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2 Euclidean Space and Vectors

Outcome:

2. Understand vectors and their algebra and geometry in R
n. Understand the

relationship of vectors to systems of equations.

Performance Criteria:

(a) Recognize the equation of a plane in R
3 and determine where the plane

intersects each of the three axes. Sketch a graph of the part of a plane
in the first quadrant. Give the equation of a plane from a geometric
description.

(b) Find the vector from one point to another in R
n. Find the length of a

vector in R
n.

(c) Multiply vectors by scalars and add vectors, algebraically. Find linear
combinations of vectors algebraically.

(d) Illustrate the parallelogram method and tip-to-tail method for finding a
linear combination of two vectors.

(e) Find a linear combination of vectors equalling a given vector.

(f) Give the linear combination form of a system of equations, give the
system of linear equations equivalent to a given vector equation.

(g) Sketch a picture illustrating the linear combination form of a system of
equations of two equations in two unknowns.

(h) Give an algebraic description of a set of a set of vectors that has been
described geometrically, and vice-versa.

(i) Determine whether a set of vectors is closed under vector addition; de-
termine whether a set of vectors is closed under scalar multiplication. If
it is, prove that it is; if it is not, give a counterexample.

(j) Give the vector equation of a line through two points in R
2 or R

3 or
the vector equation of a plane through three points in R

3.

(k) Write the solution to a system of equations in vector form and determine
the geometric nature of the solution.

In the study of linear algebra we will be defining new concepts and developing corresponding notation.
The purpose of doing so is to develop more powerful machinery for investigating the concepts of interest.

We begin the development of notation with the following. The set of all real numbers is denoted by
R, and the set of all ordered pairs of real numbers is R

2, spoken as “R-two.” Geometrically, R
2 is

the familiar Cartesian coordinate plane. Similarly, the set of all ordered triples of real numbers is the
three-dimensional space referred to as R

3, “R-three.” The set of all ordered n-tuples (lists of n real
numbers in a particular order) is denoted by R

n. Although difficult or impossible to visualize physically,
R
n can be thought of as n-dimensional space. All of the R

ns are what are called Euclidean space.
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2.1 Euclidean Space

Performance Criteria:

2. (a) Recognize the equation of a plane in R
3 and determine where the plane

intersects each of the three axes. Sketch a graph of the part of a plane
in the first quadrant. Give the equation of a plane from a geometric
description.

It is often taken for granted that everyone knows what we mean by the real numbers. To actually
define the real numbers precisely is a bit of a chore and very technical. Suffice it to say that the real
numbers include all numbers other than complex numbers (numbers containing

√
−1 = i or, for

electrical engineers, j) that a scientist or engineer is likely to run into. The numbers 5, −31.2, π,√
2, 2

7
, and e are all real numbers. We denote the set of all real numbers with the symbol R, and

the geometric representation of the real numbers is the familiar real number line, a horizontal line on
which every real number has a place. This is possible because the real numbers are ordered: given any
two real numbers, either they are equal to each other, one is less than the other, or vice-versa.

As mentioned previously, the set R
2 is the set of all ordered pairs of real numbers. Geometrically,

every such pair corresponds to a point in the Cartesian plane, which is the familiar xy-plane. R
3 is

the set of all ordered triples, each of which represents a point in three-dimensional space. We can
continue on - R

4 is the set of all ordered “4-tuples”, and can be thought of geometrically as four
dimensional space. Continuing further, an “n-tuple” is n real numbers, in a specific order; each n-tuple
can be thought of as representing a point in n-dimensional space. These spaces are sometimes called
“two-space,” “three-space” and “n-space” for short.

Two-space is fairly simple, with the only major features being the two axes and the four quadrants
that the axes divide the space into. Three-space is a bit more complicated. Obviously there are three
coordinate axes instead of two. In addition to those axes, there are also three coordinate planes as well,
the xy-plane, the xz-plane and the yz-plane. Finally the three coordinate planes divide the space into
eight octants. The pictures below illustrate the coordinate axes and planes. The first octant is the
one we are looking into, where all three coordinates are positive. It is not important that we know the
numbering of the other octants.

x

y

z

origin

positive
x-axis

negative
x-axis

x

y

z

xy-plane

yz-plane

xz-plane

Every plane in R
3 (we will be discussing only R

3 for now) consists of a set of points that behave
in an orderly mathematical manner, described here:
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Equation of a Plane in R
3: The ordered triples corresponding to all the points in

a plane satisfy an equation of the form

ax+ by + cz = d, (1)

where a, b, c and d are constants, and not all of a, b and c are zero.

