Homogeneous Systems of Ordinary ODEs

• If the $n \times n$ matrix A has real eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$ of multiplicity one, with corresponding eigenvectors $\mathbf{k}_1, \mathbf{k}_2, ..., \mathbf{k}_n$, then the solution to $\mathbf{x}' = A\mathbf{x}$ is

$$\mathbf{x} = c_1 \mathbf{k}_1 e^{\lambda_1 t} + c_2 \mathbf{k}_2 e^{\lambda_2 t} + \dots + c_n \mathbf{k}_n e^{\lambda_n t} \tag{1}$$

• If the $n \times n$ matrix A has an eigenvalue λ_i of algebraic multiplicity m greater than one with m corresponding eigenvectors $\mathbf{k}_{i,1}, \mathbf{k}_{i,2}, ..., \mathbf{k}_{i,m}$, then the solution to $\mathbf{x}' = A\mathbf{x}$ is as (1) above, with the portion of the solution corresponding to the eigenvalue λ_i given by

$$c_{i,1}\mathbf{k}_{i,1}e^{\lambda_i t} + c_{i,2}\mathbf{k}_{i,2}e^{\lambda_i t} + \dots + c_{i,m}\mathbf{k}_{i,m}e^{\lambda_i t}$$

• If the $n \times n$ matrix A has an eigenvalue λ_i of algebraic multiplicity two with only one corresponding eigenvector \mathbf{k}_i , then the solution to $\mathbf{x}' = A\mathbf{x}$ is as (1) above, with the portion of the solution corresponding to the eigenvalue λ_i given by

$$c_{i,1}\mathbf{k}_i e^{\lambda_i t} + c_{i,2}[\mathbf{k}_i t + \mathbf{p}_1]e^{\lambda_i t}$$

where **p** is any solution to $(A - \lambda_i I)$ **p** = **k**.

Variation of Parameters for Non-homogeneous Systems of ODEs

• Let X be the fundamental matrix, which is the matrix whose columns are the solutions $\mathbf{k}_i e^{\lambda_i t}$ to the homogeneous equation $\mathbf{x}' = A\mathbf{x}$. Then \mathbf{x}_p is given by

$$\mathbf{x}_p = \mathbf{X}(t) \int \mathbf{X}^{-1}(t) \, \mathbf{f}(t) \, dt.$$

When doing the indefinite integral of $\mathbf{X}^{-1} \mathbf{f}$ you need not include constants of integration.

• The inverse of a 2 × 2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.

Some Common Power Series

- $e^x = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \frac{1}{4!}x^4 + \dots = \sum_{n=0}^{\infty} \frac{1}{n!}x^n$
- $\sin x = x \frac{1}{3!}x^3 + \frac{1}{5!}x^5 \frac{1}{7!}x^7 + \dots + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!}x^{2n+1}$
- $\cos x = 1 \frac{1}{2!}x^2 + \frac{1}{4!}x^4 \frac{1}{6!}x^6 + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!}x^{2n}$

Ordinary and Singular Points of a(x)y'' + b(x)y' + c(x)y = 0

- An ordinary point of a(x)y'' + b(x)y' + c(x)y = 0 is any value of x_0 for which $a(x_0) \neq 0$.
- The radius of convergence R about an ordinary point for a power series solution to a(x)y''+b(x)y'+c(x)y=0 is the distance from the origin to the closest zero of a(x) in the complex plane. The series will converge in the interval (-R, R). If a(x) has no zeros, the series converges for all real numbers.

- A singular point of a(x)y'' + b(x)y' + c(x)y = 0 is any real number value of x_0 for which $a(x_0) = 0$.
- Divide both sides of a(x)y'' + b(x)y' + c(x)y = 0 by a(x) to get $y'' + \frac{b(x)}{a(x)}y' + \frac{c(x)}{a(x)}y = y'' + P(x)y' + Q(x)y = 0$. For x_0 a real number, suppose that a factor of the form $(x - x_0)^n$ appears in the denominator of P(x) with n no larger than one and in the denominator of Q(x) with n no larger than two. Then x_0 is called a **regular singular point** of a(x)y'' + b(x)y' + c(x)y = 0.

Solving About Regular Singular Points: The Method of Frobenius

•
$$y = x^{\lambda} \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} a_n x^{\lambda+n}$$
 $y' = \sum_{n=0}^{\infty} (\lambda+n) a_n x^{\lambda+n-1} = x^{\lambda} \sum_{n=0}^{\infty} (\lambda+n) a_n x^{n-1}$
 $y'' = \sum_{n=0}^{\infty} (\lambda+n)(\lambda+n-1) a_n x^{\lambda+n-2} = x^{\lambda} \sum_{n=0}^{\infty} (\lambda+n)(\lambda+n-1) a_n x^{n-2}$

Laplace Transform: $\mathscr{L}[f(t)] = \int_0^\infty f(t) e^{-st} dt$

f(t)	$F(s) = \mathscr{L}[f(t)]$	f(t)	$F(s) = \mathscr{L}[f(t)]$
δ	1	f'(t)	sF(s) - f(0)
1	$\frac{1}{s} (s > 0)$	f''(t)	$s^2F(s) - sf(0) - f'(0)$
t^n	$\frac{n!}{s^{n+1}} (s>0)$	u(t-c)	$\frac{e^{-cs}}{s}$
e^{at}	$\frac{1}{s-a} (s > a)$	f(t-c)u(t-c)	$e^{-cs}F(S)$
$t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}} (s>a)$	(g*f)(t)	G(s)F(s)
$\sin \omega t$	$\frac{\omega}{s^2+\omega^2} (s>0)$	$e^{at}f(t)$	F(s-a)
$\cos \omega t$	$\frac{s}{s^2 + \omega^2} (s > 0)$	f(kt)	$\frac{1}{k}F\left(\frac{s}{k}\right)$
$e^{at}\sin\omega t$	$\frac{\omega}{(s-a)^2 + \omega^2} (s > a)$	tf(t)	-F'(s)
$e^{at}\cos\omega t$	$\frac{s-a}{(s-a)^2+\omega^2} (s>a)$	$\overline{\int_0^t f(u)du}$	$\frac{F(s)}{s}$

Table of Laplace Transforms

Euler's Formulas:
$$e^{i\theta} = \cos\theta + i\sin\theta$$
 $\sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$ $\cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$