Performance Criteria:

8. (e) Determine whether a vector is in the column space or null space of a matrix, based only on the definitions of those spaces.

In this section we will define two important subspace associated with a matrix A, its column space and its null space.

DEFINITION 8.4.1: Column Space of a Matrix

The **column space** of an $m \times n$ matrix A is the span of the columns of A. It is a subspace of \mathbb{R}^m and we denote it by $\operatorname{col}(A)$.

♦ Example 8.4(a): Determine whether $\mathbf{u} = \begin{bmatrix} 3\\ 3\\ 8 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} -2\\ 5\\ 1 \end{bmatrix}$ are in the column space of A =

 $\left[\begin{array}{rrrr} 2 & 5 & 1 \\ -1 & -7 & -5 \\ 3 & 4 & -2 \end{array}\right].$

We need to solve the two vector equations of the form

$$c_1 \begin{bmatrix} 2\\-1\\3 \end{bmatrix} + c_2 \begin{bmatrix} 5\\-7\\4 \end{bmatrix} + c_3 \begin{bmatrix} 1\\-5\\-2 \end{bmatrix} = \mathbf{b},$$
(1)

with ${\bf b}$ first being ${\bf u},$ then ${\bf v}.$ The respective reduced row-echelon forms of the augmented matrices corresponding to the two systems are

1	0	-2	4		[1]	0	-2	0]
0	1	1	-1	and	0	1	1	0
0	0	0	0		0	0	$-2 \\ 1 \\ 0$	1

Therefore we can find scalars c_1 , c_2 and c_3 for which (1) holds when $\mathbf{b} = \mathbf{u}$, but not when $\mathbf{b} = \mathbf{v}$. From this we deduce that \mathbf{u} is in col(A), but \mathbf{v} is not.

Recall that the system $A\mathbf{x} = \mathbf{b}$ of m linear equations in n unknowns can be written in linear combination form:

	a_{11}		a_{12}		a_{1n}		b_1
	a_{21}		a_{22}		a_{2n}		b_2
x_1	÷	$+x_{2}$:	$+\cdots+x_n$:	=	
	a_{m1}		a_{m2}		a_{mn}		b_n

Note that the left side of this equation is simply a linear combination of the columns of A, with the scalars being the components of \mathbf{x} . The system will have a solution if, and only if, \mathbf{b} can be written as a linear combination of the columns of A. Stated another way, we have the following:

<u>THEOREM 8.4.2</u>: A system $A\mathbf{x} = \mathbf{b}$ has a solution (meaning *at least* one solution) if, and only if, **b** is in the column space of A.

Let's consider now only the case where m = n, so we have n linear equations in n unknowns. We have the following facts:

- If col(A) is all of \mathbb{R}^n , then $A\mathbf{x} = \mathbf{b}$ will have a solution for any vector \mathbf{b} . What's more, the solution will be unique.
- If col(A) is a proper subspace of \mathbb{R}^n (that is, it is not all of \mathbb{R}^n), then the equation $A\mathbf{x} = \mathbf{b}$ will have a solution if, and only if, \mathbf{b} is in col(A). If \mathbf{b} is in col(A) the system will have infinitely many solutions.

Next we define the **null space** of a matrix.

DEFINITION 8.4.3: Null Space of a Matrix

The **null space** of an $m \times n$ matrix A is the set of all solutions to $A\mathbf{x} = \mathbf{0}$. It is a subspace of \mathbb{R}^n and is denoted by null(A).

$$\diamond \text{ Example 8.4(b): Determine whether } \mathbf{u} = \begin{bmatrix} 1\\0\\4 \end{bmatrix} \text{ and } \mathbf{v} = \begin{bmatrix} 2\\-1\\1 \end{bmatrix} \text{ are in the null space of } A = \begin{bmatrix} 2 & 5 & 1\\-1 & -7 & -5\\3 & 4 & -2 \end{bmatrix}$$

A vector x is in the null space of a matrix A if Ax = 0. We see that

$A\mathbf{u} =$	$\begin{bmatrix} 2\\ -1\\ 3 \end{bmatrix}$	$5 \\ -7 \\ 4$	$\begin{bmatrix} 1\\ -5\\ -2 \end{bmatrix}$	$\begin{bmatrix} 1\\0\\4 \end{bmatrix}$	=	$\begin{bmatrix} 6 \\ -21 \\ 11 \end{bmatrix}$	and	$A\mathbf{v} =$	$\begin{bmatrix} 2\\ -1\\ 3 \end{bmatrix}$	$5 \\ -7 \\ 4$	$\begin{bmatrix} 1\\ -5\\ -2 \end{bmatrix}$	$\begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$] =	$\begin{bmatrix} 0\\0\\0 \end{bmatrix}$	
so ${f v}$ is in the								I	L		-	-	-		

Still considering only the case where m = n, we have the following fact about the null space:

• If $\operatorname{null}(A)$ is just the zero vector, A is invertible and $A\mathbf{x} = \mathbf{b}$ has a unique solution for any vector \mathbf{b} .

We conclude by pointing out the important fact that for an $m \times n$ matrix A, the null space of A is a subspace of \mathbb{R}^n and the column space of A is a subspace of .

Section 8.4 Exercises

1. Let

A =	$\begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix}$	$\begin{array}{c} 1\\ 3\\ -4 \end{array}$	$\begin{array}{c} 0 \\ -2 \\ 6 \end{array}$	$, \mathbf{u}_1 =$	$\left[\begin{array}{c}2\\9\\-17\end{array}\right]$,	$\mathbf{u}_2 =$	$\begin{bmatrix} 3\\15\\2 \end{bmatrix}$,	$\mathbf{v}_1 =$	$\begin{bmatrix} 8\\ -8\\ -4 \end{bmatrix}$],	$\mathbf{v}_2 =$	$\begin{bmatrix} 5\\0\\-7\end{bmatrix}$	
-----	--	---	---	---------------------	---	---	------------------	--	---	------------------	---	----	------------------	---	--

- (a) The column space of A is the set of all vectors that are linear combinations of the columns of A. Determine whether the vector \mathbf{u}_1 is in the column space of A by determining whether \mathbf{u}_1 is a linear combination of the columns of A. Give the vector equation that you are trying to solve, and your row reduced augmented matrix. Be sure to tell whether \mathbf{u}_1 is in the column space of A or not! Do this with a brief sentence.
- (b) If \mathbf{u}_1 IS in the column space of A, give a *specific* linear combination of the columns of A that equals \mathbf{u}_1 .
- (c) Repeat parts (a) and (b) for the vector \mathbf{u}_2 .
- 2. Again let

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 3 & -2 \\ -1 & -4 & 6 \end{bmatrix}, \quad \mathbf{u}_1 = \begin{bmatrix} 2 \\ 9 \\ -17 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 3 \\ 15 \\ 2 \end{bmatrix}, \quad \mathbf{v}_1 = \begin{bmatrix} 8 \\ -8 \\ -4 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 5 \\ 0 \\ -7 \end{bmatrix}$$

The null space of A is all the vectors \mathbf{x} for which $A\mathbf{x} = \mathbf{0}$, and it is denoted by null(A). This means that to check to see if a vector \mathbf{x} is in the null space we need only to compute $A\mathbf{x}$ and see if it is the zero vector. Use this method to determine whether either of the vectors \mathbf{v}_1 and \mathbf{v}_2 is in null(A). Give your answer as a brief sentence.