Note that equation (1) is a linear equation! The equation of any line in R
2 can be written in the

form ax+ by = c, which is also a linear equation. A line is a one-dimensional object and a plane is a
two-dimensional object, in a sense that we will see later. ax+ by = c then describes a one-dimensional
“straight” object in the two-dimensional space R

2, and (1) describes a two-dimensional “flat” object
in R

3. The corresponding equation in R
n is

a1x1 + a2x2 + a3x3 + · · ·+ anxn = b, (2)

where all of a1, a2, ..., an and b are numbers and x1, x2, ..., xn are unknowns. (2) describes
an n − 1-dimensional object in n-dimensional space. When n > 3 we often call such an object a
hyperplane.

Going back to (1) as describing a plane in R
3, the xy-plane in R

3 is the plane containing the
x and y-axes. The only condition on points in that plane is that z = 0, so that is the equation of
that plane. In that case the constants a, b and d are all zero, and c = 1. The plane z = 5 is a
horizontal plane that is five units above the xy-plane, and x = −2 describes the vertical plane that
is parallel to the yz-plane and passes through the x-axis at x = −2. What about an equation of the
form ax+ by = c when we are in R

3?

⋄ Example 2.1(a): Graph the equation 2x+ 3y = 6 in the first octant. Indicate clearly where
it intersects each of the coordinate axes, if it does.

Solution: Some points that satisfy the equation are (3, 0, 0),
(6,−2, 5), and so on. Since z is not included in the equation,
there are no restrictions on z; it can take any value. If we were
to fix z at zero and plot all points that satisfy the equation, we
would get a line in the xy-plane through the two points (3, 0, 0)
and (0, 2, 0). These points are obtained by first letting y and
z be zero, then by letting x and z be zero. Since z can be
anything, the set of points satisfying 2x+ 3y = 6 is a vertical
plane intersecting the xy-plane in that line. The plane is shown
to the right.

x

y

z

3

2

Next we’ll see how we can sometimes graphically represent a portion of a plane in 3-space.
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⋄ Example 2.1(b): Graph the equation 2x + 3y + z = 6 in the first octant. Indicate clearly
where it intersects each of the coordinate axes, if it does.

Solution: The set of points satisfying this equation is also a
plane, but z is no longer free to take any value. The simplest way
to “get a handle on” such a plane is to find where it intercepts
the three axes. Note that every point on the x-axis has y- and
z-coordinates of zero. So to find where the plane intersects the
x-axis we put zero into the equation for y and z, then solve
for x, getting x = 3. The plane then intersects the x-axis at
(3, 0, 0). A similar process gives us that the plane intersects the
y and z axes at (0, 2, 0) and (0, 0, 6). From this information
we get that the graph of the plane is that shown in the drawing
above and to the right.

x

y

z

6

3

2

Consider now a system of equations like

x+ 3y − 2z = −4

3x+ 7y + z = 4

−2x+ y + 7z = 7

,

which has solution (3,−1, 2). We now know that each of the three equations represents a plane in
R
3. The point (3,−1, 2) is where the three planes intersect! This is completely analogous to the

interpretation of the solution of a system of two linear equations in two unknowns as the point where
the two lines representing the equations cross. This is the first of three interpretations we’ll have for
the solution to a system of equations.

The only other basic geometric fact we need about three-space is this:

Distance Between Points: The distance between two points (x1, y1, z1) and
(x2, y2, z2) in R

3 is given by

d =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

This is simply a three-dimensional version of the Pythagorean Theorem, and an equivalent formula is
used in higher dimensions. Even though we cannot visualize the distance geometrically, this idea is both
mathematically valid and useful in applications.

⋄ Example 2.1(c): Find the distance in R
4 between the points (−4, 7, 1,−5) and (13, 0,−6, 2).

Solution: Using the above formula with one more dimension we get

d =
√

(−4− 13)2 + (7− 0)2 + (1− (−6))2 + (−5− 2)2

=
√

(−17)2 + 72 + 72 + (−7)2 =
√
436 ≈ 20.9
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Section 2.1 Exercises To Solutions

1. Determine whether each of the equations given describes a plane in R
3. If not, say so. If it does

describe a plane, give the points where it intersects each axis. If it doesn’t intersect an axis, say
so.

