
Linear Algebra I

Skills, Concepts and Applications

Gregg Waterman

Oregon Institute of Technology



c©2016 Gregg Waterman

This work is licensed under the Creative Commons Attribution 4.0 International license. The essence of the license
is that

You are free to:

• Share - copy and redistribute the material in any medium or format

• Adapt - remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

• Attribution - You must give appropriate credit, provide a link to the license, and indicate if changes
were made. You may do so in any reasonable manner, but not in any way that suggests the licensor
endorses you or your use.

No additional restrictions - You may not apply legal terms or technological measures that legally restrict
others from doing anything the license permits.

Notices:

You do not have to comply with the license for elements of the material in the public domain or where your
use is permitted by an applicable exception or limitation.

No warranties are given. The license may not give you all of the permissions necessary for your intended
use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.

For any reuse or distribution, you must make clear to others the license terms of this work. The best way
to do this is with a link to the web page below.

To view a full copy of this license, visit https://creativecommons.org/licenses/by/4.0/legalcode.

https://creativecommons.org/licenses/by/4.0/legalcode


Contents

1 Systems of Linear Equations 1
1.1 Linear Equations and Systems of Linear Equations . . . . . . . . . . . . . . . . 2

1.2 Curve Fitting, Temperature Equilibrium and Electric Circuits . . . . . . . . . . . 7

1.3 Solving Systems of Linear Equations . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Solving With Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5 “When Things Go Wrong” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.6 Back to Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.7 Chapter 1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

B Solutions to Exercises 203
B.1 Chapter 1 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

i



1 Systems of Linear Equations

Learning Outcome:

1. Solve systems of linear equations using Gaussian elimination, use systems of
linear equations to solve problems.

Performance Criteria:

(a) Determine whether an equation in n unknowns is linear.

(b) Set up a system of linear equations to find coefficients of a line or poly-
nomial through a given set of points, or to model flow in a network or
equilibrium temperatures in a solid object.

(c) Determine whether an n-tuple is a solution to a linear equation or a
system of linear equations.

(d) Solve a system of two linear equations by the addition method.

(e) Give the coefficient matrix and augmented matrix for a system of equa-
tions.

(f) Determine whether a matrix is in row-echelon form. Perform, by hand,
elementary row operations to reduce a matrix to row-echelon form.

(g) Determine whether a matrix is in reduced row-echelon form. Use tech-
nology to reduce a matrix to reduced row-echelon form.

(h) For a system of equations having a unique solution, determine the so-
lution from either the row-echelon form or reduced row-echelon form of
the augmented matrix for the system.

(i) Use a calculator to solve a system of linear equations having a unique
solution.

(j) Given the row-echelon or reduced row-echelon form of an augmented
matrix for a system of equations, determine the leading variables and
free variables of the system.

(k) Given the row-echelon or reduced row-echelon form for a system of equa-
tions:

• Determine whether the system has a unique solution, and give the
solution if it does.

• If the system does not have a unique solution, determine whether it
is inconsistent (no solution) or dependent (infinitely many solutions).

• If the system is dependent, give the general form of a solution and
give some particular solutions.

(l) Use systems of equations to solve network problems.
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1.1 Linear Equations and Systems of Linear Equations

Performance Criteria:

1. (a) Determine whether an equation in n unknowns is linear.

(b) Set up a system of linear equations to find coefficients of a line or poly-
nomial through a given set of points, or to model flow in a network or
equilibrium temperatures in a solid object.

(c) Determine whether an n-tuple is a solution to a linear equation or a
system of linear equations.

Linear Equations and Their Solutions

It is natural to begin our study of linear algebra with the process of solving systems of linear equations,
and applications of such systems.

Definition 1.1.1: A linear equation in n unknowns is an equation that can be
put in the form

a1x1 + a2x2 + a3x3 + · · ·+ anxn = b, (1)

where a1, a2, ..., an and b are known constants and x1, x2, ... , xn are unknown
values. A solution to a linear equation is a collection of values for the unknowns
that makes the equation true.

⋄ Example 1.1(a): Which of the equations

y = −2
3x+ 4 y = −16t2 + 61t+ 7 5.3x+ 7.2y + 1.4z = 16.9

a41x1 + a42x2 + · · · + a4nxn = b4,

where a11, a12, ..., a1n, b1 are all known numbers, are linear equations?

Solution: The first equation can be rewritten as 2
3x + y = 4, so it is a linear equation. The

second equation can be written −16t2 + 61t− y = −4, but the t2 prevents this from being a
linear equation. The third and fourth equations are in exactly the form (1), so they are linear.

A few comments are in order:

• For the third equation above we see that

5.3(1) + 7.2(2) + 1.4(−2) = 16.9,

so x = 1, y = 2 and z = −2 is a solution to 5.3x + 7.2y + 1.4z = 16.9. To save writing we
usually write such a solution as (1, 2,−2), a form you are likely familiar with.
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• The equation y = −2
3x+4 can also be rewritten as 2x+3y = 12 instead of 2

3x+ y = 4. An
(x, y) pair that is a solution to any one of the forms is also a solution to the other two (and any
pair that is NOT a solution to any one of them will not be a solution to the other two either).
We can multiply or divide both sides of a linear equation by a value in order to make it easier to
work with, if we wish.

• Although you may have used x and y, or x, y and z as the unknown quantities in the
past, like in the third equation above, we will often use x1, x2, ..., xn instead. Thus the third
equation could be written

5.3x1 + 7.2x2 + 1.4x3 = 15.9,

which is equivalent to the fourth equation with a41 = 5.3, a42 = 7.2, a43 = 1.4 and b4 = 15.9.
One obvious advantage to using the letter a for all of the numbers is that we don’t have to fret
about what letters to use, and there is no danger of running out of letters! You will eventually
see that there is also a very good mathematical reason for using just x (or some other single
letter), with subscripts denoting different values.

It is important that you easily recognize the form (1) from the definition of a linear equation. Soon
we will be interested in similar equations, but of the form

number · vector + number · vector + · · · + number · vector = vector.

We now move on to the concept that forms the beginning of our study of linear algebra:

Definition 1.1.2: A system of linear equations is a set of linear equations
containing the same unknowns. (Not every equation needs to contain every un-
known.) A solution to a system of linear equations is a collection of values for
the unknowns that makes every equation of the system true.

⋄ Example 1.1(b): Which of the following are systems of linear equations?

x+ 3y − 2z = −4
3x+ 7y + z = 4

−2x+ y + 7z = 7

x+ y2 = 3

x2 + y2 = 5

4t1 − t2 − t3 = 108

−t1 + 4t2 − t4 = 106

−t1 + 4t3 − t4 = 94

−t2 − t3 + 4t4 = 96

Solution: The first and third systems are systems of linear equations, the second is not. The
second is a system of nonlinear equations. One can verify that (3,−1, 2) is a solution to the
first system of equations.

Here we note the following:

• The first system in the previous example is a system of three equations in three unknowns. We
will spend a lot of time with such systems because they exhibit just about everything that we
would like to see but are small enough to be manageable to work with. As noted before, we will
often use x1, x2 and x3 instead of x, y and z for the unknowns.
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• The numbers that the unknowns are multiplied by are coefficients of the system. It is customary
to get the coefficient/unknown terms on the left, and the numbers not multiplying an unknown
on the right, as shown in the first and third (and second, for that matter) examples above. The
numbers without unknowns are often referred to as the “right hand sides.”

• One should note carefully the coefficients of the third system and how
they are arranged, as shown to the right. Later we will put some brackets
around such an array and call it a matrix. The fours are on what we will
call the diagonal of the matrix. (It seems that there is another diagonal
with zeros on it, but that diagonal, from lower left to upper right, has
no real significance. We therefore make no special note of what is going

4 −1 −1 0

−1 4 0 −1
−1 0 4 −1
0 −1 −1 4

on there.) In addition to noting the fours on the diagonal, we also need to make special note of
the way that the zeros and negative ones are arranged symmetrically across the diagonal. That
sort of pattern is commonly encountered in physical applications of systems of linear equations.

• When discussing a system of linear equations in general, we often use the following notation, given
for a system of m equations in n unknowns:

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

...

am1x1 + am2x2 + · · ·+ amnxn = bm

(2)

Here the aijs are the coefficients, with the first subscript of each giving the equation and the
second subscript giving which unknown x1, x2, ... it is with.

Systems of equations arise naturally in many engineering applications (as well as applications in
other areas like business). Some of the uses of systems of equations that we’ll work with are

• analysis of electric circuits

• equilibrium distribution of heat in solid materials

• stress and strain in solid materials

• linear regression (least-squares approximation)

You will begin exploring some of these applications in the exercises for this section and the next. There
are applications of other linear algebra concepts that we’ll see later, such as

• robotics and computer graphics

• sports and internet search rankings

• air travel routing

• signal processing
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Section 1.1 Exercises To Solutions

1. Which of the following equations are linear equations?

(a) 4x2 + 3y2 = 5 (b)
t1 + t2 + 83

4
= t3 (c) 3x1 − x2 + 4x3 = x2

(d) 4.3 = 1.7m + b (e) y =
√
10− x (f)

5

x
+

2

y
= 7

2. Which of the systems of equations below are linear?

x1 − x2 + x3 = 3

2x1 − x2 + 4x3 = 7

3x1 − 5x2 − x3 = 7

3x+ y − 2z = −4
5x + 4z = 3

x− y + 2z = 0

x2 − y = 3

x− y = 1

3. (a) Determine which of the following are solutions to the first system of equations in the previous
exercise: (5,−2, 4), (−2,−3, 2), (7, 3, 1)

(b) Determine which of the following are solutions to the second system of equations in the
previous exercise: (3,−19,−3), (−1, 3, 2), (5,−2, 4)

(c) Determine which of the following are solutions to the third system of equations in the previous
exercise: (2, 1), (3, 5), (−1,−2)

4. Consider the equation y = ax3 + bx2 + cx+ d, representing a third degree polynomial.

(a) Substitute the value −2 for x and 5 for y into y = ax3 + bx2 + cx+ d, and simplify
the result. Is the resulting equation linear?

(b) Substitute the values a = 7, b = −2, c = −5 and d = 1 into y = ax3 + bx2 + cx+ d.
Is the resulting equation linear?

5. It turns out that there is exactly one third degree polynomial with equation y = ax3 + bx2 +
cx+ d whose graph goes through the four points

(−2, 5) (−1, 2) (1, 3) (3, 0)

Substitute each of those pairs into the equation (one pair at a time) to obtain four equations in
the four unknowns a, b, c and d. Give your final system in the form (2). Once we know how
to solve such a system we can determine the values of a, b, c and d.

4

4
x

y

6. The graph to the right shows a plot of the five points with
coordinates

(1.2, 3.7) (2.5, 4.1) (3.2, 4.7) (4.3, 5.2) (5.1, 5.9).

