1. Use the Laplace transform to solve the initial value problem $y^{\prime \prime}+4 y^{\prime}+8 y=\sin 5 t, y(0)=1, y^{\prime}(0)=-2$. Many of you were a bit careless with grouping around the transform of the first derivative last time we did a Laplace problem - be careful about that! As we had been doing, convert the equation into the s variable using the tables, solve for $Y(s)$ and use Wolfram to do the inverse transform.
2. Write each of the following initial value problems for systems of equations in the form $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{f}, \mathbf{x}(0)=\mathbf{c}$.
(a)
$x_{1}^{\prime}-2 x_{2}=3$
$x_{1}(0)=0$
$x_{2}^{\prime}-x_{1}+x_{2}=-t^{2}$
$x_{2}(0)=-1$
(b)

$$
\begin{array}{cl}
x_{1}^{\prime}+3 x_{1}-5 x_{2}=e^{-t} & x_{1}(0)=2 \\
x_{2}^{\prime}-4 x_{1}+3 x_{2}=3 e^{-t} & x_{2}(0)=1
\end{array}
$$

$$
x_{1}^{\prime}+x_{1}-3 x_{2}+2 x_{3}=0
$$

$$
x_{1}(0)=3
$$

$$
\text { (c) } \quad x_{2}^{\prime}+2 x_{1}+x_{2}-4 x_{3}=3
$$

$$
x_{2}(0)=-1
$$

$$
x_{3}^{\prime}-x_{1}+5 x_{2}+2 x_{3}=\sin 3 t \quad x_{3}(0)=2
$$

(d)

$$
\begin{array}{cl}
x_{1}^{\prime}+5 x_{2}-2 x_{3}=\sin t & x_{1}(0)=0 \\
x_{2}^{\prime}-x_{1}+2 x_{3}=0 & x_{2}(0)=1 \\
x_{3}^{\prime}-2 x_{1}-3 x_{2}=\cos t & x_{3}(0)=0
\end{array}
$$

3. Convert the ODE $x^{(4)}+5 x^{(3)}-7 x^{\prime \prime}+3 x^{\prime}-4 x=0$ (here $x^{(4)}$ means the fourth derivative of x) into a system of first order equations as follows.
(a) Solve the ODE for $x^{(4)}$.
(b) Let $x_{1}=x, x_{2}=x^{\prime}$, on up until you have renamed $x^{(3)}$. Write these down, including the ones I've already given you.
(c) Substitute these into your result for (a), then rearrange the right side so that the indices of x are increasing. You are not replacing $x^{(4)}$ yet!
(d) Now $x^{(4)}$ is the first derivative of one of your x_{k}. Figure out which one, take its derivative and substitute for $x^{(4)}$.
(e) You now have equations for each of x_{1}^{\prime} through x_{4}^{\prime}, scattered about. Write them all as a list now.
(f) As done in Exercise 2, write your result from (e) in the form $\mathbf{x}^{\prime}=A \mathbf{x}$. The matrix A will have lots of zeros and several ones in it.
