1. In this exercise you will be solving the IVP $2 y^{\prime \prime}+2 y^{\prime}+5 y=g(t), \quad y(0)=0, \quad y^{\prime}(0)=0$, where $g(t)$ is two from $t=3$ to $t=18$ and zero at all other times.
(a) Graph $g(t)$.
(b) Give $g(t)$ as a single function, and substitute it into the ODE.
(c) Take the Laplace transform of both sides of the ODE and solve for $Y(s)$.
(d) Use Wolfram Alpha to determine $y(t)$. The result you get will be really crazy, but there will be two graphs of the solution displayed. Sketch a reasonably neat and large version of the second graph, but starting only at zero.
2. Solve the IVP $\quad \mathbf{x}^{\prime}=\left[\begin{array}{rr}2 & -1 \\ 1 & 4\end{array}\right] \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 1\end{array}\right]$.
3. Solve the system $\quad \mathbf{x}^{\prime}=\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right] \mathbf{x}$.

Math 322 Assignment 8, Spring 2013 Due at 3 PM Monday, April 21st

1. In this exercise you will be solving the IVP $2 y^{\prime \prime}+2 y^{\prime}+5 y=g(t), \quad y(0)=0, \quad y^{\prime}(0)=0$, where $g(t)$ is two from $t=3$ to $t=18$ and zero at all other times.
(a) Graph $g(t)$.
(b) Give $g(t)$ as a single function, and substitute it into the ODE.
(c) Take the Laplace transform of both sides of the ODE and solve for $Y(s)$.
(d) Use Wolfram Alpha to determine $y(t)$. The result you get will be really crazy, but there will be two graphs of the solution displayed. Sketch a reasonably neat and large version of the second graph, but starting only at zero.
2. Solve the IVP $\mathbf{x}^{\prime}=\left[\begin{array}{rr}2 & -1 \\ 1 & 4\end{array}\right] \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 1\end{array}\right]$.
3. Solve the system $\mathbf{x}^{\prime}=\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right] \mathbf{x}$.
