The final answers to Exercises 2 and 3 are given below. I'll post the full solutions by the evening of $2 / 21$.

1. Write the ODE $y^{(5)}-2 y^{(4)}-6 y^{(3)}+3 y^{\prime \prime}-y^{\prime}+2 y=3 \sin 2 t$ as a system of first order ODEs, then give the same system in matrix form.
2. Consider the initial value problem $\begin{array}{ll}x_{1}^{\prime}-x_{1}-x_{2}=2 e^{2 t} \\ x_{2}^{\prime}-4 x_{1}-x_{2}=e^{2 t}\end{array} \quad \begin{aligned} & x_{1}(0)=0 \\ & x_{2}(0)=1\end{aligned}$.
(a) Write the IVP in matrix form $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{f}, \quad \mathbf{x}(0)=\mathbf{c}$.
(b) Solve the associated homogeneous system $\mathbf{x}^{\prime}=A \mathbf{x}$ to obtain the homogeneous solution \mathbf{x}_{h}. It will contain two arbitrary constants.
(c) Guess a particular solution of the form $\mathbf{x}_{p}=\left[\begin{array}{l}a \\ b\end{array}\right] e^{2 t}$ and substitute it into $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{f}$. You will be able to divide out the exponential, then arrive at a system of equations that you can solve for a and b.
(d) The solution to the differential equation is $\mathbf{x}=\mathbf{x}_{h}+\mathbf{x}_{p}$. Write it out.
(e) Apply the initial conditions to obtain a system of equations (not differential equations) to solve to find the constants. Find them and write out your final solution to the IVP.
3. Consider the initial value problem $y^{\prime \prime}+3 y^{\prime}+2 y=5 \cos 2 t, \quad y(0)=1, y^{\prime}(0)=-2$.
(a) Write the ODE as a system of two first order ODEs.
(b) Write the system in matrix form $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{f}$.
(c) Write the initial values in terms of the new variables and then give the initial conditions in vector form.
(d) Solve the system, using variation of parameters to find the particular solution.
(e) Apply the initial conditions to obtain values for the constants. Find them and write out your final solution to the IVP.
4. $\quad \mathbf{x}^{\prime}=\frac{3}{2}\left[\begin{array}{l}1 \\ 2\end{array}\right] e^{3 t}+\frac{1}{2}\left[\begin{array}{r}-1 \\ 2\end{array}\right] e^{-t}-\left[\begin{array}{l}1 \\ 3\end{array}\right] e^{2 t} \quad$ Any equivalent form is acceptable.
5. $\quad \mathbf{x}^{\prime}=\frac{9}{4}\left[\begin{array}{r}-1 \\ 2\end{array}\right] e^{-2 t}-8\left[\begin{array}{r}-1 \\ 1\end{array}\right] e^{-t}+\left[\begin{array}{r}-\frac{1}{4} \cos 2 t+\frac{3}{4} \sin 2 t \\ \frac{3}{2} \cos 2 t+\frac{1}{2} \sin 2 t\end{array}\right]$

Any equivalent form is acceptable.