(a) −2x− y + 3z = −6 (b) x+ 3z = 6 (c) y = −6

(d) x+ 3z2 = 12 (e) x− 2y + 3z = −6

2. (a) Give an equation of the plane in R
3 that intersects the x-axis at 2, the y-axis at 5, and

the z-axis at 4.

(b) Give an equation of the plane in R
3 that intersects the x-axis at −3, the y-axis at 1,

and the z-axis at 7.

(c) Give an equation of the plane in R
3 that intersects the x-axis at 3, the z-axis at −2,

and does not intersect the y-axis.

(d) Give an equation of the plane in R
3 that intersects the y-axis at 4 and does not intersect

either of the other two axes.

(e) Give an equation of the plane in R
3 that intersects the y-axis at −4, the z-axis at 1,

and does not intersect the x-axis.

(f) Give an equation of the plane in R
3 that intersects the z-axis at −2 and does not intersect

either of the other two axes.

3. Each of the following equations describes a plane in R
3. For

each, sketch the graph of the part of the plane in the first octant,
in the manner done in Examples 2.1(a) and (b). Begin with a
sketch of the positive parts of the three coordinate axes, as
shown to the right.

x

y

z

(a) 2x+ 2y + 5z = 10 (b) 2y + 3z = 6

(c) x+ 3y = 6 (d) 2x+ 4y + z = 8

(e) z = 3 (f) 3x+ y + 2z = 6

(g) 2x+ 4z = 8 (h) y = 5 (i) 3x+ y + 3z = 3

47



2.2 Introduction to Vectors

Performance Criteria:

2. (b) Find the vector from one point to another in R
n. Find the length of a

vector in R
n.

There are a number of different ways of thinking about vectors; it is likely that you think of them
as “arrows” in two- or three-dimensional space, which is the first concept of a vector that most people
have. Each such arrow has a length (sometimes called norm or magnitude) and a direction. Physically,
then, vectors represent quantities having both amount and direction. Examples would be things like
force or velocity. Quantities having only amount, like temperature or pressure, are referred to as scalar
quantities. We will represent scalar quantities with lower case italicized letters like a, b, c, ..., x, y, z and
we’ll represent vectors with lower case boldface letters with “harpoon” arrows over them, like

⇀

u,
⇀

v,
⇀

x,
and so on.. In many texts vectors are denoted just by lower case boldface letters like u, v, x, and so
on. When writing by hand we’ll just put a small arrow (harpoon or regular) pointing to the right over
any letter denoting a vector, without trying to make the letter boldface.

Consider a vector represented by an arrow in R
2. We will call

the end with the arrowhead the tip of the vector, and the other end
we’ll call the tail. (The more formal terminology is terminal point
and initial point.) The picture to the right shows three vectors

⇀

u,
⇀

v and
⇀

w in R
2. It should be clear that a vector can be moved

around in R
2 in such a way that the direction and magnitude

remain unchanged. Sometimes we say that two vectors related to
each other this way are equivalent, but in this class we will simply
say that they are the same vector. The vectors

⇀

u and
⇀

v are the
same vector, just in different positions.

5

5

⇀

u

⇀

v

⇀

w

P

Q

R

x

y

It is sometimes convenient to denote points with letters, and we use italicized capital letters for
this. We commonly use P (for point!) Q and R, and the origin is denoted by O. (That’s capital
“oh,” not zero.) Sometimes we follow the point immediately by its coordinates, like P (−4, 2). The

notation
−−→
PQ denotes the vector that goes from point P to point Q, which in this case is vector

⇀

u.

Any vector
−−→
OR with its tail at the origin is said to be in standard position, and is called a position

vector;
⇀

w above is an example of such a vector. Note that for any point in R
2 (or in R

n), there
is a corresponding vector that goes from the origin to that point. In linear algebra we think of a point

and its position vector as interchangeable. In the next section you will see the advantage of thinking of
a point as a position vector.

We will describe vectors with numbers - in R
2 we give a vector as two numbers, the first telling

how far to the right (positive) or left (negative) one must go to get from the tail to the tip of the vector,
and the second telling how far up (positive) or down (negative) from tail to tip. These numbers are
generally arranged in one of two ways. The first way is like an ordered pair, but with “square brackets”
instead of parentheses. The vector

⇀

u above is then
⇀

u = [7, 3], and
⇀

w = [2,−4]. The second

way to write a vector is as a column vector:
⇀

u =

[

7
3

]

. This is, in fact, the form we will use more

often. Observe that the vector from one point to another is obtained by subtracting the corresponding

coordinates of the first point from those of the second point. So the vector
−−→
PQ from P (−4, 2) to

Q(3, 5) is
−−→
PQ =

[

3− (−4)
5− 2

]

=

[

7
3

]

.
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The two numbers quantifying a vector in R
2 are called the components of the vector. We generally

use the same letter to denote the components of a vector as the one used to name the vector, but we
distinguish them with subscripts. Of course the components are scalars, so we use italic letters for them.

