Math 322 Assignment 3, Spring 2013 Due at 5 PM Monday, April 8th

1. Use the Laplace transform to solve the initial value problem $y^{\prime \prime}+4 y=0, \quad y(0)=-2, \quad y^{\prime}(0)=1$. Be sure to show how this is done, in the manner shown in Video 6.
2. Use a power series to solve the ODE $y^{\prime \prime}+3 y^{\prime}=0$. Show the series guess in expanded form, and give the first six terms of y^{\prime} and first five of $y^{\prime \prime}$. Find all coefficients up to a_{6} - they will be in terms of a_{1}. Factor a_{1} out of all terms containing it, and you can stop there if you wish. If you want a challenge, try to figure out how to get to the solution you got for Exercise 1, but with arbitrary constants.

Math 322 Assignment 3, Spring 2013 Due at 5 PM Monday, April 8th

1. Use the Laplace transform to solve the initial value problem $y^{\prime \prime}+4 y=0, \quad y(0)=-2, \quad y^{\prime}(0)=1$. Be sure to show how this is done, in the manner shown in Video 6.
2. Use a power series to solve the ODE $y^{\prime \prime}+3 y^{\prime}=0$. Show the series guess in expanded form, and give the first six terms of y^{\prime} and first five of $y^{\prime \prime}$. Find all coefficients up to a_{6} - they will be in terms of a_{1}. Factor a_{1} out of all terms containing it, and you can stop there if you wish. If you want a challenge, try to figure out how to get to the solution you got for Exercise 1, but with arbitrary constants.

Math 322 Assignment 3, Spring 2013 Due at 5 PM Monday, April 8th

1. Use the Laplace transform to solve the initial value problem $y^{\prime \prime}+4 y=0, \quad y(0)=-2, \quad y^{\prime}(0)=1$. Be sure to show how this is done, in the manner shown in Video 6.
2. Use a power series to solve the ODE $y^{\prime \prime}+3 y^{\prime}=0$. Show the series guess in expanded form, and give the first six terms of y^{\prime} and first five of $y^{\prime \prime}$. Find all coefficients up to a_{6} - they will be in terms of a_{1}. Factor a_{1} out of all terms containing it, and you can stop there if you wish. If you want a challenge, try to figure out how to get to the solution you got for Exercise 1, but with arbitrary constants.