You can see that there is no line containing them, but the points
are arranged somewhat linearly. In many applications it is de-
sirable to find the line that comes closest (in a sense to be
described later) to passing through all of the points. Substitute
each of the points individually into the equation y = mx+b to
obtain a system of five equations. (What are the unknowns?)
Give the system in the form (2).
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f1f4

f3 f2

n1n3

n4

n2

8

4

1

5

7. In many engineering applications we are interested in flow
through a network. The flow could consist of water or air
through pipes or ductwork (mechanical engineering), electrons
through a circuit (or current, electrical engineering) or automo-
biles on a raodway (civil engineering). Such a network can be
modeled by a set of nodes or vertices connected by arcs or
line segments, typically called edges. The guiding principle for
most such networks is simple: the flow into any node must equal
the flow out. The network to the right represents a traffic circle.
The numbers next to each of the paths leading into or out of the
circle are the net flows in the directions of the arrows, in vehicles
per minute, during the first part of lunch hour. The unknowns
f1, f2, f3 and f4 represent the flows in the corresponding arcs
of the traffic circle.

(a) The nodes of the network have been labeled n1, n2, n3 and n4. At node n1, “flow
in equals flow out” gives us f1 = f2 + 5. Rearranging this to get the unknowns on one
side with f1 positive, we get f1 − f2 = 5. Repeat at nodes n2, n3 and n4, with
the corresponding flows being positive in each case. That is, f2 should be positive in the
equation obtained at n2, and so on. Give the resulting system of equations.

(b) Determine which of the following “4-tuples” (an n-tuple is an ordered “tuple” or collection
of values, separated by commas) are solutions to the system that you obtained. Note that
this illustrates that a system can have more than one solution.

(12, 7, 8, 4) (7, 2, 3,−1) (10, 5, 6, 2) (9, 4, 3, 1)

(c) Which of the 4-tuples that you found to be a solution to your system would cause a problem
with the traffic circle? Explain.

(d) Suppose that f3 = 9. Just by looking at the traffic circle and using the “flow in equals
flow out, determine the other three flows.
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1.2 Curve Fitting, Temperature Equilibrium and Electric Circuits

Performance Criterion:

1. (b) Set up a system of linear equations to find coefficients of a line or poly-
nomial through a given set of points, or to model flow in a network or
equilibrium temperatures in a solid object.

Curve Fitting

Curve fitting refers to the process of finding a polynomial function of “minimal degree” whose graph
contains some given points. We all know that any two distinct points (that is, points that are not the
same) in R

2 have exactly one line through them. In a previous course you should have learned how to
find the equation of that line in the following manner. Suppose that we wish to find the equation of the
line through the points (2, 3) and (6, 1). We know that the equation of a line looks like y = mx + b,

where m and b are to be determined. m is the slope, which can be found by m =
3− 1

2− 6
=

2

−4 = −1
2 .

Therefore the equation of our line looks like y = −1
2x + b. To find b we simply substitute either of

the given ordered pairs into our equation (the fact that both pairs lie on the line means that either pair
is a solution to the equation) and solve for b: 3 = −1

2(2) + b =⇒ b = 4. The equation of the line
through (2, 3) and (6, 1) is then y = −1

2x+ 4.
We will now solve the same problem in a different way. A student should understand that whenever

a new approach to a familiar exercise is taken, there is something to be gained by it. Usually the new
method is in some way more powerful, and allows the solving of additional problems. This will be the
case with the following example, which uses a process you should have seen in a previous course, and
that we will review in detail in the next section.

⋄ Example 1.2(a): Find the equation of the line containing the points (6, 1) and (2, 3).

Solution: We are again trying to find the two constants m and b of the equation y = mx+ b.
Here we substitute the values of x and y from each of the two points into the equation y =
mx+b (separately, of course!) to get two equations in the two unknowns m and b. The resulting
system is then solved for m, then b.

1 = 6m+ b

3 = 2m+ b
=⇒ 1 = 6m+ b

−(3 = 2m+ b) 3 = 2(−1
2 ) + b

−2 = 4m =⇒ 3 = − 1 + b

−1
2 = m 4 = b

The equation of the line containing (6, 1) and (2, 3) is y = −1
2x+ 4.

The process of solving systems of two linear equations in two unknowns will be covered in more detail
in the next section.

The equation of a line is considered to be a first-degree polynomial, since the power of x in y = mx+b

is one. Note that when we have two points in the xy-plane we can find a first-degree polynomial whose
graph contains the points, and there is only one such line. Similarly, when given three points we can find
a second-degree polynomial (quadratic polynomial) whose graph contains the three points. In general,
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Theorem 1.2.1: Given n points in the plane such that (a) no two of them
have the same x-coordinate and (b) they are not collinear, we can find a unique
polynomial function of degree n− 1 whose graph contains the n points.

Often in mathematics we are looking for some object (solution) and we wish to be certain that such
an object exists. In addition, it is generally preferable that only one such object exists. We refer to
the first of these wishes as “existence,” and the second is “uniqueness.” If we have, for example, four
points meeting the two conditions of the above theorem, there would be infinitely many fourth degree
polynomials whose graphs would contain them, and the same would be true for fifth degree, sixth degree,
and so on. Additionally, a set of four points meeting the above conditions will likely NOT not have a
polynomial of degree two whose graph passes through all of them. But the theorem guarantees us that
there is one, and only one, third degree polynomial whose graph contains the four points. In Exercise
3 of the previous section you saw how to construct a system of linear equations whose solution gives
us the coefficients of the third degree polynomial whose graph contains four given points. In Example
1.4(e) we’ll see how to find such a polynomial, from start to finish.

Temperature Equilibrium

Consider the following hypothetical situation: We have a plate of metal that is perfectly insulated
on both of its faces so that no heat can get in or out of the faces. Each point on the edge (which we will
call the boundary), however, is held at a constant temperature (constant at that point, but possibly
differing from point to point). The temperatures at points on the boundary affect the temperatures at
interior points. If the plate is left alone for a long time (“infinitely long”), the temperature at each point
in the interior of the plate will reach a constant temperature, called the “equilibrium temperature.” This
equilibrium temperature at any given interior point is a weighted average of the temperatures at all
the boundary points, with temperatures at closer boundary points being weighted more heavily in the
average than the temperatures at boundary points that are farther away.

The task of trying to determine those interior temperatures based on the edge temperatures is
a famous problem of applied mathematics, called the Dirichlet problem (pronounced “dir-i-shlay”).
Finding the exact solution involves methods beyond the scope of this course, but we will use systems of
equations to solve the problem “numerically,” which means to approximate the exact solution, usually
by some non-calculus method. The key to solving the Dirichlet problem is the following:

Theorem 1.2.2: Mean Value Property

The equilibrium temperature at any interior point P is the average of the temper-
atures of all interior points on any circle centered at P .

We will solve what are called discrete versions of the Dirichlet problem, which means that we only
know the temperatures at a finite number of points on the boundary of our metal plate, and we will
only find the equilibrium temperatures at a finite number of the interior points. These finite points,
both on the boundary and in the interior, are usually evenly spaced on a rectangular grid. Consider
the plate shown in Figure 1.2(a) on the next page, with boundary temperatures known at the indicated
points. We can then construct a square grid in the interior of the plate, as shown in Figure 1.2(b). The
unknown temperatures at the mesh points of the grid are denoted by t1, t2, t3 and t4, as shown
in Figure 1.2(b). By the mean value property, the temperature t1 is the average of the temperatures
at all points on the circle shown in Figure 1.2(c). Such an average is obtained by an integral, but in
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our case we will simply average the temperatures at the four boundary and mesh points that are on the
circle. This gives us the equation

t1 =
61 + 68 + t2 + t3

4
.

68 65

53 50

61 59

55 52

Figure 1.2(a)

t1 t2

t3 t4

68 65

53 50

61 59

55 52

Figure 1.2(b)

t1 t2

t3

t4

68 65

53 50

61 59

55 52

Figure 1.2(c)

We can then find three more such equations for circles centered at the mesh points with temperatures
t2, t3 and t4. If we then multiply both sides of each equation by four, combine the two known
numerical values and get all of the unknowns on one side of each equation, we can obtain a system of
linear equations in the standard form. You will do this in the exercises at the end of the section.

Electric Circuits

We could spend a great deal of time that we don’t have on electric circuits, so here we’ll just
learn one method to get a system of linear equations modeling a circuit with constant voltage sources
(batteries) and resistors. An example of such a circuit is shown below and to the left. The lines indicate
wires that are connected at the dots, which are called principal nodes, and the portion of the circuit
between two principle nodes we’ll call a branch. A set of branches that can be placed end to end to
get from one node back to itself is called a loop.

+

−

+

−
V1

V2

R1

R2

R3

R4

R5

+

−

+

−
I1

I2

I3

V1

V2

R1

R2

R3

R4

R5

Each “zig-zag” is a resistor and the parallel long and short lines with + and − at either side are
batteries. Each resistor has a characteristic called its resistance, which is measured in ohms. Similarly,
each battery has a voltage, measured in ... volts! We will let V1 and V2 represent both the voltage
sources and their voltages, and R1 through R5 will represent both the indicated resistors and their
resistances.

The voltage sources cause something called current to flow in the circuit. Intuitively, we can think
of the voltage sources as “pumps” pushing current through the wires, like pushing water through pipes.
The resistors “resist” the flow of current. Our objective is to find the current in each branch of the
circuit. To find the current in each branch we will proceed as follows:
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1) Establish a clockwise or counterclockwise direction of current in each loop. If there is a voltage
source in a loop, establish the current in the direction from the negative side to the positive side.
If there is no voltage source, the current can be in either direction that you wish. (If you choose
the “wrong” direction you will simply obtain a negative value for the current.) The diagram above
and to the right shows currents established for each loop - we will use I for current.

2) The “voltage drop” across each resistor is given by Ohm’s Law, V = IR. Kirchoff’s Voltage
Law then tells us that the voltage supplied in a loop is equal to the sum of the voltage drops across
each of the resistors in the loop. When working in a loop and calculating the voltage drop across
a resistor shared with another loop, the current used is the one for the loop under consideration
plus or minus the current from the adjacent loop, depending on whether that current is going the
same, or the opposite, direction as the current in the loop under consideration. Write an equation
for each loop based on Kirchoff’s Voltage Law. If there is no voltage source in a loop, the voltage
supplied is zero.

3) Get each equation in the form aI1 + bI2 + cI3 = Vk, where k is the loop the equation was
obtained from.

4) Solve the system of equations.

In Section 1.4 we’ll see how to solve such systems; for now we will only complete steps 1, 2 and 3 above.

⋄ Example 1.2(b): Use the steps above to obtain a system of three equations that models the
circuit shown below and to the right.

+

−

+

−
I1

I2

I3

V1

V2

R1

R2

R3

R4

R5

Solution: For the loop with current I1 the voltage
supplied is V1. Going around the loop from the
battery the voltage drops are

I1R1, (I1 + I2)R4, (I1 − I3)R3.

Kirchoff’s Voltage Law then gives us

I1R1 + (I1 + I2)R4 + (I1 − I3)R3 = V1.