So we would have ⇀

u =

[

u1
u2

]

and
⇀

v =

[

v1
v2

]

. The direction of a vector in R
2 is given, in some

sense, by the combination of the two components. The length is found using the Pythagorean theorem.
For a vector

⇀

v = [v1, v2] we denote and define the length of the vector by ‖ ⇀

v ‖ =
√

v2
1
+ v2

2
. Of

course everything we have done so far applies to vectors in higher dimensions. A vector
⇀

x in R
n would

be denoted by
⇀

x = [x1, x2, ..., xn]. This shows that, in some sense, a vector is just an ordered list of
numbers, like an n-tuple but with differences you will see in the next section. The length of a vector in
R
n is found as follows.

Definition 2.2.1: Magnitude of a Vector in R
n

The magnitude, or length of a vector
⇀

x = [x1, x2, ..., xn] in R
n is given by

‖ ⇀

x ‖ =
√

x2
1
+ x2

2
+ · · ·+ x2

n

⋄ Example 2.2(a): Find the vector
⇀

x =
−−→
PQ in R

3 from the point P (5,−3, 7) to Q(−2, 6, 1),
and find the length of the vector.

Solution: The components of
⇀

x are obtained by simply subtracting each coordinate of P from
each coordinate of Q:

⇀

x =
−−→
PQ =





−2− 5
6− (−3)
1− 7



 =





−7
9

−6





The length of
⇀

x is

‖ ⇀

x ‖ =
√

(−7)2 + 92 + (−6)2 =
√
166 ≈ 12.9

There will be times when we need a vector with length zero; this is the special vector we will call
(surprise, surprise!) the zero vector. It is denoted by a boldface zero,

⇀

0, to distinguish it from the
scalar zero. This vector has no direction.

Let’s finish with the following important note about how we will work with vectors in this class:

In this course, when working with vectors geometrically, we will almost always be
thinking of them as position vectors. When working with vectors algebraically, we
will always consider them to be column vectors.

49



Section 2.2 Exercises To Solutions

1. Find the magnitude of each vector - label each answer using correct notation.

⇀

u =





−3
1
2



 ,
⇀

x =

[

−5
7

]

,
⇀

v =









1
2
3
4









,
⇀

b =









b1
b2
b3
b4









2. For each pair of points P and Q, find the vector
−−→
PQ in the appropriate space. Then find the

length of the vector.

(a) P (−4, 11, 7), Q(13, 5,−8) (b) P (−5, 1), Q(7,−2)

(c) P (−3, 0, 6, 1), Q(7,−1,−1, 10)

3. (a) The vector
−−→
PQ =

[

2
−1

]

in R
2 has initial point P (3, 5). What is the terminal point

Q?

(b) The vector
−−→
PQ = [4, 0,−2, 1, 5] in R

5 has initial point P (−2, 7, 1,−8, 2). What is the
terminal point Q?

(c) The vector
−−→
PQ =





−4
6

−1



 in R
3 has terminal point Q(5,−2, 4). What is the initial

point P?

4. Consider the vector
⇀

u =





2
1

−2



 in R
3.

(a) Find the magnitude ‖ ⇀

u ‖, labeling it as such.

(b) Later we will define what we mean by multiplication or division of a vector by a scalar. Divide

each component of
⇀

u by your answer to (a). The result is the vector

⇀

u

‖ ⇀

u ‖
, so label it

that way.

(c) Find

∥

∥

∥

∥

⇀

u

‖ ⇀

u ‖

∥

∥

∥

∥

, the magnitude of

⇀

u

‖ ⇀

u ‖
from (b).

5. Repeat Exercise 4 for the vector
⇀

v =

[

4
−3

]

in R
2. How does your final result compare with

that of Exercise 4?
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2.3 Addition and Scalar Multiplication of Vectors, Linear Combinations

Performance Criteria:

2. (c) Multiply vectors by scalars and add vectors, algebraically. Find linear
combinations of vectors algebraically.

