1. Determine whether $x=0$ is an ordinary point (O), regular singular point (RS) or singular point that is not regular (SNR) for each of the following equations.
(a) $8 x^{2} y^{\prime \prime}+10 x y^{\prime}+(x-1) y=0$
(b) $2 x^{2} y^{\prime \prime}+7 x(x+1) y^{\prime}-3 y=0$
(c) $y^{\prime \prime}-x y^{\prime}+2 y=0$
(d) $x^{3} y^{\prime \prime}+2 x^{2} y^{\prime}+y=0$
2. Use the method of Frobenius to obtain one solution $y_{1}(x)$ for the ODE $x^{2} y^{\prime \prime}+\left(x^{2}-2 x\right) y^{\prime}+2 y=0$ corresponding to the larger value of λ obtained from the indicial equation. Show all steps of the solution process, and don't forget to multiply your series by x^{λ}.
3. The indicial equation for the ODE $x^{2} y^{\prime \prime}+x y^{\prime}+x^{2} y=0$ has only one root. Use the method of Frobenius to obtain one solution $y_{1}(x)$ for the ODE using that root.

Math 322 Assignment 14, Spring 2013
Due at 3 PM Wednesday, May 8th

1. Determine whether $x=0$ is an ordinary point (O), regular singular point (RS) or singular point that is not regular (SNR) for each of the following equations.
(a) $8 x^{2} y^{\prime \prime}+10 x y^{\prime}+(x-1) y=0$
(b) $2 x^{2} y^{\prime \prime}+7 x(x+1) y^{\prime}-3 y=0$
(c) $y^{\prime \prime}-x y^{\prime}+2 y=0$
(d) $x^{3} y^{\prime \prime}+2 x^{2} y^{\prime}+y=0$
2. Use the method of Frobenius to obtain one solution $y_{1}(x)$ for the ODE $x^{2} y^{\prime \prime}+\left(x^{2}-2 x\right) y^{\prime}+2 y=0$ corresponding to the larger value of λ obtained from the indicial equation. Show all steps of the solution process, and don't forget to multiply your series by x^{λ}.
3. The indicial equation for the ODE $x^{2} y^{\prime \prime}+x y^{\prime}+x^{2} y=0$ has only one root. Use the method of Frobenius to obtain one solution $y_{1}(x)$ for the ODE using that root.

Math 322 Assignment 14, Spring 2013 Due at 3 PM Wednesday, May 8th

1. Determine whether $x=0$ is an ordinary point (O), regular singular point (RS) or singular point that is not regular (SNR) for each of the following equations.
(a) $8 x^{2} y^{\prime \prime}+10 x y^{\prime}+(x-1) y=0$
(b) $2 x^{2} y^{\prime \prime}+7 x(x+1) y^{\prime}-3 y=0$
(c) $y^{\prime \prime}-x y^{\prime}+2 y=0$
(d) $x^{3} y^{\prime \prime}+2 x^{2} y^{\prime}+y=0$
2. Use the method of Frobenius to obtain one solution $y_{1}(x)$ for the ODE $x^{2} y^{\prime \prime}+\left(x^{2}-2 x\right) y^{\prime}+2 y=0$ corresponding to the larger value of λ obtained from the indicial equation. Show all steps of the solution process, and don't forget to multiply your series by x^{λ}.
3. The indicial equation for the ODE $x^{2} y^{\prime \prime}+x y^{\prime}+x^{2} y=0$ has only one root. Use the method of Frobenius to obtain one solution $y_{1}(x)$ for the ODE using that root.