The equations for the other two loops are

I2R2 + (I2 + I1)R4 + (I2 + I3)R5 = 0

and
(I3 − I1)R3 + (I3 + I2)R5 = V2.

Putting each of our three equations in the form aI1 + bI2 + cI3 = Vk gives us

(R1 +R3 +R4)I1 + R4I2 − R3I3 = V1

R4I1 + (R2 +R4 +R5)I2 + R5I3 = 0

− R3I1 + R5I2 + (R3 +R5)I3 = V2
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It is worth noting the array of coefficients of the three unknowns I1, I2 and I3:

R1 +R3 +R4 R4 −R3

R4 R2 +R4 +R5 R5

−R3 R5 R3 +R5

Once again we see symmetry across the diagonal!
Let’s do another example with numerical values for the voltage and resistances:

⋄ Example 1.2(c): Find a system of equations that models the circuit below and to the right.

Solution: Here we establish the current I1 in a coun-
terclockwise direction in the left loop, and I2 in a
clockwise direction in the right loop, as shown in the
lower picture to the right. For the left loop we get the
equation

(I1 + I2)10 + 20I1 = 12

and, from the right loop,

30I2 + (I2 + I1)10 = 6.

Distributing the resistances and regrouping gives us the
system

30I1 + 10I2 = 12

10I1 + 40I2 = 6

−
+

−
+

12V 6V

20Ω

10Ω

30Ω

−
+

−
+

I1 I212V 6V

20Ω

30Ω

Section 1.2 Exercises To Solutions

1. Consider the four points (−1, 3), (1, 5), (2, 4) and (4,−1). By Theorem 1.2.1, there is a unique
third degree polynomial of the form

y = a+ bx+ cx2 + dx3 (1)

whose graph contains those four points.

(a) Substitute the x and y values from the first ordered pair into (1) and rearrange the
resulting equation so that it has all of the unknowns on the left and a number on the right,
like all of the linear equations we have worked with so far.

(b) Repeat (a) for the other 3 ordered pairs, and give the system of equations whose solution is
the four coefficients a, b, c and d.

2. Give a system of equations that can be solved to find the values of a, b and c for the quadratic
polynomial y = ax2 + bx+ c whose graph is the parabola passing through the points (−1,−4),
(1, 1) and (3, 0).
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t1 t2

t3 t4

68 65

53 50

61 59

55 52

3. To the right is a diagram of the metal plate described in the discussion
of the mean value property for temperature equilibrium. In this exercise
you will set up a system of equations whose solution gives the unknown
temperatures t1, t2, t3 and t4 at the four interior points.

(a) Applying the mean value property at the mesh point with temper-

ature t1 gave us the equation t1 =
61 + 68 + t2 + t3

4
. Multiply

both sides by four to eliminate the fraction, subtract t2 and
t3 from both sides and add 61 and 68. You should end up with
an equation of the form at1 + bt2 + ct3 + dt4 = e, where d = 0.

(b) Follow a similar process for each of the other three interior mesh points in order to obtain
a system of four equations in the four unknowns t1, t2, t3 and t4. In each equation one
of a, b, c or d will be zero, so each equation will actually only contain three of t1, t2,
t3 and t4.

(c) Although we can put the four equations in any order we want, arrange them so that the
coefficients of four are along the diagonal of the left side, as we saw in third system of
Example 1.1(b). Be sure that the remaining coefficients are symmetric about the diagonal.
If they are not, find and correct your error.

4. (a) Give the system of equations modeling the circuit below and to the left.

(b) Give the system of equations modeling the circuit below and to the right.

+

−
I1

I2

I3

20V

5Ω

10Ω

6Ω

8Ω

2Ω

1Ω

A

C B

Exercise 4(a)

+

−

+−

I1

I2

I3

12V

8V

4Ω

12Ω

8Ω

5Ω

2Ω

3Ω

Exercise 4(b)

(c) The solution to the circuit for Exercise 4(a) is I1 = 1.36 amperes, I2 = 0.39 amperes and
I3 = 0.81 amperes. Given this information, what is the current in the branch from point
A to point C? (Note that it is I1 and I2 combined, with the direction of each taken
into account.) Does the current flow from A to C, or from C to A?

(d) Again considering the circuit for Exercise 4(a) with the current values given above, what is
the current in the branch from point B to point C? Does the current flow from B to
C, or from C to B?
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1.3 Solving Systems of Linear Equations

Performance Criteria:

1. (d) Solve a system of two linear equations by the addition method.

Now that we know some applications of systems of equations, and how to set up systems for an
application, it is time we learn how to solve a system. In this section we remember how to solve a
system of two equations in two unknowns by the addition method, and extend the method to a system
of three equations in three unknowns. Then in Section 1.4, we will introduce the method that we will
use throughout the rest of the course.

Consider the system
x− 3y = 6

−2x+ 5y = −5 of linear equations. In this case a solution to the system

is an ordered pair (x, y) that makes both equations true. In the past you should have learned two
methods for solving such systems, the addition method and the substitution method. The method
we want to focus on is the addition method. In this case we could multiply the first equation by two

and add the resulting equation to the second. The result is
x− 3y = 6
−y = 7

; from this we can see

that y = −7. This value is then substituted into the first equation to get x = −15.
Sometimes we have to do something a little more complicated:

⋄ Example 1.3(a): Solve the system
2x− 4y = 18
3x+ 5y = 5

using the addition method.

Solution: Here we can eliminate x by multiplying the first equation by 3 and the second by
−2, then adding:

2x− 4y = 18
3x+ 5y = 5

=⇒ 6x− 12y = 54
−6x− 10y = −10

−22y = 44

y = −2
Now we can substitute this value of y back into either equation to find x:

2x− 4(−2) = 18
2x+ 8 = 18

2x = 10
x = 5

The solution to the system is then x = 5, y = −2, which we usually write as the ordered pair
(5,−2). It can be easily verified that this pair is a solution to both equations.

Let’s now solve an applied problem that uses a system of two equations.
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⋄ Example 1.3(b): The temperatures (in degrees Fahrenheit) at six
points on the edge of a rectangular plate are shown to the right. As-
suming that the temperatures in the plate have reached equilibrium, find
the interior temperatures t1 and t2 at their indicated “mesh points.”

t1

t2

15

15

60

45

45

30

Solution: The discrete version of the mean value property tells us that the equilibrium temperature
at any interior point of the mesh is the average of the four adjacent points. This gives us the two
equations

t1 =
15 + 45 + 60 + t2

4
and t2 =

15 + t1 + 45 + 30

4

If we multiply both sides of each equation by four, combine the constants and get the t1 and

t2 terms on the left side we get the system of equations
4t1 − t2 = 120
−t1 + 4t2 = 90

. Multiplying the

first equation by four and adding the result to the second gives us 15t1 = 570, from which we
find that t1 = 38. Substituting that into either equation and solving for t2 gives t2 = 32.
These values can easily be shown to verify our discrete mean value property:

15 + 45 + 60 + t2

4
=

15 + 45 + 60 + 32

4
= 38 = t1 ,

15 + t1 + 45 + 30

4
=

15 + 38 + 45 + 30

4
= 32 = t2

Geometric Interpretation

At the start of this section we saw that the system
x− 3y = 6

−2x+ 5y = −5 has the solution (−15,−7).
You should be aware that if we graph the equation x−3y = 6 we get a line. Technically speaking, what
we have graphed is the solution set, the set of all pairs (x, y) that make the equation true. Any pair
(x, y) of numbers that makes the equation true is on the line, and the (x, y) representing any point
on the line will make the equation true. If we plot the solution sets of both equations in the system

x− 3y = 6
−2x+ 5y = −5 together in the coordinate plane we will get two lines. Since (−15,−7) is

a solution to both equations, the two lines cross at the point with those coordinates! We could use
this idea to (somewhat inefficiently and possibly inaccurately) solve a system of two equations in two
unknowns:

⋄ Example 1.3(c): Solve the system
2x− 3y = −6
3x− y = 5

graphically.

Solution: We begin by solving each of the equations for y; this will give us the equations in
y = mx+ b form, for easy graphing. The results are

y = 2
3x+ 2 and y = 3x− 5

14



If we graph these two equations on the same graph, we get the
picture to the right. Note that the two lines cross at the point
(3, 4), so the solution to the system of equations is (3, 4), or
x = 3, y = 4.

5

5

-5

-5

y = 2

3
x+ 2

y = 3x− 5

(3, 4)

x

y

It is possible that two lines in the standard two-dimensional plane might be parallel; in that case a
system consisting of the two equations representing those lines will have no solution. It is also possible
that two equations might actually represent the same line, in which case the system consisting of those
two equations will have infinitely many solutions. Investigation of those two cases will lead us to more
complex considerations that we will avoid for now.

A System of Equations in Three Unknowns

The previous examples were two linear equations with two unknowns. Now we consider the following
system of three linear equations in three unknowns.

x+ 3y − 2z = −4
3x+ 7y + z = 4

−2x+ y + 7z = 7

(1)

We can use the addition method here as well; first we multiply the first equation by negative three and
add it to the second. We then multiply the first equation by two and add it to the third. This eliminates
the unknown x from the second and third equations, giving the second system of equations shown
below. We can then add 7

2 times the second equation to the third to obtain a new third equation
in which the unknown y has been eliminated. This “final” system of equations is shown to the right
below.

x+ 3y − 2z = −4
3x+ 7y + z = 4

−2x+ y + 7z = 7

=⇒
x+ 3y − 2z = −4
−2y + 7z = 16

7y + 3z = −1
=⇒

x+ 3y − 2z = −4
−2y + 7z = 16

55
2 z = 55

(2)

Above we have three different systems, each with three equations. The three systems are equivalent,
meaning that a solution to any one of them is also a solution to the other two. The point of the above
process is to obtain a system that is equivalent to the original but easier to solve. We can see that the
solution to the last equation of the third system is z = 2. That result is then substituted into the
second equation in the last system to get y = −1. Finally, we substitute the values of y and z into
the first equation to get x = 3. The solution to the system is then the ordered triple (3,−1, 2).
The process of finding the last unknown first, substituting it to find the next to last, and so on, is called
back substitution. The word “back” here means that we find the last unknown (in the order they
appear in the equations) first, then the next to last, and so on.

You might note that we could eliminate any of the three unknowns from any two equations, then
use the addition method with those two to eliminate another variable. However, we will always follow a
process that first uses the first equation to eliminate the first unknown from all equations but the first
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one itself. After that we use the second equation to eliminate the second unknown from all equations
from the third on, and so on. One reason for this is that if we were to create a computer algorithm to
solve systems, it would need a consistent method to proceed, and what we have done is as good as any.

What is the geometric interpretation of this? Since there are three unknowns, the appropriate
geometric setting is three-dimensional space. The solution set to any equation ax+ by + cz = d is a
plane in three-dimensional space, as long as not all of a, b and c are zero. Therefore, a solution to
the system is a point that lies on each of the planes representing the solution sets of the three equations.
For our example, then, the planes representing the three equations intersect at the point (3,−1, 2).

