
8.5 Least Squares Solutions to Inconsistent Systems

Performance Criterion:

8. (f) Find the least-squares approximation to the solution of an inconsistent system
of equations. Solve a problem using least-squares approximation.

(g) Give the least squares error and least squares error vector for a least squares
approximation to a solution to a system of equations.

Recall that an inconsistent system is one for which there is no solution. Often we wish to solve inconsistent
systems and it is just not acceptable to have no solution. In those cases we can find some vector (whose components
are the values we are trying to find when attempting to solve the system) that is “closer to being a solution” than
all other vectors. The theory behind this process is part of the second term of this course, but we now have enough
knowledge to find such a vector in a “cookbook” manner.

Suppose that we have a system of equations Ax = b. Pause for a moment to reflect on what we know and what
we are trying to find when solving such a system: We have a system of linear equations, and the entries of A are
the coefficients of all the equations. The vector b is the vector whose components are the right sides of all the
equations, and the vector x is the vector whose components are the unknown values of the variables we are trying
to find. So we know A and b and we are trying to find x. If A is invertible, the solution vector x is given by
x = A−1 b. If A is not invertible there will be no solution vector x, but we can usually find a vector x̄ (usually
spoken as “ex-bar”) that comes “closest” to being a solution. Here is the formula telling us how to find that x̄:

Theorem 8.5.1: The Least Squares Theorem: Let A be an m × n matrix and
let b be in R

m. If Ax = b has a least squares solution x̄, it is given by

x̄ = (ATA)−1ATb

⋄ Example 8.5(a): Find the least squares solution to

1.3x1 + 0.6x2 = 3.3

4.7x1 + 1.5x2 = 13.5

3.1x1 + 5.2x2 = −0.1

.

First we note that if we try to solve by row reduction we get no solution; this is an overdetermined system because

there are more equations than unknowns. The matrix A and vector b are

A =







1.3 0.6

4.7 1.5

3.1 5.2






, b =







3.3

13.5

−0.1







Using a calculator or MATLAB, we get

x̄ = (ATA)−1ATb =

[

3.5526

−2.1374

]

A classic example of when we want to do something like this is when we have a bunch of (x, y) data pairs from
some experiment, and when we graph all the pairs they describe a trend. We then want to find a simple function
y = f(x) that best models that data. In some cases that function might be a line, in other cases maybe it is a
parabola, and in yet other cases it might be an exponential function. Let’s try to make the connection between this
and linear algebra. Suppose that we have the data points (x1, y1), (x2, y2), ..., (xn, yn), and when we graph these
points they arrange themselves in roughly a line, as shown below and to the left. We then want to find an equation
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of the form a+ bx = y (note that this is just the familiar y = mx+ b rearranged and with different letters for the
slope and y-intercept) such that a+ bxi ≈ yi for i = 1, 2, ..., n, as shown below and to the right.

(x1, y1)

(x2, y2)
(xn, yn)

x

y

(x1, y1)

(x2, y2)
(xn, yn)

y = a+ bx

x

y

If we substitute each data pair into a+ bx = y we get a system of equations which can be thought of in several
different ways. Remember that all the xi and yi are known values - the unknowns are a and b.

a+ x1b = y1
a+ x2b = y2

...
a+ xnb = yn

⇐⇒











1 x1

1 x2

...
1 xn











[

a

b

]

=











y1
y2
...
yn











⇐⇒ Ax = b

Above we first see the system that results from putting each of the (xi, yi) pairs into the equation a + bx = y.
After that we see the Ax = b form of the system. We must be careful of the notation here. A is the matrix whose
columns are a vector in R

n consisting of all ones and a vector whose components are the xi values. It would be

logical to call this last vector x, but instead x is the vector

[

a

b

]

. b is the column vector whose components

are the yi values. Our task, as described by this interpretation, is to find a vector x in R
2 that A transforms

into the vector b in R
n. Even if such a vector did exist, it couldn’t be given as x = A−1b because A is not

square, so can’t be invertible. However, it is likely no such vector exists, but we CAN find the least-squares vector

x̄ =

[

a

b

]

= (ATA)−1ATb. When we do, its components a and b are the intercept and slope of our line.

Theoretically, here is what is happening. Least squares is generally used in situations that are over determined.
This means that there is too much information and it is bound to “disagree” with itself somehow. In terms of systems
of equations, we are talking about cases where there are more equations than unknowns. Now the fact that the system
Ax = b has no solution means that b is not in the column space of A. The least squares solution to Ax = b is
simply the vector x̄ for which Ax̄ is the projection of b onto the column space of A. This is shown simplistically
below, for the situation where the column space is a plane in R

3.

Ax̄

b e

col(A)
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To recap a bit, suppose we have a system of equations Ax = b where there is no vector x for which Ax equals
b. What the least squares approximation allows us to do is to find a vector x̄ for which Ax̄ is as “close” to b as
possible. We generally determine “closeness” of two objects by finding the difference between them. Because both
Ax̄ and b are both vectors of the same length, we can subtract them to get a vector e that we will call the error
vector, shown above. The least squares error is then the magnitude of this vector:

Definition 8.5.2: If x̄ is the least-squares solution to the system Ax = b, the least
squares error vector is

~ε = b−Ax̄

and the least squares error is the magnitude of ~ε.

⋄ Example 8.5(b): Find the least squares error vector and least squares error vector for the solution obtained
in Example 8.5(a).

The least squares error vector is

~ε = b−Ax̄ =







3.3

13.5

−0.1






−







1.3 0.6

4.7 1.5

3.1 5.2







[

3.5526

−2.1374

]

=







−0.0359

0.0089

0.0016







The least squares error is ‖~ε‖ = 0.0370. ♠

Section 8.5 Exercises

1. Find the least squares approximating parabola for the points (1, 8), (2, 7), (3, 5), (4, 2). Give the system
of equations to be solved (in any form), and give the equation of the parabola.
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