Math 322

1. Find the Laplace transform of $f(t)=\cos \omega t$ from the definition and by applying the formula $\int e^{a t} \cos b t d t=\frac{e^{a t}}{a^{2}+b^{2}}(a \cos b t+b \sin b t)$. Show your work, integrating from zero to R and then applying a limit to the result.
2. Find the Laplace transform of $f(t)=\sin \omega t$ by applying the identity $\sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}$ and using the linearity of the transform and the already known transform of $e^{a t}$. Remember that i is just a constant, and can be treated as such. You will end up with two fractions; get a common denominator and combine them.
3. (a) Give the values of i^{2} through i^{6} in terms of i or 1 .
(b) Give the first eight terms of the power series for $e^{i \theta}$, then modify it as follows:

- Use your answers to (a) to eliminate powers of i.
- Group the terms without i, and those with i.
- Factor out the i from the terms having it.
- You should now have two series, one without i and one with it. Replace each with the functions they represent.

4. Consider the function $f(t)=\left\{\begin{array}{cll}t^{2} & \text { if } & 0 \leq t<1 \\ 2-t & \text { if } & 1 \leq t<2 \\ 0 & \text { if } & t \geq 2\end{array}\right.$
(a) Sketch a neat graph of the function.
(b) Write the function as a single function using the unit step function $u(t)$.
5. Neatly sketch the graph of each of the following:
(a) $f(t)=t-t u(t-2)$
(b) $g(t)=t+(2-t) u(t-2)$
(c) $h(t)=t[1-u(t-2)]+(4-t)[u(t-2)-u(t-4)]$
6. Give the Laplace transforms of each of the functions in the previous exercise. Simplify your answers when possible.
7. (a) Use the unit step function $u(t)$ to write the function $f(t)$ whose graph is shown to the right as a single function. The initial part of the graph is the sine function, then the constant function one.
(b) Give the Laplace transform of the function.