In the study of linear algebra we will be defining new concepts and developing corresponding notation.
We begin the development of notation with the following. The set of all real numbers is denoted by
R, and the set of all ordered pairs of real numbers is R

2, spoken as “R-two.” Geometrically, R
2 is

the familiar Cartesian coordinate plane. Similarly, the set of all ordered triples of real numbers is the
three-dimensional space referred to as R

3, “R-three.”
All of the algebra that we will be doing using equations with two or three unknowns can easily be

done with more unknowns. In general, when we are working with n unknowns, we will get solutions
that are n-tuples of numbers. Any such n-tuple represents a location in n-dimensional space, denoted
R
n. Note that a linear equation in two unknowns represents a line in R

2, in the sense that the set of
solutions to the equation forms a line. We consider a line to be a one-dimensional object, so the linear
equation represents a one-dimensional object in two-dimensional space. The solution set to a linear
equation in three unknowns is a plane in three-dimensional space. The plane itself is two-dimensional,
so we have a two-dimensional “flat” object in three dimensional space.

Similarly, when we consider the solution set of a linear equation in n unknowns, its solution set
represents an n − 1-dimensional “flat” object in n-dimensional space. When such an object has more
than two dimensions, we usually call it a hyperplane. Although such objects can’t be visualized, they
certainly exist in a mathematical sense.

Section 1.3 Exercises To Solutions

1. Solve each of the following systems by the addition method.

(a)
2x− 3y = −7
−2x+ 5y = 9

(b)
2x− 3y = −6
3x− y = 5

(c)
4x+ y = 14

2x+ 3y = 12

(d)
7x− 6y = 13

6x− 5y = 11
(e)

5x+ 3y = 7

3x− 5y = −23
(f)

5x− 3y = −11
7x+ 6y = −12

2. Solve each of the following systems by graphing, as done in Example 1.3(c).

(a)
3x− 4y = 8

x+ 2y = 6
(b)

4x− 3y = 9

x+ 2y = −6
(c)

5x+ y = 12

7x− 2y = 10
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1.4 Solving With Matrices

Performance Criteria:

1. (e) Give the coefficient matrix and augmented matrix for a system of equa-
tions.

(f) Determine whether a matrix is in row-echelon form. Perform, by hand,
elementary row operations to reduce a matrix to row-echelon form.

(g) Determine whether a matrix is in reduced row-echelon form. Use tech-
nology to reduce a matrix to reduced row-echelon form.

(h) For a system of equations having a unique solution, determine the so-
lution from either the row-echelon form or reduced row-echelon form of
the augmented matrix for the system.

(i) Use a calculator to solve a system of linear equations having a unique
solution.

Note that when using the addition method for solving the system of three equations in three un-
knowns in the previous section, the symbols x, y and z and the equal signs are simply “placeholders”
that are “along for the ride.” To make the process cleaner we can simply arrange the constants a, b,
c and d for each equation ax + by + cz = d in an array form called a matrix, which is simply a
table of values like





1 3 −2 −4
3 7 1 4
−2 1 7 7



 . (1)

Each number in a matrix is called an entry of the matrix. Each horizontal line of numbers in a matrix is
a row of the matrix, and each vertical line of numbers is a column. The size or dimensions of a matrix
is (are) given by first telling the number of rows, then the number of columns, with the × symbol
between them. The size of the above matrix is 3× 4, which we say as “three by four.”

Suppose that the above matrix came from the system of equations

x+ 3y − 2z = −4
3x+ 7y + z = 4

−2x+ y + 7z = 7

When a matrix represents a system of equations, as (1) does, it is called the augmented matrix of the
system. The matrix consisting of just the coefficients of x, y and z from each equation is called the
coefficient matrix:





1 3 −2
3 7 1
−2 1 7





We are not interested in the coefficient matrix at this time, but we will be later. The reason for the
name “augmented matrix” will also be seen later.

Once we have the augmented matrix, we can perform a process called row-reduction, which is
essentially what we did in the previous section, but we work with just the matrix rather than the system
of equations. The following example shows how this is done for the above matrix.
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⋄ Example 1.4(a): Solve the system

x+ 3y − 2z = −4
3x+ 7y + z = 4

−2x+ y + 7z = 7

from the previous section by

row-reduction.

Solution: We begin with the augmented matrix for the system, shown below and to the left. We
then add negative three times the first row to the second, and put the result in the second row.
Then we add two times the first row to the third, and place the result in the third. Using the
notation Rn (not to be confused with R

n!) to represent the nth row of the matrix, we can
symbolize these two operations as shown in the middle below. The matrix to the right below is
the result of those operations.





1 3 −2 −4
3 7 1 4
−2 1 7 7





−3R1 +R2 → R2

=⇒
2R1 +R3 → R3





1 3 −2 −4
0 −2 7 16
0 7 3 −1





Next we finish with the following:




1 3 −2 −4
0 −2 7 16
0 7 3 −1





7
2R2 +R3 → R3

=⇒





1 3 −2 −4
0 −2 7 16
0 0 55

2 55





The process just outlined is called row reduction. At this point we return to the equation form

x+ 3y − 2z = −4
0x− 2y + 7z = 16

0x+ 0y + 55
2 z = 55

and perform back-substitution. The last equation gives us that z = 2. We can than substitute
this value into the second equation to get −2y + 14 = 16, resulting in y = −1. These values
of y and z are substituted into the first equation which is then solved to get x = 3. The
solution to the system is then (3,−1, 2).

The final form of the matrix before we went back to equation form is something called row-echelon
form. (The word “echelon” is pronounced “esh-el-on.”) The first non-zero entry in each row is called a
leading entry; in this case the leading entries are the numbers 1, −2 and 55

2 . To be in row-echelon
form means that

• any rows containing all zeros are at the bottom of the matrix and

• the leading entry in any row is to the right of any leading entries above it.

⋄ Example 1.4(b): Which of the matrices below are in row-echelon form?





1 3 −2 −4
0 0 3 −5
0 7 −10 −1









2 6 −1 9 5
0 0 −8 1 −3
0 0 0 0 2









7 −12 5 0
0 0 0 0
0 −5 1 8





Solution: The leading entries of the rows of the first matrix are 1, 3 and 7. Because the leading
entry of the third row (7) is not to the right of the leading entry of the second row (3), the

18



first matrix is not in row-echelon form. In the third matrix, there is a row of zeros that is not at
the bottom of the matrix, so it is not in row-echelon form. The second matrix is in row-echelon
form.

Note that if we switch the second and third rows of the first and third matrices in the above example,
which we are usually allowed to do, then both will then be in row-echelon form.

It is possible to continue with the matrix operations to obtain something called reduced row-
echelon form, from which it is easier to find the values of the unknowns. The requirements for being
in reduced row-echelon form are the same as for row-echelon form, with the addition of the following:

• All leading entries are ones.

• The entries above any leading entry are all zero except perhaps in the last column.

Obtaining reduced row-echelon form requires more matrix manipulations, and nothing is really gained
by obtaining that form if you are doing this by hand. However, when using software or a calculator it
is most convenient to obtain reduced row-echelon form. Here are two examples of matrices in reduced
row-echelon form:





1 0 0 3
0 1 0 −7
0 0 1 4









1 6 0 9 0
0 0 1 2 0
0 0 0 0 1





In the next section we will see how to interpret what the second matrix would be telling us if it came
from a system of equations. The next example shows what the first matrix tells us.

⋄ Example 1.4(c): Suppose that the matrix to the right is the result of
row-reduction of the augmented matrix for a system of three equations in
the unknowns x1, x2 and x3. Determine the values of the unknowns.





1 0 0 3
0 1 0 −7
0 0 1 4





Solution: When using row-reduction to solve a system we first create the augmented matrix for
the system, then row-reduce it, and then we go back to equations. The equations we would return
to for the above matrix are

1x1 + 0x2 + 0x3 = 3
0x1 + 1x2 + 0x3 = −7
0x1 + 0x2 + 1x3 = 4

and from these we can easily see the solution: x1 = 3, x2 = −7 and x3 = 4.

In practice, very large systems are solved by row-reduction. Many issues arise when doing this. For
example, coefficients are often obtained from some sorts of measurements that give rounded values. At
every step of row-reduction more rounding needs to take place, resulting in rounding errors. Additionally,
matrices used in practice can have entries that cause introduction of other errors in the process of row-
reduction. We could spend an entire course examining such concerns, but instead we’ll focus on less
numerically oriented aspects of linear algebra.

That said, let’s look at one thing that can come up in the process of row-reduction, illustrated in
the following example.
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⋄ Example 1.4(d): Row-reduce the matrix





1 3 −2 −4
2 6 −1 −13
−1 4 −8 3



.

Solution: We begin by adding negative two times the first row to the second, and put the result
in the second row. Then we add two times the first row to the third, and place the result in the
third. Using the notation Rn (not to be confused with R

n!) to represent the nth row of the
matrix, we can symbolize these two operations as shown in the middle below. The matrix to the
right below is the result of those operations.





1 3 −2 −4
2 6 −1 −13
−1 4 −8 3





−2R1 +R2 → R2

=⇒
R1 +R3 → R3





1 3 −2 −4
0 0 3 −5
0 7 −10 −1





We can see that the matrix would be in row-echelon form if we simply switched the second and
third rows (which is equivalent to simply rearranging the order of our original equations), so that’s
what we do:





1 3 −2 −4
0 0 3 −5
0 7 −10 −1





R2 ←→ R3

=⇒





1 3 −2 −4
0 7 −10 −1
0 0 3 −5





The act of rearranging rows in a matrix is called permuting them. In general, a permutation of a
set of objects is simply a rearrangement of them. When solving a system by row-reduction, permuting
simply amounts to changing the order of the original equations, and doing so will not affect the solution
to the system.

Row Reduction Using Technology

There are three main technologies that can be used to get an augmented matrix into reduced
row-echelon form:

• Most or all graphing calculators (and the TI-36X Pro, a non-graphing calculator) will perform row
reduction via the rref function. Do a search to find an article or video on how to rref with your
particular model of calculator.

• There are numerous matrix calculators that can be found online - there is a link to one at the
class web page.

• Various mathematical software programs, like MATLAB, will perform row-reduction.

Now that we know how to solve systems of linear equations we can complete an application.

⋄ Example 1.4(e): Find the equation of the third degree polynomial containing the points

(−1,−7), (0, 1), (1, 5) and (2, 11).