(d) Illustrate the parallelogram method and tip-to-tail method for finding a
linear combination of two vectors.

(e) Find a linear combination of vectors equalling a given vector.

In the previous section a vector
⇀

x = [x1, x2, ..., xn] in n dimensions was starting to look
suspiciously like an n-tuple (x1, x2, ..., xn) and we established a correspondence between any point
and the position vector with its tip at that point. One might wonder why we bother then with vectors
at all! The reason is that we can perform algebraic operations with vectors that make sense physically,
while such operations make no sense with n-tuples. The two most basic things we can do with vectors
are add two of them or multiply one by a scalar, and both are done component-wise:

Definition 2.3.1: Addition and Scalar Multiplication of Vectors

Let
⇀

u = [u1, u2, ..., un] and
⇀

v = [v1, v2, ..., nn], and let c be a scalar. Then we
define the vectors

⇀

u +
⇀

v and c
⇀

u by

⇀

u +
⇀

v =











u1
u2
...
un











+











v1
v2
...
vn











=











u1 + v1
u2 + v2

...
un + vn











and c
⇀

u = c











u1
u2
...
un











=











cu1
cu2
...

cun











Note that result of adding two vectors or multiplying a vector by a scalar is also a vector. It clearly
follows from these that we can get subtraction of vectors by first multiplying the second vector by the
scalar −1, then adding the vectors. With just a little thought you will recognize that this is the same
as just subtracting the corresponding components.

⋄ Example 2.3(a): For
⇀

u =





5
−1
2



 and
⇀

v =





−4
9
6



, find
⇀

u +
⇀

v, 3
⇀

u and
⇀

u − ⇀

v.

Solution:

⇀

u +
⇀

v =





5
−1
2



+





−4
9
6



 =





5 + (−4)
−1 + 9
2 + 6



 =





1
8
8





3
⇀

u = 3





5
−1
2



 =





3(5)
3(−1)
3(2)



 =





15
−3
6
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⇀

u − ⇀

v =





5
−1
2



−





−4
9
6



 =





5− (−4)
−1− 9
2 − 6



 =





9
−10
−4





Addition of vectors can be thought of geometrically in two ways, both of which are useful. The
first way is what we will call the tip-to-tail method, and the second method is called the parallelo-
gram method. You should become very familiar with both of these methods, as they each have their
advantages; they are illustrated below.

⋄ Example 2.3(b): Add the two vectors
⇀

u and
⇀

v shown below and to the left, first by the
tip-to-tail method, and second by the parallelogram method.

Solution: To add using the tip-to-tail method, move the second vector so that its tail is at the
tip of the first. (Be sure that its length and direction remain the same!) The vector

⇀

u +
⇀

v goes
from the tail of

⇀

u to the tip of
⇀

v. See in the middle below.

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

⇀

u

⇀

v
0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

⇀

u

⇀

v

⇀

u +
⇀

v

tip-to-tail method

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

⇀

u

⇀

v

⇀

u +
⇀

v

parallelogram method

To add using the parallelogram method, put the vectors
⇀

u and
⇀

v together at their tails (again
being sure to preserve their lengths and directions). Draw a dashed line from the tip of

⇀

u, parallel
to

⇀

v, and draw another dashed line from the tip of
⇀

v, parallel to
⇀

u.
⇀

u +
⇀

v goes from
the tails of

⇀

u and
⇀

v to the point where the two dashed lines cross. See to the right above.
The reason for the name of this method is that the two vectors and the dashed lines create a
parallelogram.

Each of these two methods has a natural physical interpretation. For the tip-to-tail method, imagine
an object that gets displaced by the direction and amount shown by the vector

⇀

u. Then suppose that
it gets displaced by the direction and amount given by

⇀

v after that. Then the vector
⇀

u +
⇀

v gives
the net (total) displacement of the object. Now look at that picture for the parallelogram method, and
imagine that there is an object at the tails of the two vectors. If we were then to have two forces acting
on the object, one in the direction of

⇀

u and with an amount (magnitude) indicated by the length of
⇀

u, and another with amount and direction indicated by
⇀

v, then
⇀

u +
⇀

v would represent the net force.
(In a statics or physics course you might call this the resultant force.)

