
10.2 Linear Transformations

Performance Criteria:

10. (c) Determine whether a given transformation from R
m to R

n is linear. If it
isn’t, give a counterexample; if it is, demonstrate this algebraically and/or
give the standard matrix representation of the transformation.

(d) Draw an arrow diagram illustrating a transformation that is linear, or that
is not linear.

(e) For a transformation T : R2 → R
2, show the graphical differences between

(a) T (cu) and cTu, and (b) T (u+ v) and Tu+ Tv.

To begin this section, recall the transformation from Example 10.1(b) that reflects vectors in R
2 across the

x-axis. In the drawing below and to the left we see two vectors u and v that are added, and then the vector
u+v is reflected across the x-axis. In the drawing below and to the right the same vectors u and v are reflected
across the x-axis first, then the resulting vectors Tu and Tv are added.
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Note that T (u+ v) = Tu+ Tv. Not all transformations have this property, but those that do have it, along with
an additional property, are very important:

Definition 10.2.1: Linear Transformation

A transformation T : Rm → R
n is called a linear transformation if, for every scalar

c and every pair of vectors u and v in R
m

1) T (u+ v) = T (u) + T (v) and

2) T (cu) = cT (u).

Note that the above statement describes how a transformation T interacts with the two operations of vectors,
addition and scalar multiplication. It tells us that if we take two vectors in the domain and add them in the domain,
then transform the result, we will get the same thing as if we transform the vectors individually first, then add the
results in the codomain. We will also get the same thing if we multiply a vector by a scalar and then transform as
we will if we transform first, then multiply by the scalar.This is illustrated in the mapping diagram at the top of the
next page.
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The following two mapping diagrams are for transformations R and S that ARE NOT linear:
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⋄ Example 10.2(a): Let A be an m × n matrix. Is TA : Rn → R
m defined by TAx = Ax a linear

transformation?

We know from properties of multiplying a vector by a matrix that

TA(u+ v) = A(u+ v) = Au+Av = TAu+ TAv, TA(cu) = A(cu) = cAu = cTAu.

Therefore TA is a linear transformation. ♠

⋄ Example 10.2(b): Is T : R2 → R
3 defined by T

[

x1

x2

]

=





x1 + x2

x2

x2

1



 a linear transformation? If so,

show that it is; if not, give a counterexample demonstrating that.

A good way to begin such an exercise is to try the two properties of a linear transformation for some specific vectors
and scalars. If either condition is not met, then we have our counterexample, and if both hold we need to show
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they hold in general. Usually it is a bit simpler to check the condition T (cu) = cTu. In our case, if c = 2 and
vecu = [2, 3, 4],

T

(

2

[

3
4

])

= T

[

6
8

]

=





14
8
36



 and 2T

[

3
4

]

= 2





7
4
9



 =





14
8
18





Because T (cu) 6= cTu for our choices of c and u, T is not a linear transformation. ♠

The next example shows the process required to show in general that a transformation is linear.

⋄ Example 10.2(c): Determine whether T : R3 → R
2 defined by T









x1

x2

x3







 =

[

x1 + x2

x2 − x3

]

is linear. If it

is, prove it in general; if it isn’t, give a specific counterexample.

First let’s try a specific scalar c = 2 and two specific vectors u =





1
2
3



 and v =





4
−5
6



. (I threw the negative

in there just in case something funny happens when everything is positive.) Then

T









1
2
3



+





4
−5
6







 = T





5
−3
9



 =

[

2
−12

]

and

T





1
2
3



+ T





4
−5
6



 =

[

3
−1

]

+

[

−1
−11

]

=

[

2
−12

]

so the first condition of linearity appears to hold. Let’s prove it in general. Let u =





u1

u2

u3



 and v =





v1
v2
v3



 be

arbitrary (that is, randomly selected) vectors in R
3. Then

T (u+ v) = T









u1

u2

u3



+





v1
v2
v3







 = T





u1 + v1
u2 + v2
u3 + v3



 =

[

u1 + v1 + u2 + v2
(u2 + v2)− (u3 + v3)

]