Solution: A general third degree polynomial has an equation of the form y = ax3+bx2+cx+d;
our goal is to find values of a, b, c and d so that the given points all satisfy the equation.
Since the values x = −1, y = −7 must make the general equation true, we have −7 =
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a(−1)3 + b(−1)2 + c(−1) + d = −a+ b− c+ d. Doing this with all four given ordered pairs and
“flipping” each equation gives us the system

−a+ b− c+ d = −7
d = 1

a+ b+ c+ d = 5
8a+ 4b+ 2c+ d = 11

If we enter the augmented matrix for this system in our calculators and rref we get









−1 1 −1 1 −7
0 0 0 1 1
1 1 1 1 5
8 4 2 1 11









rref
=⇒









1 0 0 0 1
0 1 0 0 −2
0 0 1 0 5
0 0 0 1 1









So a = 1, b = −2, c = 5, d = 1, and the desired polynomial equation is y = x3− 2x2+5x+1.

Section 1.4 Exercises To Solutions

1. Give the coefficient matrix and augmented matrix for the system of equations

x + y − 3z = 1

−3x+ 2y − z = 7

2x+ y − 4z = 0

.

2. Determine which of the following matrices are in row-echelon form.

A =

[

3 −7 5 0 2 −4
0 0 0 −2 5 −1

]

B =





1 0 0 4
0 1 0 −2
0 0 1 5



 C =





1 0 0 4
0 1 0 −2
0 0 3 5





D =





0 0 4 4
0 1 −3 2
6 1 3 5



 E =













1 3 −5 10 −7
0 0 1 0 2
0 0 0 1 −4
0 0 0 0 1
0 0 0 0 0













F =













1 3 0 0 −7
0 0 1 0 2
0 0 0 1 −4
0 0 0 0 1
0 0 0 0 0













3. Determine which of the matrices in Exercise 2 are in reduced row-echelon form.

4. Perform the first two row operations for the augmented matrix from Exercise 1, to get zeros in
the bottom two entries of the first column.

5. Fill in the blanks in the second matrix with the appropriate values after the first step of row-
reduction. Fill in the long blanks with the row operations used.

(a)




1 5 −7 3
−5 3 −1 0
4 0 8 −1



 =⇒



 0
0
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(b)




2 −8 −1 5
0 −2 0 0
0 6 −5 2





=⇒


 0
0 0





(c)




1 −2 4 1
0 3 5 −2
0 2 −8 1





=⇒


 0
0 0





6. Find x, y and z for the system of equations that reduces to each of the matrices shown.

(a)





1 6 −2 7
0 8 1 0
0 0 −2 8



 (b)





1 6 −2 7
0 2 −5 −13
0 0 3 3



 (c)





1 0 0 7
0 3 0 0
0 0 −4 8





7. Use row operations (by hand) on an augmented matrix to solve each system of equations.

(a)
x− 2y − 3z = −1
2x+ y + z = 6
x+ 3y − 2z = 13

(b)
−x− y + 2z = 5
2x+ 3y − z = −3
5x− 2y + z = −10

(c)
x+ 2y + 4z = 7
−x+ y + 2z = 5
2x+ 3y + 3z = 7

8. Use the rref capability of your calculator to solve each of the systems from the previous exercise.

9. Temperatures at points along the edges of a rectangular plate are as shown below and to the left.
Find the equilibrium temperature at each of the interior points, to the nearest tenth.

t1 t2 t3

t4 t5 t6

47

51

66

62

52 58 63

55 57 60

Exercise 9

t1

t2

t3

t4

10

15

20

25

10

15

20

25

5

30
Exercise 10

10. Consider the rectangular plate with boundary temperatures shown below and to the right of
Exercise 9.

(a) Intuitively, what do you think that the equilibrium temperatures t1, t2, t3 and t4 are?

(b) Set up a system of equations and find the equilibrium temperatures. How was your intuition?

11. Look at your solutions and the boundary temperatures for Exercises 9 and 10. For each plate,
look at where the maximum and minimum temperatures occur. What can we say in general about
the locations of the maximum and minimum temperatures? Can you see how this is implied by
the Mean Value Property?
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12. For the diagram to the right, the mean value property still holds, even
though the plate in this case is triangular. Find the interior equilibrium
temperatures, rounded to the nearest tenth.

60◦

60◦

60◦

40◦ 40◦ 40◦

20◦

20◦

20◦

t1

t2 t3

13. (a) Plot the points (−4, 0), (−2, 2), (0, 0), (2, 2) and (3, 0) neatly on an xy grid. Sketch the
graph of a polynomial function with the fewest number of turning points (“humps”) possible
that goes through all the points. What is the degree of the polynomial function?

(b) Find a fourth degree polynomial y = a0+ a1x+ a2x
2+ a3x

3+ a4x
4 that goes through the

given points.

(c) Graph your function from (b) on your calculator and sketch it, using a dashed line, on your
graph from (a). Is the graph what you expected?

14. (a) Find the currents I1 and I2 in the circuit with the diagram shown below and to the left.

(b) What is the value of the current through the 4 ohm resistor, and does it flow from A to
B, or from B to A?

+

+

2Ω

1Ω 3Ω

4Ω

24V

30V
I1I1

I2 I2

A B

Exercise 14

+

+

3Ω

1Ω 4Ω

1Ω

V2

12V
I1I1

I2 I2

A B

Exercise 15

15. Consider the circuit shown to the right below Exercise 14.

(a) Find the currents I1, I2 and I3 when the voltage V2 is 6 volts, rounded to the tenth’s
place.

(b) Does the current in the middle branch of the circuit flow from A to B, or from B to A?

(c) Find the currents I1, I2 and I3 when the voltage V2 is 24 volts, rounded to the tenth’s
place.

(d) Does the current in the middle branch of the circuit flow from A to B, or from B to A?

(e) Determine the voltage needed for V2 in order that no current flows through the middle
branch. (You might wish to row reduce by hand for this...)
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16. In this exercise you will find the currents in the circuit from Exercise 14 (shown to the left below)
by a slightly different manner. Rather than working with just the currents I1 and I2 and then
adding them to find the current from A to B, We will begin with another unknown current
I3, as shown in the diagram to the right below.

+

+

2Ω

1Ω 3Ω

4Ω

24V

30V
I1I1

I2 I2

A B

+

+

2Ω

1Ω 3Ω

4Ω

24V

30V
I1I1

I3

I2 I2

I3
A

(a) Set up equations for both the upper and lower loops as before, but use I3 as the current
through the 4 ohm resistor, rather than I1+I2. This will give you two equations with three
unknowns in them, I1, I2 and I3.

(b) We need one more equation, which we get as follows: The current into node A must equal
the current out. Use this to write an equation, then get all of I1, I2 and I3 on one side.

(c) Solve your system to get the three currents.

17. The equation of a non-vertical plane in R
3 can always be written in the form z = a + bx + cy,

where a, b and c are constants and (x, y, z) is any point on the plane. Use a method similar
to the method for finding the equation of a polynomial through a given set of points to find the
equation of the plane through the three points P1(−5, 0, 2), P2(4, 5,−1) and P3(2, 2, 2). Use
your calculator’s rref command to solve the system. Round a, b and c to the thousandth’s
place.
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1.5 “When Things Go Wrong”

Performance Criteria:

1. (j) Given the row-echelon or reduced row-echelon form of an augmented
matrix for a system of equations, determine the leading variables and
free variables of the system.

(k) Given the row-echelon or reduced row-echelon form for a system of equa-
tions:

• Determine whether the system has a unique solution, and give the
solution if it does.

• If the system does not have a unique solution, determine whether it
is inconsistent (no solution) or dependent (infinitely many solutions).

• If the system is dependent, give the general form of a solution and
give some particular solutions.

Consider the three systems of equations

x− 3y = 6
−2x+ 5y = −5

x− 2y = 3
−2x+ 4y = 1

x− 2y = 3
−2x+ 4y = −6

For the first system, if we multiply the first equation by 2 and add it to the second, we get −y = 7,
so y = −7. This can be substituted into either equation to find x = −15, and the system is solved!

When attempting to solve the second and third systems, things do not “work out” in the same way.
In both cases we would likely attempt to eliminate x by multiplying the first equation by two and
adding it to the second. For the second system this results in 0 = 7 and for the third the result is
0 = 0. So what is happening? Let’s keep the unknown value y in both equations: 0y = 7 and
0y = 0. There is no value of y that can make 0y = 7 true, so there is no solution to the second
system of equations. We call a system of equations with no solution inconsistent.

The equation 0y = 0 is true for any value of y, so y can be anything in the third system of
equations. Thus we will call y a free variable, meaning it is free to have any value. In this sort of
situation we will assign another unknown, usually t, to represent the value of the free variable. (If there
is another free variable we usually use s and t for the two free variables.) Once we have assigned the
value t to y, we can substitute it into the first equation and solve for x to get x = 2t+ 3.

What all this means is that any ordered pair of the form (2t+ 3, t) will be a solution to the third
system of equations above. For example, when t = 0 we get the ordered pair (3, 0), when t = −6 we
get (−9,−6). You can verify that both of these are solutions, as are infinitely many other pairs. At
this point you might note that we could have made x the free variable, then solved for y in terms of
whatever variable we assigned to x. It is standard convention, however, to start assigning free variables
from the last variable, and you will be expected to follow that convention in this class. A system like
this, with infinitely many solutions, is called a dependent system.

The fundamental fact that should always be kept in mind is this.
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Solutions to a System of Equations

Every system of linear equations has either

• one unique solution

• no solution (the system is inconsistent)

• infinitely many solutions (the system is dependent)

In the context of both linear algebra and differential equations, mathematicians are always concerned
with “existence and uniqueness.” What this means is that when attempting to solve a system of equations
or a differential equation, one cares about

1) whether at least one solution exists and

2) if there is at least one solution, is there exactly one; that is, is the solution unique?

We’ll now see if we can learn to recognize which of the above three situations is the case, based on
the row-echelon or reduced row-echelon form of the augmented matrix of a system. If the three systems
we have been discussing are put into augmented matrix form and row reduced we get

[

1 0 −15
0 1 −7

] [

1 −2 0
0 0 1

] [

1 −2 3
0 0 0

]

It should be clear that the first matrix gives us the unique solution to that system. The second line of
the second matrix “translates” back to the equation 0x+0y = 7, which clearly cannot be true for any
values of x or y. So that system has no solution.

If the row reduced augmented matrix for a system has any row with entries all
zeros EXCEPT the last one, the system has no solution. The system is said to be
inconsistent.

We now consider the third row reduced matrix. The last line of it “translates” to 0x + 0y = 0,
which is true for any values of x and y. That means we are free to choose the value of either one
but, as discussed before, it is customary to let y be the free variable. So we let y = t and substitute
that into the equation x− 2y = 3 represented by the first line of the reduced matrix. As before, that
is solved for x to get x = 2t + 3. The solutions to the system are then x = 2t + 3, y = t for all
values of t.

Of the three cases (1) exactly one solution, (2) no solution, (3) infinitely many solutions, the third
case is the most challenging to interpret in most situations. As an introduction, let’s consider the system
shown below and to the left; its augmented matrix reduces to the form shown below and to the right.

x1 − x2 + x3 = 3

2x1 − x2 + 4x3 = 7

3x1 − 5x2 − x3 = 7





1 0 3 4
0 1 2 1
0 0 0 0





We now make the following definitions:
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• The leading variables are the variables corresponding to the columns of the reduced matrix
containing the first non-zero entries (always ones for reduced row-echelon form) in each row. For
the above system the leading variables are x1 and x2.