A very important concept in linear algebra is that of a linear combination. Let me say it again:

Linear combinations are one of the most important concepts in linear algebra! You
need to recognize them when you see them and learn how to create them. They will
be central to almost everything that we will do from here on.
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A linear combination of a set of vectors
⇀

v1,
⇀

v2, ...,
⇀

v
n (note that the subscripts now distinguish

different vectors, not the components of a single vector) is obtained when each of the vectors is multiplied
by a scalar, and the resulting vectors are added up. So if c1, c2, ..., cn are the scalars that

⇀

v1,
⇀

v2

, ...,
⇀

v
n are multiplied by, the resulting linear combination is the single vector

⇀

v given by

⇀

v = c1
⇀

v1 + c2
⇀

v2 + c3
⇀

v3 + · · ·+ cn
⇀

v
n .

Emphasizing again the importance of this concept, let’s provide a slightly more concise and formal
definition:

Definition 2.3.2: Linear Combination

A linear combination of the vectors
⇀

v1,
⇀

v2, ...,
⇀

v
n, all in R

n, is any vector
⇀

v of
the form

⇀

v = c1
⇀

v1 + c2
⇀

v2 + c3
⇀

v3 + · · ·+ cn
⇀

v
n,

where c1, c2, ..., cn are scalars.

Note that when we create a linear combination of a set of vectors we are doing virtually everything
possible algebraically with those vectors, which is just addition and scalar multiplication!

You have seen this idea before; every polynomial like 5x3 − 7x2 + 1

2
x− 1 is a linear combination

of 1, x, x2, x3, .... Those of you who have had a differential equations class have seen things like
d2y

dt2
+ 3

dy

dt
+ 2y, which is a linear combination of the second, first and “zeroth” derivatives of a

function y = y(t). Here is why linear combinations are so important: In many applications we seek to
have a basic set of objects (vectors) from which all other objects can be built as linear combinations of
objects from our basic set. A large part of our study will be centered around this idea. This may not
make any sense to you now, but hopefully it will by the end of the course.

⋄ Example 2.3(c): For the vectors
⇀

v1 =





5
−1
2



 ,
⇀

v2 =





−4
9
6



 and
⇀

v3 =





0
3
8



, give

the linear combination 2
⇀

v1 −3
⇀

v2 +
⇀

v3 as one vector.

Solution:

2
⇀

v1 − 3
⇀

v2 +
⇀

v3 = 2





5
−1
2



− 3





−4
9
6



+





0
3
8





=





10
−2
4



−





−12
27
18



+





0
3
8



 =





−2
−26
30





⋄ Example 2.3(d): For the same vectors
⇀

v1,
⇀

v2 and
⇀

v3 as in the previous exercise and

scalars c1, c2 and c3, give the linear combination c1
⇀

v1 + c2
⇀

v2 + c3
⇀

v3 as one vector.
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Solution:

c1
⇀

v1 + c2
⇀

v2 + c3
⇀

v3 = c1





5
−1
2



+ c2





−4
9
6



+ c3





0
3
8





=





5c1
−1c1
2c1



+





−4c2
9c2
6c2



+





0c3
3c3
8c3





=





5c1 − 4c2 + 0c3
−1c1 + 9c2 + 3c3
2c1 + 6c2 + 8c3





Note that the final result is a single vector with three components that look suspiciously like the
left sides of a system of three equations in three unknowns!

In the previous two examples we found linear combinations algebraically - in the next example we find
a linear combination geometrically.

⋄ Example 2.3(e): In the space below and to the right, sketch the vector 2
⇀

u −3
⇀

v for the

vectors
⇀

u and
⇀

v shown below and to the left.

Solution: In the center below the linear combination is obtained by the tip-to-tail method, and
to the right below it is obtained by the parallelogram method.

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

⇀

u

⇀

v

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

⇀

u

⇀

u

-
⇀

v
-
⇀

v
-
⇀

v

2
⇀

u −3
⇀

v

⇀

u

⇀

u

-
⇀

v
-
⇀

v
-
⇀

v

2
⇀

u −3
⇀

v

The final example is probably the most important in this section.

⋄ Example 2.3(f): Find a linear combination of the vectors
⇀

v1 =

[

3
−4

]

and
⇀

v2 =
[

7
−3

]

that equals the vector
⇀

w =

[

1
−14

]

.