=

[

u1 + u2 + v1 + v2
(u2 − u3) + (v2 − v3)

]

=

[

u1 + u2

u2 − u3

]

+

[

v1 + v2
v2 − v3

]

= T





u1

u2

u3



+ T





v1
v2
v3



 = T (u) + T (v)

This shows that the first condition of linearity holds in general. Let u again be arbitrary, along with the scalar c.
Then

T (cu) = T



c





u1

u2

u3







 = T





cu1

cu2

cu3



 =

[

cu1 + cu2

cu2 − cu3

]

=

[

c(u1 + u2)
c(u2 − u3)

]

= c

[

u1 + u2

u2 − u3

]

= cT





u1

u2

u3



 = cT (u)

so the second condition holds as well, and T is a linear transformation. ♠
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There is a handy fact associated with linear transformations:

Theorem 10.2.2: If T is a linear transformation, then T (0) = 0.

Note that this does not say that if T (0) = 0, then T is a linear transformation, as you will see below. However, the
contrapositive of the above statement tells us that if T (0) 6= 0, then T is not a linear transformation.

When working with coordinate systems, one operation we often need to carry out is a translation, which means
a shift of all points the same distance and direction. The transformation in the following example is a translation in
R

2.

⋄ Example 10.2(d): Let a and b be any real numbers, with not both of them zero. Define T : R2 → R
2 by

T

[

x1

x2

]

=

[

x1 + a

x2 + b

]

. Is T a linear transformation?

Since T

[

0
0

]

=

[

a

b

]

6=

[

0
0

]

(since not both a and b are zero), T is not a linear transformation. ♠

⋄ Example 10.2(e): Determine whether T : R2 → R
2 defined by T

[

x1

x2

]

=

[

x1 + x2

x1x2

]

is linear. If it is,

prove it in general; if it isn’t, give a specific counterexample.

It is easy to see that T (0) = 0, so we can’t immediately rule out T being linear, as we did in the last example. Let’s

do a quick check of the first condition of the definition of a linear transformation with an example. Let u =

[

−3
2

]

and v =

[

1
4

]

. Then

T (u+ v) = T

([

−3
2

]

+

[

1
4

])

= T

[

−2
6

]

=

[

4
−12

]

and

Tu+ Tv = T

[

−3
2

]

+ T

[

1
4

]

=

[

−1
−6

]

+

[

5
4

]

=

[

4
−2

]

Clearly T (u+ v) 6= Tu+ Tv, so T is not a linear transformation. ♠

Recall from Example 10.2(a) that if A be an m× n matrix, then TA : Rn → R
m defined by T (x) = Ax is a

linear transformation. It turns out that the converse of this is true as well:

Theorem 10.2.3: Matrix of a Linear Transformation

If T : Rm → R
n is a linear transformation, then there is a matrix A such that

T (x) = A(x) for every x in R
m. We will call A the matrix that represents the

transformation.

As it is cumbersome and confusing the represent a linear transformation by the letter T and the matrix representing
the transformation by the letter A, we will instead adopt the following convention: We’ll denote the transformation
itself by T , and the matrix of the transformation by [T ].
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⋄ Example 10.2(f): Find the matrix [T ] of the linear transformation T : R3 → R
2 of Example 10.2(c),

defined by T





x1

x2

x3



 =

[

x1 + x2

x2 − x3

]

.

We can see that [T ] needs to have three columns and two rows in order for the multiplication to be defined, and
that we need to have

[ ]





x1

x2

x3



 =

[

x1 + x2

x2 − x3

]

From this we can see that the first row of the matrix needs to be 1 1 0 and the second row needs to be 0 1 − 1.

The matrix representing T is then [T ] =

[

1 1 0
0 1 −1

]

. ♠

The sort of “visual inspection” method used above can at times be inefficient, especially when trying to find the
matrix of a linear transformation based on a geometric description of the action of the transformation. To see a
more effective method, let’s look at any linear transformation T : R2 → R

2. Suppose that the matrix of of the

transformation is [T ] =

[

a b

c d

]

. Then for the two standard basis vectors e1 =

[

1
0

]

and e2 =

[

0
1

]

,

Te1 =

[

a b

c d

] [

1
0

]

=

[

a

c

]

and Te2 =

[

a b

c d

] [

0
1

]

=

[

b

d

]

.