• Any variables that are not leading variables are free variables, so x3 is the free variable in the
above system. This means it is free to take any value.

It is a bit difficult to explain how to solve systems with infinitely many solutions, and it is probably
best seen by some examples. However, let me try to describe it. Start with the last variable and solve
for it if it is a leading variable. If it is not, assign it a parameter, like t. If the next to last variable
is a leading variable solve for it, either as a number or in terms of the parameter assigned to the last
variable. Continue in this manner until all variables have been determined as numbers or in terms of
parameters.

⋄ Example 1.5(a): Solve the system

x1 − x2 + x3 = 3

2x1 − x2 + 4x3 = 7

3x1 − 5x2 − x3 = 7

Solution: The row-reduced form of the augmented matrix for this system is





1 0 3 4
0 1 2 1
0 0 0 0



 .

In this case the leading variables are x1 and x2. Any variables that are not leading variables are
free variables, so x3 is the free variable in this case. If we let x3 = t, the last non-zero row gives
the equation x2 + 2t = 1, so x2 = −2t+ 1. The first row gives the equation x1 + 3x3 = 4,
so x1 = −3t+ 4 and the final solution to the system is

x1 = −3t+ 4, x2 = −2t+ 1, x3 = t

We can also think of the solution as being any ordered triple of the form (−3t+ 4,−2t+ 1, t).

⋄ Example 1.5(b): A system of three equations in the four variables x1, x2, x3 and x4 gives the
row-reduced matrix





1 0 3 0 −1
0 1 −5 0 2
0 0 0 1 4





Give the general solution to the system.

Solution: The leading variables are x1, x2 and x4. Any variables that are not leading variables
are the free variables, so x3 is the free variable in this case. We can see that the last row gives
us x4 = 4. Letting x3 = t, the second equation from the row-reduced matrix is x2 − 5t = 2, so
x2 = 5t + 2. The first equation is x1 + 3t = −1, giving x1 = −3t− 1. The final solution to
the system is then

x1 = −3t− 1, x2 = 5t+ 2, x3 = t, x4 = 4,

or (−3t− 1, 5t + 2, t, 4).
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The solutions given in the previous two examples are called general solutions, because they tell us
what any solution to the system looks like in the cases where there are infinitely many solutions. We can
also produce some specific numbers that are solutions as well, which we will call particular solutions.
These are obtained by simply letting any parameters take on whatever values we want.

⋄ Example 1.5(c): Give three particular solutions to the system in Example 1.5(a).

Solution: If we take the easiest choice for t, zero, we get the particular solution (4, 1, 0). Letting
t equal negative one and one gives us the particular solutions (7, 3,−1) and (1,−1, 1).

The following examples show a situation in which there are two free variables, and one in which there
is no solution.

⋄ Example 1.5(d): A system of equations in the four variables x1, x2, x3 and x4 that has the
row-reduced matrix





1 2 0 −1 2
0 0 1 −2 3
0 0 0 0 0





Give the general solution and four particular solutions.

Solution: In this case the leading variables are x1 and x3, and the free variables are x2 and x4.
We begin by letting x4 = t; we have the equation x3− 2t = 3, giving us x3 = 2t+3. Since x2 is
a free variable, we call it something else. t has already been used, so let’s say x2 = s. The first
equation indicated by the row-reduced matrix is then x1+2s− t = 2, giving us x1 = −2s+ t+2.
The solution to the corresponding system is

x1 = −2s+ t+ 2, x2 = s, x3 = 2t+ 3, x4 = t

If we let s = 0 and t = 0 we get the solution (2, 0, 3, 0), and if we let s = 2 and t = −1 we get
(−3, 2, 1,−1). Letting s = 0 and t = 1 gives the particular solution (3, 0, 5, 1) and letting s = 1
and t = 0 gives the particular solution (0, 1, 3, 0).

The values used for the parameters in Examples 1.5(c) and (d) were chosen arbitrarily; any values
can be used for s and t.

⋄ Example 1.5(e): A system of equations in the four variables x1, x2, x3 and x4 has the
row-reduced matrix





1 2 0 −1 2
0 0 1 −2 3
0 0 0 0 5





Solve the system.

Solution: Since the last row is equivalent to the equation 0x1 + 0x2 + 0x3 + 0x4 = 5, which
has no solution, the system itself has no solution.
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Section 1.5 Exercises To Solutions

1. Consider the system of equations

2x− 4y − z = −4
4x− 8y − z = −4
−3x+ 6y + z = 4

.

(a) Determine which of the following ordered triples are solutions to the system of equations:

(6, 3, 4) (3,−1, 4) (0, 0, 4) (−2,−1, 4) (5, 2, 0) (2, 1, 4)

Look for a pattern in the ordered triples that ARE solutions. Try to guess another solution,
and test your guess by checking it in all three equations. How did you do?

(b) When you tried to solve the system using your calculator, you should have gotten the reduced
echelon matrix as





1 −2 0 0
0 0 1 4
0 0 0 0



 .

Give the system of equations that this matrix represents. Which variable can you determine?

(c) It is not possible to determine y, so we simply let it equal some arbitrary value, which we
will call t. So at this point, z = 4 and y = t. Substitute these into the first equation
and solve for x. Your answer will be in terms of t. Write the ordered triple solution to the
system.

NOTE: The system of equations you obtained in part (b) and solved in part (c) has infinitely
many solutions, but we do know that every one of them has the form (2t, t, 4). Note how this
explains the results of part (a).

2. The reduced echelon form of the matrix for the system

3x− 2y + z = −7
2x+ y − 4z = 0

x+ y − 3z = 1

is





1 0 −1 −1
0 1 −2 2
0 0 0 0



 .

(a) Give the free variable(s) and leading variable(s).

(b) In this case, z cannot be determined, so we let z = t. Now solve for y, in terms of t. Then
solve for x in terms of t.

(c) Pick a specific value for t and substitute it into your general form of a solution triple for the
system. Check it by substituting it into all three equations in the original system.

(d) Repeat (b) for a different value of t.
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3. The reduced echelon forms of some systems are given below.

• If the system has a unique solution, give it. If the system has no solution, say so.

• If the system has infinitely many solutions, give the general solution in terms of parameters
s, t, etc., then give two particular solutions.

(a)





1 0 −1 0 4
0 1 2 0 −5
0 0 0 1 3



 (b)





1 3 0 0 5
0 0 1 0 1
0 0 0 1 −4





(c)





1 −3 0 1 −4
0 0 1 −2 5
0 0 0 0 0



 (d)





1 0 1 5
0 1 2 −3
0 0 0 1





(e)





1 0 −2 1 6
0 1 3 5 −3
0 0 0 0 0



 (f)





1 0 0 −1
0 1 0 2
0 0 1 0





(g)





1 2 −1 1
0 0 0 0
0 0 0 0



 (h)





1 4 −1 0 −2
0 0 0 1 7
0 0 0 0 1





(i)









1 5 0 0 2
0 0 1 0 1
0 0 0 1 −4
0 0 0 0 0









4. Give four particular solutions from the general solution of Example 1.5(b), which had general
solution (−3t− 1, 5t + 2, t, 4).

5. For the systems whose augmented matrices row reduce to the forms shown below, do one of the
following:

• If the system has a unique solution, give it. If the system has no solution, say so.

• If the system has infinitely many solutions, give the general solution in terms of parameters
s, t, etc., then give two particular solutions.





1 1 −1
0 0 2
0 0 0









1 2 −1 0 5
0 0 0 1 −4
0 0 0 0 0
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1.6 Back to Applications

Performance Criterion:

1. (l) Use systems of equations to solve network problems.

The concept of a network was introduced in Exercise 7 of Section 1.1. To review, a network is a
set of junctions, which we’ll call nodes, connected by what could be called pipes, or wires, but which
we’ll call directed edges. The word “directed” is used to mean that we’ll assign a direction of flow to
each edge. There will also be directed edges coming into or leaving the network. It is probably easiest
to just think of a network of plumbing, with water coming in at perhaps several places, and leaving at
several others.

Our study of networks will be based on one simple idea, known as conservation of flow:

At each node of a network, the flow into the node must equal the flow out.

⋄ Example 1.6(a): A one-node network is shown to the right. Find the
unknown flow f .

Solution: The flow in is 20 + f and the flow out is 45 + 30, so we
have

20 + f = 45 + 30.

Solving, we find that f = 55.

f

30
45

20

⋄ Example 1.6(b): Another one-node network is shown to the right.
Find the unknown flow f .

Solution: The flow in is 70 + f and the flow out is 15 + 30, so we
have

70 + f = 15 + 30.

Solving, we find that f = −25, so the flow at the arrow labeled f is
actually in the direction opposite to the arrow.

f

30
15

70

When setting up a network we must commit to a direction of flow for any edges in which the flow is
unknown, but when solving the system we may find that the flow is in the opposite direction from the
way the edge was directed initially, as we just saw. We may also have less information than we did in
the previous two examples, as shown by the next example.
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⋄ Example 1.6(c): For the one-node network is shown to the right, find
the unknown flow f1 in terms of the flow f2.

Solution: By conservation of flow,

50 + f2 = f1 + 35.

Solving for f1 gives us f1 = f2+15. Thus if f2 was 10, f1 would
be 25 (look at the diagram and think about that), if f2 was 45,
f1 would be 60, and so on.

f2

35
f1

50

The previous example represents, in an applied setting, the idea of a free variable. In this example
either variable can be taken as free, but if we know the value of one of them, we’ll “automatically” know
the value of the other. The way the example was worded, we were taking f2 to be the free variable,
with the value of f1 then depending on the value of f2.

The systems in these first three examples have been very simple; let’s now look at a more complex
system.

⋄ Example 1.6(d): Determine the flows f1, f2, f3 and f4 in
the network shown to the right.

Solution: Utilizing conservation of flow at each node, we get
the equations

30 + 15 = f1 + f2, 70 + f2 = f3,

f1 = 40 + f4, f3 + f4 = 20 + 55

Rearranging these give us the system of equations shown below
and to the left. The augmented matrix for this system reduces
to the matrix shown below and to the right.

f1

f2
f3

f4

30
15

70

40

55

20

f1 + f2 = 45
f2 − f3 = −70

f1 − f4 = 40
f3 + f4 = 75

=⇒









1 1 0 0 45
0 1 −1 0 −70
1 0 0 −1 40
0 0 1 1 75









=⇒









1 0 0 −1 40
0 1 0 1 5
0 0 1 1 75
0 0 0 0 0









From this we can see that f4 is a free variable, so lets say it has value t. The solution to the
network is then

f1 = 40 + t, f2 = 5− t, f3 = 75 − t, f4 = t,

where t is the flow f4.