Solution: We are looking for two scalars c1 and c2 such that c1
⇀

v1 + c2
⇀

v2 =
⇀

w. By the
method of Example 2.3(d) we have

c1

[

3
−4

]

+ c2

[

7
−3

]

=

[

1
−14

]

[

3c1
−4c1

]

+

[

7c2
−3c2

]

=

[

1
−14

]
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[

3c1 + 7c2
−4c1 − 3c2

]

=

[

1
−14

]

In the last line above we have two vectors that are equal. It should be intuitively obvious that this
can only happen if the individual components of the two vectors are equal. This results in the

system
3c1 + 7c2 = 1

−4c1 − 3c2 = −14
of two equations in the two unknowns c1 and c2. Solving,

we arrive at c1 = 5, c2 = −2. It is easily verified that these are correct:

5

[

3
−4

]

− 2

[

7
−3

]

=

[

15
−20

]

−
[

14
−6

]

=

[

1
−14

]

We now conclude with an important observation. Suppose that we consider all possible linear
combinations of a single vector

⇀

v. That is then the set of all vectors of the form c
⇀

v for some
scalar c, which is just all scalar multiples of

⇀

v. At the risk of being redundant, the set of all linear
combinations of a single vector is all scalar multiples of that vector.

Section 2.3 Exercises To Solutions

1. Illustrate the tip-to-tail and parallelogram methods for finding
⇀

w = − ⇀

u +2
⇀

v for the two vectors
⇀

u and
⇀

v shown to
the right. Make it clear what portion of your diagram represents
⇀

w in each case.

⇀

u
⇀

v

2. For the vectors
⇀

v1 =

[

−1
3

]

,
⇀

v2 =

[

5
0

]

,
⇀

v3 =

[

6
−2

]

and
⇀

v4 =

[

−8
1

]

, give the

linear combination 5
⇀

v1 + 2
⇀

v2 − 7
⇀

v3 +
⇀

v4 as one vector.

3. For the vectors
⇀

v1 =





−1
3

−6



 and
⇀

v2 =





−8
1
4



, give the linear combination

c1
⇀

v1 + c2
⇀

v2 as one vector.

4. Give a linear combination of
⇀

u =







5

1

2






,

⇀

v =







−1

3

4






and

⇀

w =







2

−1

−3






that equals







17

−4

−9






.

Demonstrate that your answer is correct by filling in the blanks:







5

1

2






+







−1

3

4






+







2

−1

−3






=












+












+












=







17

−4

−9







55



5. For each of the following, find a linear combination of the vectors
⇀

u1,
⇀

u2,...,
⇀

u
n that equals

⇀

v.
Conclude by giving the actual linear combination, not just some scalars.

(a)
⇀

u1 =





1
1
0



,
⇀

u2 =





0
1
1



,
⇀

u3 =





1
0
1



,
⇀

v =





1
2
3





(b)
⇀

u1 =

[

1
5

]

,
⇀

u2 =

[

−2
4

]

,
⇀

v =

[

8
−2

]

(c)
⇀

u1 =





1
2
3



,
⇀

u2 =





−4
1
2



,
⇀

u3 =





5
−3
2



,
⇀

v =





6
−18
−7





(d)
⇀

u1 =

[

3
−1

]

,
⇀

u2 =

[

1
1

]

,
⇀

u3 =

[

1
−1

]

,
⇀

v =

[

8
−6

]

(e)
⇀

u1 =









7
1
3
0









,
⇀

u2 =









−2
5
1

−3









,
⇀

u3 =









2
2

−3
1









,
⇀

u4 =









1
−1
1

−1









,
⇀

v =









19
10

−12
12









(f)
⇀

u1 =





3
−1
2



,
⇀

u2 =





−1
1

−4



,
⇀

u3 =





3
1

−8



,
⇀

v =





2
5

−1





(g)
⇀

u1 =





3
−1
2



,
⇀

u2 =





−1
1

−4



,
⇀

u3 =





3
1

−8



,
⇀

v =





−1
3

−14





6. (a) Consider the vectors
⇀

u1 =





4
0

−1



 ,
⇀

u2 =





1
2
3



 ,
⇀

u3 =





−2
6
5



 ,
⇀

w =





11
5
8



.

If possible, find scalars a1, a2 and a3 such that a1
⇀

u1 + a2
⇀

u2 + a3
⇀

u3 =
⇀

w.

(b) Consider the vectors
⇀

v1 =





4
0

−1



 ,
⇀

v2 =





1
2
3



 ,
⇀

v3 =





−7
2
5



 ,
⇀

w =





11
5
8



.

If possible, find scalars b1, b2 and b3 such that b1
⇀

v1 + b2
⇀

v2 + b3
⇀

v3 =
⇀

w.

