)(m+1) a_{m+2}+a_{m-1}\right] x^{m}
\end{aligned}
$$

3. Use the procedure of Example 2 to simplify each of the following. For the second there will be two extra terms added to a series. (α is just a constant.)
(a) $\sum_{n=1}^{\infty} n a_{n} x^{n-1}+x \sum_{n=0}^{\infty} a_{n} x^{n}$
(b) $\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}-\alpha^{2} \sum_{n=0}^{\infty} a_{n} x^{n+2}$

Math 322

Due at 3 PM Wednesday, May 1st

\diamond Example 3: Obtain a recursion relation for the coefficients a_{n} of a power series solution $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ to the differential equation $y^{\prime \prime}-x y^{\prime}+2 y=0$.

We take the first and second derivative of the series, substitute it into the left side of the ODE, get all sums in terms of x^{n}, and combine in the manner of Example 2:

$$
\begin{aligned}
y^{\prime \prime}-x y^{\prime}+2 y & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}-x \sum_{n=1}^{\infty} n a_{n} x^{n-1}+2 \sum_{n=0}^{\infty} a_{n} x^{n} \\
& =\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}-\sum_{n=1}^{\infty} n a_{n} x^{n}+\sum_{n=0}^{\infty} 2 a_{n} x^{n} \\
& =2 a_{2}+2 a_{0}+\sum_{n=1}^{\infty}\left[(n+2)(n+1) a_{n+2}-n a_{n}+2 a_{n}\right] x^{n} \\
& =2 a_{2}+2 a_{0}+\sum_{n=1}^{\infty}\left[(n+2)(n+1) a_{n+2}-(n-2) a_{n}\right] x^{n}
\end{aligned}
$$

The only way that we can have $y^{\prime \prime}-x y^{\prime}+2 y$ equal to zero is if every coefficient of the final series above is zero, giving us $(n+2)(n+1) a_{n+2}-(n-2) a_{n}=0$. If we solve this for a_{n+2} we get

$$
a_{n+2}=\frac{n-2}{(n+2)(n+1)} a_{n}
$$

which is the desired recursion relation.

1. Obtain a recurrence relation for each of the following ODEs, assuming a solution of the form $y=\sum_{n=0}^{\infty} a_{n} x^{n}$.
(a) $y^{\prime \prime}-x y=0$
(b) $\left(1-x^{2}\right) y^{\prime \prime}-6 x y^{\prime}-4 y=0$
(c) $y^{\prime \prime}-(x+1) y=0$
(d) $y^{\prime \prime}-\alpha^{2} x^{2} y=0$
(e) $\left(x^{2}+1\right) y^{\prime \prime}+x y^{\prime}-y=0$
2. Find the series solution to each of the ODEs in Exercise 1, in terms of a_{0} and a^{1} (or two other coefficients when either or both of those are zero).