Underdetermined and Overdetermined Systems

Let’s think a bit more about this last example. Suppose that f4 = t = 0. The equations given as
the solution to the network then give us f1 = 40, f2 = 5, f3 = 75. We can see this without even
solving the system of equations. Looking at the node in the lower right, if f4 = 0 one can easily see
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that f3 must be 75 in order for the flow in to equal the flow out. Knowing f3, we can go to the
node in the lower left and see that f2 = 5. Finally, f2 = 5 gives is f1 = 40. The information
given originally was not sufficient to determine the values of the flows f1, f2, f3 and f4. In such a
case, we sometimes say that the system is undetermined, meaning that there is too little information
to guarantee a single solution. We just saw that with one more piece of information, the value of f4,
all of the remaining flows were then determined by that value.

Now consider the situation described in Exercise 6 of Section 1.1. Given the points

(1.2, 3.7) (2.5, 4.1) (3.2, 4.7) (4.3, 5.2) (5.1, 5.9)

we wish to find the equation y = mx + b of a line containing them. Substituting each pair into
y = mx+ b gives us the system shown below and to the left.

1.2m + b = 3.7
2.5m + b = 4.1
3.2m + b = 4.7
4.3m + b = 5.2
5.1m + b = 5.9

=⇒













1.2 1 3.7
2.5 1 4.1
3.2 1 4.7
4.3 1 5.2
5.1 1 5.9













rref
=⇒













1 0 0
0 1 0
0 0 1
0 0 0
0 0 0













4

4
x

y

When we row-reduce the augmented matrix for this system, we get the last matrix above, indicating
that the system has no solution. The five points are plotted above and to the right, and we can see
that they are not on a line, which is why we were not able to solve the system. In this case the system
is overdetermined, meaning that there is too much information to allow a solution to the system.

You might think “Well, why not just use less data, so that the resulting system has a solution?”
Well the additional data gives us some redundancy that can give us better results if we know how to
deal with it. The way out of this problem is a method called least-squares, which we’ll see later. It is
a method for dealing with systems that don’t have solutions. What it allows us to do is obtain values
that are in some sense the “closest” values there are to an actual solution. Again, more on this later.

Section 1.6 Exercises To Solutions

f1f2

f3 f4

8

18

f5

f6

1. The network to the right represents a traffic circle. The numbers
next to each of the paths leading into or out of the circle are the
net flows in the directions of the arrows, in vehicles per minute,
during the first part of lunch hour.

(a) Suppose that f3 = 7 and f5 = 4. You should be able
to work your way around the circle, eventually figuring out
what each flow is. Do this.

(b) Now assume that the only flows you know are the ones shown in the diagram. When you
set up a system of equations, based on the flows in and out of each junction, how many
equations will you have? How many unknowns?

(c) Go ahead and set up the system of equations. Give the augmented matrix and the reduced
matrix (obtained with your calculator), and then give the general solution to the system.

(d) Choose the value(s) of the parameter(s) that make f3 = 7 and f5 = 4, then find the
resulting particular solution. If your answers do not match what you got for part (a), go
back and check your work for (c).

(e) What restriction(s) is(are) there on the parameter(s), in order that all flows go in the direc-
tions indicated. (Allow a flow of zero for each flow as well.)
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2. For another traffic circle, a student uses the diagram shown to the
right and obtains the flows given below, in vehicles per minute.

f1 = t− 8, f2 = t+ 3, f3 = t− 5, f4 = t

(a) Determine the minimum value of t that makes each of
f1 through f4 zero or greater. Give the minimum allow-
able values for each flow, in the form fi ≥ a, assuming that
no vehicles ever go the wrong way around a portion of the cir-
cle. Remember that setting a value for any flow determines all
the other flows. You may neglect units.

f1f2

f3 f4

fa

fb

fc

fd

(b) Give each of the flows f1 through f4 when the flow in the northeast quarter (f1) is 12
vehicles per minute. You may neglect units.

(c) Determine each of the flows fa through fd, still for f1 = 12. You should be able to do
this based only on the four equations given. At least one of them will be negative, indicating
that the corresponding arrow(s) should be reversed.
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1.7 Chapter 1 Exercises

1. Consider the system of equations below and to the right. Solve
the system by Gaussian elimination (get in row-echelon form,
then perform back substitution), by hand (no calculator). Show
all steps, including what operation was performed for each step.
Hint: You may find it useful to put the equations in a different
order before forming the augmented matrix.

5x− y + 2z = 17

x+ 3y − z = −4
2x+ 4y − 3z = −9

2. Find the equation of the parabola through the points (0, 3), (1, 4) and (3, 18).

3. Consider the points (1, 5), (2, 2), (4, 3) and (5, 4).

(a) What is the smallest degree polynomial whose graph will contain all of these points?

(b) Find the polynomial whose graph contains all the points.

(c) Check by graphing on your calculator.

4. Why would we not be able to find the equation of a line through (0, 6), (2, 3) and (6, 1)? We will
see later what this means in terms of systems of equations, and we will resolve the problem in a
reasonable way.

5. Find the equation of the plane through the three points P1(4, 1,−3), P2(0,−5, 1) and P3(3, 3, 2).

6. (a) A student is attempting to find the equilibrium temperatures at points t1, t2, t3 and
t4 on a plate with a grid and boundary temperatures shown below and to the left. They get
t1 = 50.3, t2 = 67.4, t3 = 53.6, t4 = 60.5. Explain in one complete sentence why their
answer must be incorrect, without finding the solution.

t1 t2

t3 t4

47

51

66

62

52 58

55 57























4 −1 0 0 −1 0 103

−1 4 −1 0 0 −1 92

0 −1 4 −1 −1 0 110

0 0 −1 4 0 0 98

−1 0 −1 0 4 0 105

0 −1 0 0 −1 4 107























(b) A different student is trying to solve another such problem, and their augmented matrix is
shown above and to the right. How do we know that one of their equations is incorrect,
without setting up the equations ourselves?

7. Suppose we are solving a system of three equations in the three unknowns x1, x2 and x3, with
the unknowns showing up in the equations in that order. It is possible to do row reduction in such
a way as to obtain the matrix





1 0 0 5
3 −2 0 7
−1 5 2 −3





Determine x1, x2 and x3 without row-reducing this matrix! you should be able to simply set
up equations and find values for the unknowns.
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8. Given a cube of some solid material, it is possible to put
a three-dimensional grid into the solid, in the same way
that we put a two-dimensional grid on a rectangular plate.
Given temperatures at all nodes on the exterior faces of the
cube, we can find equilibrium temperatures at each interior
node using a system of equations. Once again the key is
the mean-value property. In this three dimensional case this
property tells us that the equilibrium temperature at each
interior node is equal to the average of all the temperatures
at nodes of the grid that are immediately adjacent to the
point in question. To the right I have shown a cube that
has eight interior grid points. The word “slice” is used here
to mean a cross section through

front face slice 1
slice 2

back face (behind)

the cube. The grids below show temperatures, known or unknown, at all nodes on the front face,
each of the two slices, and the back face. Above and to the right I have “exploded” the cube to
show the temperatures on the front and back faces, and the two slices. Of course each node on
any slice is connected to the corresponding node on the adjacent slice or face.

37 40

39 41

front face

t11 t12

t13 t14

41 42

40 41

40 43

40 44

slice 1

t21 t22

t23 t24

45 48

43 45

43 50

42 49

slice 2

47 54

49 52

back face

(a) Using the Mean Value Property in three dimensions, the temperature at each interior point
will NOT be the average of four temperatures, like it was on a plate. How many temperatures
will be averaged in this case?

(b) Set up a system of equations to solve for the interior temperatures, and find each to the
nearest tenth.

9. Do any of your observations from Exercise 7 change in the three dimensional case?

10. Do one of the following for each of the systems whose augmented matrices row reduce to the
forms shown below. Assume that the unknowns are x1, x2, ...

• If the system has a unique solution, give it. If the system has no solution, say so.

• If the system has infinitely many solutions, give the general solution in terms of parameters
s, t, etc., then give two particular solutions.

(a)





1 0 −1
0 1 0
0 0 0



 (b)





1 0 −1 0 −4
0 1 2 0 5
0 0 0 1 2



 (c)





1 1 −1
0 0 2
0 0 0
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11. Consider the row-echelon augmented matrix











1 −1 3 −2 4

0 0 1 2 −5
0 0 0 2 −8
0 0 0 0 0











.

(a) Give the general solution to the system of equations that this arose from.

(b) Give three specific solutions to the system.

(c) Change one entry in the matrix so that the system of equations would have no solution.

12. Vail, Colorado recently put in traffic “round-a-bouts” at all of its exits off Interstate 70. Each
of these consists of a circle in which traffic is only allowed to flow counter-clockwise (do that
all turns are right turns), and four points at which the circle can be entered or exited. See the
diagram below.

town

frontage road

I-70 EastI-70 West

N⇑

It is known that at 7:30 AM the following is occurring:

• 22 vehicles per minute are entering the roundabout from the west. (These are the workers
who cannot afford to live in Vail, and commute on I-70 from towns 30 and 40 miles west.)

• 4 vehicles per minute are exiting the roundabout to go east on I-70. (These are the tourists
headed to the airport in Denver.)

• 7 vehicles per minute are exiting the roundabout toward town and 11 per minute are exiting
toward the frontage road.

Solve the system and answer the following:

(a) What is the minimum number of cars per minute passing through the southeast quarter of
the roundabout?

(b) If 18 vehicles per minute are passing through the southeast (SE) quarter of the roundabout
per minute, how many are passing through each of the other quarters (NW, NE, SW)?

13. Consider the system

x1 − x2 − 4x3 = 6

5x1 + x2 − 2x3 = 18

2x1 + 4x2 + 10x3 = 0

.

(a) Use your calculator or an online tool to reduce the matrix to reduced row echelon form.
Write the system of two equations represented by the first two rows of the reduced matrix.
(The last equation is of no use, so don’t bother writing it.)
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(b) The second equation contains x2 and x3. Suppose that x3 = 1 and compute x2 using
that equation. Then use the values you have for x2 and x3 in the first equation to find
x1.

(c) Verify that the values you obtained in (b) are in fact a solution to the original system given.

(d) Now let x3 = 0 and repeat the process from (b) to obtain another solution. Verify that
solution as well.

(e) Let x3 = 2 to find yet another solution.

(f) Because there is no equation allowing us to determine x3, we say that it is a free variable.
What we will usually do in situations like this is let x3 equal some parameter (number) that
we will denote by t. That is, we set x3 = t, which is really just renaming it. Substitute
t into the second equation from (a) and solve for x2 in terms of t. Then substitute that
result into the first equation for x2, along with t for x3, and solve for x1 in terms of
t. Summarize by giving each of x1, x2 and x3 in terms of t, all in one place.

(g) Substitute the number one for t into your answer to (f) and check to see that it matches
what you got for (b). If doesn’t, you’ve gone wrong somewhere - find the error and fix it.

14. Solve each of the following systems of equations that have solutions. Do/show the following
things:

• Enter the augmented matrix for the system in your calculator.

