Performance Criterion:

7. (b) Use *LU*-factorization to solve a system of equations, given the *LU*-factorization of its coefficient matrix.

In many cases a square matrix A can be "factored" into a product of a lower triangular matrix and an upper triangular matrix, in that order. That is, A = LU where L is lower triangular and U is upper triangular. In that case, for a system $A\mathbf{x} = \mathbf{b}$ that we are trying to solve for \mathbf{x} we have

$$A\mathbf{x} = \mathbf{b} \quad \Rightarrow \quad (LU)\mathbf{x} = \mathbf{b} \quad \Rightarrow \quad L(U\mathbf{x}) = \mathbf{b}$$

Note that $U\mathbf{x}$ is simply a vector; let's call it \mathbf{y} . We then have two systems, $L\mathbf{y} = \mathbf{b}$ and $U\mathbf{x} = \mathbf{y}$. To solve the system $A\mathbf{x} = \mathbf{b}$ we first solve $L\mathbf{y} = \mathbf{b}$ for \mathbf{y} . Once we know \mathbf{y} we can then solve $U\mathbf{x} = \mathbf{y}$ for \mathbf{x} , which was our original goal. Here is an example:

 $7x_1 - 2x_2 + x_3 = 12$ $\Rightarrow \text{ Example 7.2(a): Solve the system of equations} \quad 14x_1 - 7x_2 - 3x_3 = 17 , \text{ given that the coefficient}$ $-7x_1 + 11x_2 + 18x_3 = 5$

matrix factors as

 $\begin{bmatrix} 7 & -2 & 1 \\ 14 & -7 & -3 \\ -7 & 11 & 18 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & -3 & 1 \end{bmatrix} \begin{bmatrix} 7 & -2 & 1 \\ 0 & -3 & -5 \\ 0 & 0 & 4 \end{bmatrix}$

Because of the above factorization we can write the system in matrix form as follows:

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & -3 & 1 \end{bmatrix} \begin{bmatrix} 7 & -2 & 1 \\ 0 & -3 & -5 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 12 \\ 17 \\ 5 \end{bmatrix}$$

We now let $\begin{bmatrix} 7 & -2 & 1 \\ 0 & -3 & -5 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$ (*) and the above system becomes
$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & -3 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 12 \\ 17 \\ 5 \end{bmatrix}$$
 (**)

The system (**) is easily solved for the vector $\mathbf{y} = [y_1, y_2, y_3]$ by forward-substitution. From the first row we see that $y_1 = 12$; from that it follows that $y_2 = 17 - 2y_1 = 17 - 24 = -7$. Finally, $y_3 = 5 + y_1 + 3y_2 = -4$.

Now that we know \mathbf{y} , the system (*) becomes

$$\begin{bmatrix} 7 & -2 & 1 \\ 0 & -3 & -5 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 12 \\ -7 \\ -4 \end{bmatrix}$$

This is now solved by back-substitution. We can see that $x_3 = -1$, so

$$3x_2 - 5x_3 = -7 \qquad \Longrightarrow \qquad -3x_2 + 5 = -7 \qquad \Longrightarrow \qquad x_2 = 4$$

Finally,

$$7x_1 - 2x_2 + x_3 = 12 \implies 7x_1 - 9 = 12 \implies x_1 = 3$$

The solution to the original system of equations is (3, 4, -1).

This may seem overly complicated, but the factorization of A into LU is done by row reducing, so this method is no more costly than row-reduction in terms of operations used. An added benefit is that if we wish to find **x** for various vectors **b**, we do not have to row-reduce all over again each time. Here are a few additional comments about this method:

- We will see how the LU-factorization is obtained through a series of exercises.
- The LU-factorization of a matrix is not unique; that is, there are different ways to factor a given matrix.
- LU-factorization can be done with non-square matrices, but we are not concerned with that idea.

Section 7.2 Exercises

1. In this exercise you will be working again with the system

$$\begin{aligned} x_1 + 3x_2 - 2x_3 &= -4 \\ 3x_1 + 7x_2 + x_3 &= 4 \\ -2x_1 + x_2 + 7x_3 &= 7 \end{aligned}$$

For the purposes of the exercise we will let

L =	$\begin{bmatrix} 1\\ 3\\ -2 \end{bmatrix}$	$ \begin{array}{c} 0 \\ 1 \\ -\frac{7}{2} \end{array} $	$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$,	U =	$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	$3 \\ -2 \\ 0$	-2 7 $\frac{55}{2}$,	$\mathbf{x} =$	$egin{array}{c} x_1 \ x_2 \ x_3 \end{array}$,	$\mathbf{y} =$	$egin{array}{c} y_1 \ y_2 \ y_3 \end{array}$,	$\mathbf{b} =$	$\begin{bmatrix} -4\\4\\7 \end{bmatrix}$	
-----	--	---	---	---	-----	---	----------------	-----------------------	---	----------------	--	---	----------------	--	---	----------------	--	--

- (a) Write the system $L\mathbf{y} = \mathbf{b}$ as a system of three equations in the three unknowns y_1, y_2, y_3 . Then solve the system by hand, showing clearly how it is done. In the end, give the vector \mathbf{y} .
- (b) Write the system $U\mathbf{x} = \mathbf{y}$ as a system of three equations in the three unknowns x_1, x_2, x_3 . Then solve the system by hand, showing clearly how it is done. In the end, give the vector \mathbf{x} .
- (c) Use the linear combination of vectors interpretation of the system to show that the x_1, x_2, x_3 you found in part (b) is a solution to the system of equations. Show the scalar multiplication and vector addition as two separate steps.
- (d) Multiply L times U, in that order. What do you notice about the result? If you don't see something, you may have gone astray somewhere!
- 2. Let A be the coefficient matrix for the system from the previous exercise.
 - (a) Give the matrix E_1 be the matrix for which E_1A is the result of the first row operation used to reduce A to U. Give the matrix E_1A .
 - (b) Give the matrix E_2 such that $E_2(E_1A)$ is the result after the second row operation used to reduce A to U. Give the matrix E_2E_1A .
 - (c) Give the matrix E_3 such that $E_3(E_2E_1A)$ is U.
 - (d) Find the matrix $B = E_3 E_2 E_1$, then use your calculator to find B^{-1} . What is it? If you don't recognize it, you are asleep or you did something wrong!
- 3. (a) Fill in the blanks of the second matrix below with the entries from E_1 . Then, without using your calculator, fill in the blanks in the first matrix so that the product of the first two matrices is the 3×3 identity, as shown.

Call the matrix you found F_1 . Do the same thing with E_2 and E_3 to find matrices F_2 and F_3 . (b) Find the product $F_1F_2F_3$, in that order. Again, you should recognize the result.