This indicates that the columns of [T ] are the vectors Te1 and Te2. In general we have the following:

Theorem 10.2.4

Let e1, e2, ... , em be the standard basis vectors of R
m, and suppose that T : Rm →

R
n is a linear transformation. Then the columns of [T ] are the vectors obtained when

T acts on each of the standard basis vectors e1, e2, ... , em. We indicate this by

[T ] = [Te1 Te2 · · · Tem ]

⋄ Example 10.2(g): Let T be the transformation in R
2 that rotates all vectors counterclockwise by ninety

degrees. This is a linear transformation; use the previous theorem to determine its matrix [T ].

It should be clear that Te1 = T

[

1
0

]

=

[

0
1

]

and Te2 = T

[

0
1

]

=

[

−1
0

]

. Then

[T ] = [Te1 Te2 ] =

[

0 −1
1 0

]

♠

Section 10.2 Exercises

1. Two transformations from R
3 to R

2 are given below. One is linear and one is not. For the one that is, give
the matrix of the transformation. For the one that is not, give a specific counterexample showing that the
transformation violates the definition of a linear transformation. (T (cu) = cTu, T (u+ v) = Tu+ Tv)

(a) T





x1

x2

x3



 =

[

2x1 − x3

x1 + x2 + x3

]

(b) T





x1

x2

x3



 =

[

x1x2 + x3

x1

]
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2. For each of the following transformations, give

• the matrix of the transformation if it is linear,

• a specific counterexample showing that it is not linear, if it is not.

(a) The transformation T : R3 → R
3 defined by T





x1

x2

x3



 =





x1 + x3

x2 + x3

x1 + x2



.

(b) The transformation T : R2 → R
2 defined by T

[

x1

x2

]

=

[

x1 + 1
x2 − 1

]

3. Two transformations from R
3 to R

2 are given below. One is linear and one is not. For the one that is, give
the matrix of the transformation. For the one that is not, give a specific counterexample showing that the
transformation violates the definition of a linear transformation. (T (cu) = cTu, T (u+ v) = Tu+ Tv)

(a) T





x1

x2

x3



 =

[

2x1 − x3

x1 + x2 + x3

]

(b) T





x1

x2

x3



 =

[

x1x2 + x3

x1

]

4. For each of the following transformations, give

• the matrix of the transformation if it is linear,

• a specific counterexample showing that it is not linear, if it is not.

(a) The transformation T : R3 → R
3 defined by T





x1

x2

x3



 =





x1 + x3

x2 + x3

x1 + x2



.

(b) The transformation T : R2 → R
2 defined by T

[

x1

x2

]

=

[

x1 + 1
x2 − 1

]

5. (a) The transformation T : R2 → R
3 defined by T

[

x1

x2

]

=





x1 + 2x2

3x2 − 5x1

x1



 is linear. Show that, for

vectors u =

[

u1

u2

]

and v =

[

v1
v2

]

, T (u+ v) = Tu+ Tv. Do this via a string of equal expressions,

beginning with T (u+ v) and ending with Tu+ Tv.

(b) Give the matrix for the transformation from part (a).

6. For each of the following, a transformation T : R2 → R
2 is given by describing its action on a vector x = [x1, x2].

For each transformation, determine whether it is linear by

• finding T (cu) and c(Tu) and seeing if they are equal,

• finding T (u+ v) and T (u) + T (v) and seeing if they are equal.

For any that you find to be linear, say so. For any that are not, say so and produce a specific counterexample
to one of the two conditions for linearity.

(a) T

[

x1

x2

]

=

[

x2

x1 + x2

]

(b) T

[

x1

x2

]

=

[

x1 + x2

x1 x2

]

(c) T

[

x1

x2

]

=

[

|x1|

|x2|

]

(d) T

[

x1

x2

]

=

[

3x1

x1 − x2

]

7. For each of the transformations from the previous exercise that are linear, give the standard matrix of the
transformation.
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