Math 322 ASSIGNMENT 25, SPRING 2013 Due at 3 PM Wednesday, June 5th

1. Evaluate the integral $\int_{\tau=0}^{t} e^{\tau} \sin(t-\tau) d\tau$ using integration by parts. Remember that the integration by parts formula is

$$\int_{a}^{b} u \, dv = uv \Big|_{a}^{b} - \int_{a}^{b} v \, du \tag{1}$$

and use the following hints if needed:

- Let $u = \sin(t \tau)$ and $dv = e^{\tau} d\tau$ apply (1). Be careful to use the chain rule!
- Apply integration by parts again, this time letting $u = \cos(t \tau)$ and letting $dv = e^{\tau} d\tau$ again.
- The original integral should have reappeared, with a minus sign. Add it to both sides, then multiply both sides by $\frac{1}{2}$.
- 2. (a) Find the Laplace transform of your answer to Exercise 1.
 - (b) Get a common denominator for your answer to (a) and add all the fractions. Simplify.
 - (c) Your answer to (b) is the product of two fractions. Find the inverse Laplace transform of each.
- 3. Solve the initial value problem from Exercise 1 of Assignment 22 using Laplace transforms, as follows.
 - (a) Transform the two ODEs, using the given initial conditions. Both of your equations should contain the two transform functions $X_1(s)$ and $X_2(s)$.
 - (b) Solve the first equation for $X_2(s)$. Substitute the result into the second equation and solve for $X_1(s)$. Then substitute that result back into the equation you solved for $X_2(s)$. You now have expressions for X_1 and X_2 only in terms of s.
 - (c) Use Wolfram Alpha to obtain $x_1(t)$ and $x_2(t)$ from $X_1(s)$ and $X_2(s)$. Done!

Math 322 ASSIGNMENT 25, SPRING 2013 Due at 3 PM Wednesday, June 5th

1. Evaluate the integral $\int_{\tau=0}^{t} e^{\tau} \sin(t-\tau) d\tau$ using integration by parts. Remember that the integration by parts formula is

$$\int_{a}^{b} u \, dv = uv \Big|_{a}^{b} - \int_{a}^{b} v \, du \tag{1}$$

and use the following hints if needed:

• Let $u = \sin(t - \tau)$ and $dv = e^{\tau} d\tau$ apply (1). Be careful to use the chain rule!

.

- Apply integration by parts again, this time letting $u = \cos(t \tau)$ and letting $dv = e^{\tau} d\tau$ again.
- The original integral should have reappeared, with a minus sign. Add it to both sides, then multiply both sides by $\frac{1}{2}$.
- 2. (a) Find the Laplace transform of your answer to Exercise 1.
 - (b) Get a common denominator for your answer to (a) and add all the fractions. Simplify.
 - (c) Your answer to (b) is the product of two fractions. Find the inverse Laplace transform of each.
- 3. Solve the initial value problem from Exercise 1 of Assignment 22 using Laplace transforms, as follows.
 - (a) Transform the two ODEs, using the given initial conditions. Both of your equations should contain the two transform functions $X_1(s)$ and $X_2(s)$.
 - (b) Solve the first equation for $X_2(s)$. Substitute the result into the second equation and solve for $X_1(s)$. Then substitute that result back into the equation you solved for $X_2(s)$. You now have expressions for X_1 and X_2 only in terms of s.
 - (c) Use Wolfram Alpha to obtain $x_1(t)$ and $x_2(t)$ from $X_1(s)$ and $X_2(s)$. Done!