• Get the row-reduced echelon form of the matrix using the rref command. Write down the
resulting matrix.

• Write the system of equations that is equivalent to the row-reduced echelon matrix.

• Find the solutions, if there are any. Use the letters that were used in the original system for
the unknowns! For those with multiple solutions, give them in terms of a parameter t or,
when necessary, two parameters s and t.

(a)

x1 − x2 + 3x3 = −4
−2x1 + 3x2 − 8x3 = 13

5x1 − 3x2 + 11x3 = −10
(b)

c1 + 3c2 + 5c3 = 3

2c1 + 7c2 + 9c3 = 5

2c1 + 6c2 + 11c3 = 7

(c)

x1 + 3x2 − 2x3 = −1
−7x1 − 21x2 + 14x3 = 7

2x1 + 6x2 − 4x3 = −2
(d)

c1 − c2 + 3c3 = −4
−2c1 + 3c2 − 8c3 = 13

5c1 − 3c2 + 11c3 = 4

(e)

x− 3y + 7z = 4

5x− 14y + 42z = 29

−2x+ 5y − 20z = −16
(f)

x+ 3y = 2

4x+ 12y + z = 1

−x− 3y − 2z = 12

• Give three specific solutions to the system from part (a) above.

• Give three specific solutions to the system from part (c) above.

• Solve the system from part (b) above by hand, showing all steps of the row reduction and
indicating what you did at each step.
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15. Give the reduced row echelon form of an augmented matrix for a system of four equations in four
unknowns x1, x2, x3 and x4 for which

• x4 = 7

• x2 and only x2, is a free variable

16. (Erdman) Consider the system
x+ ky = 1
kx+ y = 1

, where k is some constant.

(a) Set up the augmented matrix and use a row operation to get a zero in the lower left corner.

(b) For what value or values of k would the system have infinitely many solutions? What is
the form of the general solution?

(c) For what value or values of k would the system have no solution?

(d) For all remaining values of k the system has a unique solution (that depends on the choice
of k). What is the solution in that case? Your answer will contain the parameter k.

17. (Erdman) Consider the system
x− y − 3z = 3

2x+ z = 0
2y + 7z = c

, where c is some constant.

(a) Set up the augmented matrix and use a row operation to get a zero in the first entry of the
second row.

(b) Look at the second and third rows. For what value or values of c can the system be solved?
Give the solution if there is a unique solution. Give the general solution if there are infinitely
many solutions.

18. In a previous exercise, you may have attempted to find the equation of a parabola through the
three points (−1,−6), (0,−4) and (1,−1). You set up a system to find values of a, b and c in
the parabola equation y = ax2 + bx+ c. There was a unique solution, meaning that there is only
one parabola containing those three points. Expect the following to not work out as “neatly.”

(a) Use a system of equations to find the equation of a parabola that goes through just the two
points (−1,−6) and (1,−1). Explain your results.

(b) Use a system of equations to find the equation y = mx+ b of a line through the four points
(1.3, 1.5), (0.8, 0.4), (2.6, 3.0) and (2.0, 2.0).

(c) Plot the four points from (b) on a neat and accurate graph, and use what you see to explain
your answer to (b). You should be able to give your explanation in one or two complete
sentences.
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B Solutions to Exercises

B.1 Chapter 1 Solutions

Section 1.1 Solutions Back to 1.1 Exercises

1. (b), (c) and (d) are linear equations

2. The first and second systems are linear, the third is not.

3. (a) (−2,−3, 2) and (7, 3, 1) are solutions, (5,−2, 4) is not.

(b) Only (−1, 3, 2) is a solution.

(c) (2, 1) and (−1,−2) are solutions, (3, 5) is not.

4. (a) 5 = −8a+ 4b− 2c+ d, this is a linear equation

(b) y = 7x3 − 2x2 − 5x+ 1, this is not a linear equation

5. 6. 7. (a)−8a+ 4b− 2c+ d = 5

−a+ b− c+ d = 2

a+ b+ c+ d = 3

27a+ 9b+ 3c+ d = 0

1.2m+ b = 3.7

2.5m+ b = 4.1

3.2m+ b = 4.7

4.3m+ b = 5.2

5.1m+ b = 5.9

f1 − f2 = 5

f2 − f3 = −1
f3 − f4 = 4

−f1 + f4 = −8

7. (b) (12, 7, 8, 4), (7, 2, 3,−1) and (10, 5, 6, 2) are solutions, (9, 4, 3, 1) is not

(c) The solution (7, 2, 3,−1) indicates a net flow of one vehicle in the wrong direction between
nodes n3 and n4.

(d) f4 = 5, f1 = 13 and f2 = 8

Section 1.2 Solutions Back to 1.2 Exercises

1. (a) a− b+ c− d = 3 2.a− b+ c = −4
a+ b+ c = 1

9a+ 3b+ c = 0(b) a+ b+ c+ d = 5

a+ 2b+ 4c+ 8d = 4

a+ 4b+ 16c+ 64d = −1

3. (a) 4t1 − t2 − t3 = 129

(b)
t2 =

t1 + 65 + 59 + t4

4
=⇒ −t1 + 4t2 − t4 = 129

t3 =
t1 + t4 + 53 + 55

4
=⇒ −t1 + 4t3 − t4 = 108

t4 =
t2 + 52 + 50 + t3

4
=⇒ −t2 − t3 + 4t4 = 102

4. (a) 10I1 + 2(I1 − I2) + 8(I1 − I3) = 20 =⇒ 20I1 − 2I2 − 8I3 = 20

6I2 + 1(I2 − I3) + 2(I2 − I1) = 0 =⇒ −2I1 + 9I2 − I3 = 0

5I3 + 8(I3 − I2) + 1(I3 − I2) = 0 =⇒ −8I1 − I2 + 14I3 = 0
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(b) 12I1 + 2(I1 − I2) + 5(I1 − I3) = 12 =⇒ 19I1 − 2I2 − 5I3 = 12

8I2 + 3(I2 − I3) + 2(I2 − I1) = 8 =⇒ −2I1 + 13I2 − 3I3 = 8

4I3 + 5(I3 − I2) + 3(I3 − I2) = 0 =⇒ −5I1 − 3I2 + 12I3 = 0

(c) The current from A to C is I1 − I2 because I1 is from A to C and I2 is from
C to A. Thus the current from A to C is 1.36 − 0.39 = 0.97 amperes. The current
flows from A to C because this value is positive.

(d) The current from B to C is I2 − I3 because I2 is from B to C and I3 is from
C to B. Thus the current from B to C is 0.39− 0.81 = −0.42 amperes. The current
flows from C to B because this value is negative.

Section 1.3 Solutions Back to 1.3 Exercises

1. (a) (−2, 1) (b) (3, 4) (c) (3, 2)

(d) (1,−1) (e) (−1, 4) (f) (−2, 13)

2. (a) (4, 1) (b) (0,−3) (c) (2, 2)

Section 1.4 Solutions Back to 1.4 Exercises

1. The coefficient matrix is





1 1 −3
−3 2 −1
2 1 −4



 and the augmented matrix is





1 1 −3 1
−3 2 −1 7
2 1 −4 0





2. All the matrices but D are in row-echelon form.

3. Matrices B and F are in reduced row-echelon form.

4.





1 1 −3 1
−3 2 −1 7
2 1 −4 0





3R1 +R2 → R2

=⇒
−2R1 +R3 → R3





1 1 −3 1
0 5 −10 10
0 −1 2 −2





5. (a)





1 5 −7 3
−5 3 −1 0
4 0 8 −1





5R1 +R2 → R2

=⇒
−4R1 +R3 → R3





1 5 −7 3
0 28 −36 15
0 −20 36 −13





(b)





2 −8 −1 5
0 −2 0 0
0 6 −5 2





=⇒
3R2 +R3 → R3





2 −8 −1 5
0 −2 0 0
0 0 −5 2





(c)





1 −2 4 1
0 3 5 −2
0 2 −8 1





=⇒
−2

3R2 +R3 → R3





1 −2 4 1
0 3 5 −2
0 0 −34

3
7
3





6. (a) (−4, 12 ,−4) (b) (33,−4, 1) (c) (7, 0,−2)

7. (a) (2, 3,−1) (b) (−2, 1, 2) (c) (−1, 2, 1)

8. Same as Exercise 7.

9. t1 = 52.6◦, t2 = 57.3◦, t3 = 61.6◦, t4 = 53.9◦, t5 = 57.1◦, t6 = 60.2◦
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12. t1 = 44.6◦, t2 = 49.6◦, t3 = 38.6◦

13. (a) fourth degree (b) y = 2
5x+

23
30x

2− 1
10x

3− 1
15x

4 or y = 0.4x+0.77x2− 0.1x3− 0.07x4

14. (a) I1 = 4.5 amperes, I2 = 0.75 amperes (b) I3 = 5.25 amperes

17. z = 3.765 + 0.353x − 1.235y

Section 1.5 Solutions Back to 1.5 Exercises

1. (a) (6, 3, 4), (0, 0, 4), (−2,−1, 4), (2, 1, 4)
(b) x− 2y = 0, z = 4, we can determine z (c) (2t, t, 4)

2. (a) z is a free variable, x and y are leading variables

(b) y = 2t+ 2, x = t− 1

3. (a) (4 + t,−5− 2t, t, 3), (4,−5, 0, 3), (5,−7, 1, 3), (6,−9, 2, 3), (3,−3,−1, 3), ...
(b) (5− 3t, t, 1,−4), (5, 0, 1,−4), (2, 1, 1,−4), (−1, 2, 1,−4), (8,−1, 1,−4), ...
(c) (−4 + 3s− t, s, 5 + 2t, t), (−4, 0, 5, 0), (−1, 1, 5, 0), (−5, 0, 7, 1), (−2, 1, 7, 1), ...
(d) no solution

(e) (6+2s−t,−3−3s−5t, s, t), (6,−3, 0, 0), (6,−3, 0, 0), (8,−6, 1, 0), (5,−8, 0, 1), (7,−11, 1, 1), ...
(f) (−1, 2, 0)
(g) (1− 2s + t, s, t), (1, 0, 0), (−1, 1, 0), (2, 0, 1), (0, 1, 1), ...

(h) no solution

(i) (2− 5t, t, 1,−4), (2, 0, 1,−4), (−3, 1, 1,−4), (−8, 2, 1,−4), (7,−1, 1,−4), ...

4. t = −2: (5,−8,−2, 4), t = −1: (2,−3,−1, 4), t = 0: (−1, 2, 0, 4), t = 1: (−4, 7, 1, 4),
t = 2: (−7, 12, 2, 4)

5. There is no solution to the system with the first reduced matrix given. The system with the second
reduced matrix has general solution (−2s+ t+ 5, s, t,−4) and some particular solutions of

s = t = 0 : (5, 0, 0,−4), s = 1, t = 0 : (3, 1, 0,−4), s = 0, t = 1 : (6, 0, 1,−4)
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