
Math 322 Series Solutions to Ordinary Differential Equations Spring 2013

Series Solutions About Ordinary Points

Recall that a linear second order ordinary differential equation for a function y of an independent variable x is
of the form

a(x)y′′ + b(x)y′ + c(x)y = f(x). (1)

In the case that a(x), b(x) and c(x) are all constants, we have a constant coefficient equation. Such an equation can
generally be solved using the methods you learned in Math 321, or perhaps by Laplace transform methods. When
any of a(x), b(x) and c(x) are truly functions of the independent variable x, we must employ other methods to
solve (1).

We will restrict ourselves to the homogeneous case, where f(x) = 0:

a(x)y′′ + b(x)y′ + c(x)y = 0 (2)

Such equations often arise when solving partial differential equations. We will proceed by assuming that a solution
of the form

y = a0 + a1x+ a2x
2 + a3x

3 + · · · =

∞∑

n=0

an x
n (3)

exists.

An ordinary point of (2) is any value of x0 for which a(x0) 6= 0.

We will focus our attention on x = 0. When zero is an ordinary point, the process for finding a series solution
“about zero” goes like this:

1) Take the first and second derivatives of (3), getting

y′ = a1 + 2 a2x+ 3 a3x
2 + 4 a4x

3 + · · · =

∞∑

n=1

n an x
n−1 (4)

and

y′′ = 2 a2 + 3 · 2 a3x+ 4 · 3 a4x
2 + 5 · 4 a5x

3 · · · =

∞∑

n=2

n(n− 1)an x
n−2 (5)

2) Substitute (3), (4) and (5) into the left side of (2). Change indices to get all series so that they have the same
power of x and remove terms from summations as needed so that all sums start at the same value of the
index.

3) Combine the sums and factor out the power of x. This series can only be equal to zero for all allowable values
of x (more on that later) if every coefficient is zero.

4) Set the common coefficient from the series equal to zero, and solve for the ak with the highest index. This
gives the recurrence relation used to calculate coefficients.

5) Begin with a0 and a1 equal to themselves, then find a2, a3, a4, ..., each in terms of either a0 or a1.
Substitute your results into (3), group terms containing a0 together, and the ones containing a1 together,
then factor those constants out. The result is the series solution to (2).

Sometimes the above steps will need some modification, especially at step five. Of concern with any
power series is where it converges. The series obtained by the above process is centered at zero, and we can find its
radius of convergence as follows:

The radius of convergence R for a power series solution to (2) is the distance from the
origin to the closest zero of a(x) in the complex plane. The series will converge in the
interval (−R,R). If a(x) has no zeros, the series converges for all real numbers.



Singular Points

We continue to work with equations of the form

a(x)y′′ + b(x)y′ + c(x)y = 0 (2)

and we will further restrict ourselves to cases where a(x), b(x) and c(x) are all polynomial functions. We first
make this definition:

An singular point of (2) is any real number value of x0 for which a(x0) = 0.

It is reasonable to think about dividing both sides of (2) by a(x), resulting in

y′′ +
b(x)

a(x)
y′ +

c(x)

a(x)
y = y′′ + P (x)y′ +Q(x)y = 0. (6)

With the restriction that a(x), b(x) and c(x) are all polynomial functions, P (x) and Q(x) are rational functions,
and their denominators can be factored. Any factor of the form (x − x0)

n in the denominator of either P (x) or
Q(x), with x0 a real number, indicates a singular point at x0. The following definition implies that maybe some
singular points are better than others!

For x0 a real number, suppose that a factor of the form (x − x0)
n appears in the

denominator of P (x) with n no larger than one and in the denominator of Q(x) with
n no larger than two. Then x0 is called a regular singular point of (2).

