Homogeneous Systems of Ordinary ODEs

- If the $n \times n$ matrix A has real eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ of multiplicity one, with corresponding eigenvectors $\mathbf{k}_{1}, \mathbf{k}_{2}, \ldots, \mathbf{k}_{n}$, then the solution to $\mathbf{x}^{\prime}=A \mathbf{x}$ is

$$
\begin{equation*}
\mathbf{x}=c_{1} \mathbf{k}_{1} e^{\lambda_{1} t}+c_{2} \mathbf{k}_{2} e^{\lambda_{2} t}+\cdots+c_{n} \mathbf{k}_{n} e^{\lambda_{n} t} \tag{1}
\end{equation*}
$$

- If the $n \times n$ matrix A has an eigenvalue λ_{i} of algebraic multiplicity m greater than one with m corresponding eigenvectors $\mathbf{k}_{i, 1}, \mathbf{k}_{i, 2}, \ldots, \mathbf{k}_{i, m}$, then the solution to $\mathbf{x}^{\prime}=A \mathbf{x}$ is as (1) above, with the portion of the solution corresponding to the eigenvalue λ_{i} given by

$$
c_{i, 1} \mathbf{k}_{i, 1} e^{\lambda_{i} t}+c_{i, 2} \mathbf{k}_{i, 2} e^{\lambda_{i} t}+\cdots+c_{i, m} \mathbf{k}_{i, m} e^{\lambda_{i} t}
$$

- If the $n \times n$ matrix A has an eigenvalue λ_{i} of algebraic multiplicity two with only one corresponding eigenvector \mathbf{k}_{i}, then the solution to $\mathbf{x}^{\prime}=A \mathbf{x}$ is as (1) above, with the portion of the solution corresponding to the eigenvalue λ_{i} given by

$$
c_{i, 1} \mathbf{k}_{i} e^{\lambda_{i} t}+c_{i, 2}\left[\mathbf{k}_{i} t+\mathbf{p}_{1}\right] e^{\lambda_{i} t}
$$

where \mathbf{p} is any solution to $\left(A-\lambda_{i} I\right) \mathbf{p}=\mathbf{k}$.

Variation of Parameters for Non-homogeneous Systems of ODEs

- Let \mathbf{X} be the fundamental matrix, which is the matrix whose columns are the solutions $\mathbf{k}_{i} e^{\lambda_{i} t}$ to the homogeneous equation $\mathbf{x}^{\prime}=A \mathbf{x}$. Then \mathbf{x}_{p} is given by

$$
\mathbf{x}_{p}=\mathbf{X}(t) \int \mathbf{X}^{-1}(t) \mathbf{f}(t) d t
$$

When doing the indefinite integral of $\mathbf{X}^{-1} \mathbf{f}$ you need not include constants of integration.

- The inverse of a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is $A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}d & -b \\ -c & a\end{array}\right]$.

Some Common Power Series

- $e^{x}=1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\frac{1}{4!} x^{4}+\cdots=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}$
- $\sin x=x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\frac{1}{7!} x^{7}+\cdots+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}$
- $\cos x=1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}-\frac{1}{6!} x^{6}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}$

Ordinary and Singular Points of $a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0$

- An ordinary point of $a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0$ is any value of x_{0} for which $a\left(x_{0}\right) \neq 0$.
- The radius of convergence R about an ordinary point for a power series solution to $a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0$ is the distance from the origin to the closest zero of $a(x)$ in the complex plane. The series will converge in the interval $(-R, R)$. If $a(x)$ has no zeros, the series converges for all real numbers.
- A singular point of $a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0$ is any real number value of x_{0} for which $a\left(x_{0}\right)=0$.
- Divide both sides of $a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0$ by $a(x)$ to get $y^{\prime \prime}+\frac{b(x)}{a(x)} y^{\prime}+\frac{c(x)}{a(x)} y=y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$. For x_{0} a real number, suppose that a factor of the form $\left(x-x_{0}\right)^{n}$ appears in the denominator of $P(x)$ with n no larger than one and in the denominator of $Q(x)$ with n no larger than two. Then x_{0} is called a regular singular point of $a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0$.

Solving About Regular Singular Points: The Method of Frobenius

- $y=x^{\lambda} \sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} a_{n} x^{\lambda+n} \quad y^{\prime}=\sum_{n=0}^{\infty}(\lambda+n) a_{n} x^{\lambda+n-1}=x^{\lambda} \sum_{n=0}^{\infty}(\lambda+n) a_{n} x^{n-1}$

$$
y^{\prime \prime}=\sum_{n=0}^{\infty}(\lambda+n)(\lambda+n-1) a_{n} x^{\lambda+n-2}=x^{\lambda} \sum_{n=0}^{\infty}(\lambda+n)(\lambda+n-1) a_{n} x^{n-2}
$$

Laplace Transform: $\mathscr{L}[f(t)]=\int_{0}^{\infty} f(t) e^{-s t} d t$

Table of Laplace Transforms

$f(t)$	$F(s)=\mathscr{L}[f(t)]$	$f(t)$	$F(s)=\mathscr{L}[f(t)]$
δ	1	$f^{\prime}(t)$	$s F(s)-f(0)$
1	$\frac{1}{s}(s>0)$	$f^{\prime \prime}(t)$	$s^{2} F(s)-s f(0)-f^{\prime}(0)$
t^{n}	$\frac{n!}{s^{n+1}} \quad(s>0)$	$u(t-c)$	$\frac{e^{-c s}}{s}$
$e^{a t}$	$\frac{1}{s-a}(s>a)$	$f(t-c) u(t-c)$	$e^{-c s} F(S)$
$t^{n} e^{a t}$	$\frac{n!}{(s-a)^{n+1}} \quad(s>a)$	$(g * f)(t)$	$G(s) F(s)$
$\sin \omega t$	$\frac{\omega}{s^{2}+\omega^{2}} \quad(s>0)$	$e^{a t} f(t)$	$F(s-a)$
$\cos \omega t$	$\frac{s}{s^{2}+\omega^{2}} \quad(s>0)$	$f(k t)$	$\frac{1}{k} F\left(\frac{s}{k}\right)$
$e^{a t} \sin \omega t$	$\frac{\omega}{(s-a)^{2}+\omega^{2}} \quad(s>a)$	$t f(t)$	$-F^{\prime}(s)$
$e^{a t} \cos \omega t$	$\frac{s-a}{(s-a)^{2}+\omega^{2}} \quad(s>a)$	$\int_{0}^{t} f(u) d u$	$\frac{F(s)}{s}$

Euler's Formulas: $\quad e^{i \theta}=\cos \theta+i \sin \theta \quad \sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i} \quad \cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}$

