For each system given, do each of the following.
(a) Use Wolfram Alpha to find the eigenvalues and eigenvectors.
(b) Draw the phase portrait using only the eigenvalues and eigenvectors. Then check your answer with the online phase plane plotter.
(c) Tell whether the origin is a nodal sink or source, spiral sink or source, saddle point or center. If it is a nodal sink or source, tell whether the node is proper, improper or neither.
(d) Tell whether the origin is unstable, asymptotically stable, or neutrally stable.

1. $\mathbf{x}^{\prime}=\left[\begin{array}{rr}5 & -1 \\ 3 & 1\end{array}\right] \mathbf{x}$
2. $\mathbf{x}^{\prime}=\left[\begin{array}{ll}2 & -1 \\ 3 & -2\end{array}\right] \mathbf{x}$
3. $\mathbf{x}^{\prime}=\left[\begin{array}{ll}1 & -4 \\ 4 & -7\end{array}\right] \mathbf{x}$
4. $\mathrm{x}^{\prime}=\left[\begin{array}{ll}1 & -5 \\ 1 & -3\end{array}\right] \mathbf{x}$
5. $\quad \mathbf{x}^{\prime}=\left[\begin{array}{ll}2 & -5 \\ 1 & -2\end{array}\right] \mathbf{x}$
6. $\mathrm{x}^{\prime}=\left[\begin{array}{ll}3 & -2 \\ 4 & -1\end{array}\right] \mathbf{x}$

Math 322 Assignment 17, Spring 2013 Due at 3 PM Monday May 13th

For each system given, do each of the following.
(a) Use Wolfram Alpha to find the eigenvalues and eigenvectors.
(b) Draw the phase portrait using only the eigenvalues and eigenvectors. Then check your answer with the online phase plane plotter.
(c) Tell whether the origin is a nodal sink or source, spiral sink or source, saddle point or center. If it is a nodal sink or source, tell whether the node is proper, improper or neither.
(d) Tell whether the origin is unstable, asymptotically stable, or neutrally stable.

1. $\mathbf{x}^{\prime}=\left[\begin{array}{rr}5 & -1 \\ 3 & 1\end{array}\right] \mathbf{x}$
2. $\mathbf{x}^{\prime}=\left[\begin{array}{ll}2 & -1 \\ 3 & -2\end{array}\right] \mathbf{x}$
3. $\mathrm{x}^{\prime}=\left[\begin{array}{ll}1 & -4 \\ 4 & -7\end{array}\right] \mathbf{x}$
4. $\mathbf{x}^{\prime}=\left[\begin{array}{ll}1 & -5 \\ 1 & -3\end{array}\right] \mathbf{x}$
5. $\quad \mathbf{x}^{\prime}=\left[\begin{array}{ll}2 & -5 \\ 1 & -2\end{array}\right] \mathbf{x}$
6. $\quad \mathbf{x}^{\prime}=\left[\begin{array}{ll}3 & -2 \\ 4 & -1\end{array}\right] \mathbf{x}$