Math 322 Assignment 12, Spring 2013 Due at 3 PM Thursday, May 2nd

1. For each of the following,

• classify x = 0 as either an ordinary point (O), a regular singular point (RS) or a singular point that is
not regular (SNR)

• if x = 0 is an ordinary point, give the radius of convergence R and the interval of convergence for a
series solution

(a) (2 + x2)y′′ − xy′ + 4y = 0 (b) x2y′′ + (1 + x)y′ + (1 + x2)y = 0 (c) 2y′′ + xy′ + 3y = 0

(d) (4− x2)y′′ + 2y = 0 (e) 4x2y′′ − 4x2y′ + (1 − 2x)y = 0

2. For each of the following, list each singular point and tell whether it is regular (RS) or singular but not regular
(SNR).

(a) x2(1− x)2y′′ + 2xy′ + 4y = 0 (b) x2(1 − x2)y′′ +
2

x
y′ + 4y = 0

Solving About Regular Singular Points: The Method of Frobenius

When attempting to solve (2) when zero is a regular singular point, we assume a solution of the form

y = xλ

∞∑

n=0

an x
n =

∞∑

n=0

an x
λ+n = a0 x

λ + a1 x
λ+1 + a2 x

λ+2 + · · · . (7)

Here λ could perhaps be a complex number, but we’ll stick to situations where it is real. We now need to take the

derivative of (7), using any one of the forms given there. If we were to use y = xλ

∞∑

n=0

an x
n we would need to apply



the product rule, taking xλ as our first function and
∞∑

n=0

an xn as our second. It is easier to use the second or

third for above while taking the derivative, then taking the xλ back out of the sum when we’re done:

y′ = λa0 x
λ−1 + (λ+ 1) a1 x

λ + (λ+ 2) a2 x
λ+1 + (λ + 3)a3 x

λ+2 + · · ·

=

∞∑

n=0

(λ+ n) an x
λ+n−1

= xλ

∞∑

n=0

(λ+ n) an x
n−1

(8)

and
y′′ = λ(λ − 1)a0 x

λ−2 + (λ+ 1)λa1 x
λ−1 + (λ + 2)(λ+ 1)a2 x

λ + (λ+ 3)(λ+ 2)a3 x
λ+1 + · · ·

=

∞∑

n=0

(λ+ n)(λ + n− 1) an x
λ+n−2

= xλ

∞∑

n=0

(λ+ n)(λ+ n− 1)an x
n−2

(9)

We are now ready to examine how the method of Frobenius is executed, which is quite similar to how solutions
about ordinary points are found:

1) Substitute the versions of y′′, y′ and y in (7), (8) and (9) that have the xλ outside the summation into the
left side of the differential equation, then factor the xλ out right away. DO NOT factor out other powers of
x. Multiply other factors outside of sums into the sums.

2) Evaluate the terms of the sums for the indices that give terms with x−1 in them, to “pull them out” of their
sums.

3) Take the terms that were pulled out of the series and factor out a0x
−1. Change indices of the series so that

they all have the same power of x, then combine the sums and factor out the power of x.

4) You should now have something of the form xλ{[ stuff ]a0x
−1 +

∑
[ stuff ]xn}. We deal with the two stuffs

separately:

• The second stuff is just set equal to zero and solved for the ak with the highest index to get the recurrence
relation, as done previously. The resulting formula will contain λ.

• The first stuff is called the indicial equation (pronounced “in-dish-ull”), and will always be a second
degree polynomial. Set it equal to zero and solve to get two values of λ.

At this point there are several ways to proceed, depending on the relationship between the values of λ. We will do
only the case in which there are two distinct real values λ1 and λ2 that do not differ by an integer.

5) Substitute λ1 into the recurrence relation, and simplify it to eliminate fractions.

6) Set a0 = 1 and use your recurrence relation for λ1 to find a1, a2, a3, .... One solution to the ODE is then

y1 = xλ1

∞∑

n=0

an x
n. Remember - we assumed the solutio had this form.

7) Repeat steps 5 and 6 for λ2 to get a second solution y2.

8) The general solution is y = c1y1 + c2y2.

Math 322 Assignment 13, Spring 2013 Due at 3 PM Monday, May 6th

1. The equation 2xy′′ + (1 + x)y′ + y = 0 has a regular singular point at x = 0. Use the method of Frobenius
to find two linearly independent solutions to the equation.


