Performance Criteria:

8. (e) Determine whether a vector is in the column space or null space of a matrix, based only on the definitions of those spaces.

In this section we will define two important subspace associated with a matrix A, its column space and its null space.

Definition 8.4.1: Column Space of a Matrix

The column space of an $m \times n$ matrix A is the span of the columns of A. It is a subspace of \mathbb{R}^m and we denote it by $\text{col}(A)$.

\[\text{Example 8.4(a):} \text{ Determine whether } u = \begin{bmatrix} 3 \\ 3 \\ 8 \end{bmatrix} \text{ and } v = \begin{bmatrix} -2 \\ 5 \\ 1 \end{bmatrix} \text{ are in the column space of } A = \begin{bmatrix} 2 & 5 & 1 \\ -1 & -7 & -5 \\ 3 & 4 & -2 \end{bmatrix}. \]

We need to solve the two vector equations of the form

\[
c_1 \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} + c_2 \begin{bmatrix} 5 \\ -7 \\ 4 \end{bmatrix} + c_3 \begin{bmatrix} 1 \\ -5 \\ -2 \end{bmatrix} = b, \tag{1}
\]

with b first being u, then v. The respective reduced row-echelon forms of the augmented matrices corresponding to the two systems are

\[
\begin{bmatrix} 1 & 0 & -2 & 4 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
\]

Therefore we can find scalars c_1, c_2, and c_3 for which (1) holds when $b = u$, but not when $b = v$. From this we deduce that u is in $\text{col}(A)$, but v is not.

Recall that the system $Ax = b$ of m linear equations in n unknowns can be written in linear combination form:

\[
\begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} x_1 + \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} x_2 + \cdots + \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix} x_n = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}
\]

Note that the left side of this equation is simply a linear combination of the columns of A, with the scalars being the components of x. The system will have a solution if, and only if, b can be written as a linear combination of the columns of A. Stated another way, we have the following:

Theorem 8.4.2: A system $Ax = b$ has a solution (meaning at least one solution) if, and only if, b is in the column space of A.

115
Let’s consider now only the case where \(m = n \), so we have \(n \) linear equations in \(n \) unknowns. We have the following facts:

- If \(\text{col}(A) \) is all of \(\mathbb{R}^n \), then \(Ax = b \) will have a solution for any vector \(b \). What’s more, the solution will be unique.

- If \(\text{col}(A) \) is a proper subspace of \(\mathbb{R}^n \) (that is, it is not all of \(\mathbb{R}^n \)), then the equation \(Ax = b \) will have a solution if, and only if, \(b \) is in \(\text{col}(A) \). If \(b \) is in \(\text{col}(A) \) the system will have infinitely many solutions.

Next we define the **null space** of a matrix.

Definition 8.4.3: Null Space of a Matrix

The null space of an \(m \times n \) matrix \(A \) is the set of all solutions to \(Ax = 0 \). It is a subspace of \(\mathbb{R}^n \) and is denoted by \(\text{null}(A) \).

\[\begin{align*}
\circ \text{ Example 8.4(b): } & \text{ Determine whether } u = \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix} \text{ and } v = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} \text{ are in the null space of } A = \begin{bmatrix} 2 & 5 & 1 \\ -1 & -7 & -5 \\ 3 & 4 & -2 \end{bmatrix}. \\
\text{ A vector } x \text{ is in the null space of a matrix } A \text{ if } Ax = 0. \text{ We see that } \\
Au = \begin{bmatrix} 2 & 5 & 1 \\ -1 & -7 & -5 \\ 3 & 4 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix} = \begin{bmatrix} 6 \\ -21 \\ 11 \end{bmatrix} \text{ and } Av = \begin{bmatrix} 2 & 5 & 1 \\ -1 & -7 & -5 \\ 3 & 4 & -2 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.
\end{align*} \]

so \(v \) is in the \(\text{null}(A) \) and \(u \) is not. ☀️

Still considering only the case where \(m = n \), we have the following fact about the null space:

- If \(\text{null}(A) \) is just the zero vector, \(A \) is invertible and \(Ax = b \) has a unique solution for any vector \(b \).

We conclude by pointing out the important fact that for an \(m \times n \) matrix \(A \), the null space of \(A \) is a subspace of \(\mathbb{R}^n \) and the column space of \(A \) is a subspace of \(\mathbb{R}^n \).

Section 8.4 Exercises

1. Let

\[A = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 3 & -2 \\ -1 & -4 & 6 \end{bmatrix}, \quad u_1 = \begin{bmatrix} 2 \\ 9 \\ -17 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 3 \\ 15 \\ 2 \end{bmatrix}, \quad v_1 = \begin{bmatrix} 8 \\ -8 \\ -4 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 5 \\ 0 \\ -7 \end{bmatrix}. \]

(a) The column space of \(A \) is the set of all vectors that are linear combinations of the columns of \(A \). Determine whether the vector \(u_1 \) is in the column space of \(A \) by determining whether \(u_1 \) is a linear combination of the columns of \(A \). Give the vector equation that you are trying to solve, and your row reduced augmented matrix. Be sure to tell whether \(u_1 \) is in the column space of \(A \) or not! Do this with a brief sentence.

(b) If \(u_1 \) IS in the column space of \(A \), give a specific linear combination of the columns of \(A \) that equals \(u_1 \).

(c) Repeat parts (a) and (b) for the vector \(u_2 \).

2. Again let

\[A = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 3 & -2 \\ -1 & -4 & 6 \end{bmatrix}, \quad u_1 = \begin{bmatrix} 2 \\ 9 \\ -17 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 3 \\ 15 \\ 2 \end{bmatrix}, \quad v_1 = \begin{bmatrix} 8 \\ -8 \\ -4 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 5 \\ 0 \\ -7 \end{bmatrix}. \]

The null space of \(A \) is all the vectors \(x \) for which \(Ax = 0 \), and it is denoted by \(\text{null}(A) \). This means that to check to see if a vector \(x \) is in the null space we need only to compute \(Ax \) and see if it is the zero vector. Use this method to determine whether either of the vectors \(v_1 \) and \(v_2 \) is in \(\text{null}(A) \). Give your answer as a brief sentence.