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Homogeneous Systems of Ordinary ODEs

• If the n×n matrix A has real eigenvalues λ1, λ2, ..., λn of multiplicity one, with corresponding eigenvectors
k1,k2, ...,kn, then the solution to x′ = Ax is

x = c1k1e
λ1t + c2k2e

λ2t + · · ·+ cnkne
λnt (1)

• If the n×n matrix A has an eigenvalue λi of algebraic multiplicity m greater than one with m corresponding
eigenvectors ki,1,ki,2, ...,ki,m, then the solution to x′ = Ax is as (1) above, with the portion of the solution
corresponding to the eigenvalue λi given by

ci,1ki,1e
λit + ci,2ki,2e

λit + · · ·+ ci,mki,meλit

• If the n × n matrix A has an eigenvalue λi of algebraic multiplicity two with only one corresponding
eigenvector ki, then the solution to x′ = Ax is as (1) above, with the portion of the solution corresponding
to the eigenvalue λi given by

ci,1kie
λit + ci,2[kit+ p1]e

λit,

where p is any solution to (A− λiI)p = k.

Variation of Parameters for Non-homogeneous Systems of ODEs

• Let X be the fundamental matrix, which is the matrix whose columns are the solutions kie
λit to the

homogeneous equation x′ = Ax. Then xp is given by

xp = X(t)

∫

X−1(t) f(t) dt.

When doing the indefinite integral of X−1 f you need not include constants of integration.

• The inverse of a 2× 2 matrix A =

[

a b

c d

]

is A−1 =
1

ad− bc

[

d −b

−c a

]

.

Some Common Power Series
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1
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• cosx = 1−
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Ordinary and Singular Points of a(x)y′′ + b(x)y′ + c(x)y = 0

• An ordinary point of a(x)y′′ + b(x)y′ + c(x)y = 0 is any value of x0 for which a(x0) 6= 0.

• The radius of convergence R about an ordinary point for a power series solution to a(x)y′′+b(x)y′+c(x)y = 0 is
the distance from the origin to the closest zero of a(x) in the complex plane. The series will converge in the
interval (−R,R). If a(x) has no zeros, the series converges for all real numbers.



• A singular point of a(x)y′′ + b(x)y′ + c(x)y = 0 is any real number value of x0 for which a(x0) = 0.

• Divide both sides of a(x)y′′+b(x)y′+c(x)y = 0 by a(x) to get y′′+ b(x)
a(x)y

′+ c(x)
a(x)y = y′′+P (x)y′+Q(x)y = 0.

For x0 a real number, suppose that a factor of the form (x−x0)
n appears in the denominator of P (x) with

n no larger than one and in the denominator of Q(x) with n no larger than two. Then x0 is called a
regular singular point of a(x)y′′ + b(x)y′ + c(x)y = 0.

Solving About Regular Singular Points: The Method of Frobenius

• y = xλ
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Laplace Transform: L [f(t)] =

∫

∞

0

f(t) e−st dt

Table of Laplace Transforms

f(t) F (s) = L [f(t)] f(t) F (s) = L [f(t)]

δ 1 f ′(t) sF (s)− f(0)

1
1

s
(s > 0) f ′′(t) s2F (s)− sf(0)− f ′(0)
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Euler’s Formulas: eiθ = cos θ + i sin θ sin θ =
eiθ − e−iθ

2i
cos θ =

eiθ + e−iθ

2