(c) To do each of parts (a) and (b) you should have solved a system of equations. Let A be the
coefficient matrix for the system in (a) and let B be the coefficient matrix for the system
in part (b). Use your calculator to find det(A) and det(B), the determinants of matrices
A and B. You will probably find the command for the determinant in the same menu as
rref.
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2.4 Linear Combination Form of a System

Performance Criterion:

2. (f) Give the linear combination form of a system of equations, give the
system of linear equations equivalent to a given vector equation.

(g) Sketch a picture illustrating the linear combination form of a system of
equations of two equations in two unknowns.

It should be clear that two vectors are equal if and only if their corresponding components are equal.
That is,

⇀

u =











u1
u2
...
un











=











v1
v2
...
vn











=
⇀

v if, and only if,

u1 = v1,

u2 = v2,
...

un = vn

The words “if, and only if” mean that the above works “both ways” in the following sense:

• If we have two vectors of length n that are equal, then their corresponding entries are all equal,
resulting in n equations.

• If we have a set of n equations, we can create a two vectors, one of whose components are all
the left hand sides of the equations and the other whose components are all the right hand sides
of the equations, and the two vectors created this way are equal.

Using the second bullet above, we can take the system of equations below and to the left and turn
them into the single vector equation shown below and to the right:

x1 + 3x2 − 2x3 = −4

3x1 + 7x2 + x3 = 4

−2x1 + x2 + 7x3 = 7

=⇒







x1 + 3x2 − 2x3

3x1 + 7x2 + x3

−2x1 + x2 + 7x3






=







−4

4

7







We can take the vector on the left side of the equation and break it into three vectors to get







x1

3x1

−2x1






+







3x2

7x2

x2






+







−2x3

x3

7x3






=







−4

4

7







and then we can factor the scalar unknown out of each vector to get the vector equation

x1







1

3

−2






+ x2







3

7

1






+ x3







−2

1

7






=







−4

4

7






(1)

Our previous geometric interpretation of solving
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x1 + 3x2 − 2x3 = −4

3x1 + 7x2 + x3 = 4

−2x1 + x2 + 7x3 = 7

was that we were looking for the point (x1, x2, x3) where the planes with equations x1+3x2−2x3 = −4,
3x1 + 7x2 + x3 = 4 and −2x1 + x2 + 7x3 = 7 intersect. (1) now gives us another interpretation -
we are looking for the linear combination of the vectors







1

3

−2






,







3

7

1






and







−2

1

7






that equals







−4

4

7







The form (1) of a system of equations is quite important, so we give it a definition:

Definition 2.4.1 Linear Combination Form of a System

A system
a11x1 + · · · + a1nxn = b1

a21x1 + · · · + a2nxn = b2
...

am1x1 + · · · + amnxn = bm

of m linear equations in n unknowns can be written as a linear combination of
vectors equalling another vector:

x1











a11
a21
...

am1











+ x2











a12
a22
...

am2











+ · · ·+ xn











a1n
a2n
...

amn











=











b1
b2
...
bm











We will refer to this as the linear combination form of the system of equations.

Thus the system of equations below and to the left can be rewritten in the linear combination form
shown below and to the right.

x1 + 3x2 − 2x3 = −4

3x1 + 7x2 + x3 = 4

−2x1 + x2 + 7x3 = 7

x1







1

3

−2






+ x2







3

7

1






+ x3







−2

1

7






=







−4

4

7







The question we originally asked for the system of linear equations was “Are there numbers x1, x2 and
x3 that make all three equations true?” Now we can see this is equivalent to a different question,

“Is there a linear combination of the vectors





1
3

−2



,





3
7
1



 and





−2
1
7



 that equals the vector





−4
4
7



?”
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⋄ Example 2.4(a): Give the linear combination form of the system
3x1 + 5x2 = −1
x1 + 4x2 = 2

of

linear equations.

Solution: The linear combination form of the system is x1

[

3
1

]

+ x2

[

5
4

]

=

[

−1
2

]

5

5

-5

-5

Let’s consider the system from this last example a bit more. The

goal is to solve the system of equations
3x1 + 5x2 = −1
x1 + 4x2 = 2

.

In the past our geometric interpretation has been this: The set
of solutions to the first equation is a line in R

2, and the set of
solutions to the second equation is another line. The solution
to the system happens to be x1 = −2, x2 = 1, and the point
(−2, 1) in R

2 is the point where the two lines cross. This is
shown in the picture to the right.

Now consider the linear combination form x1

[

3
1

]

+ x2

[

5
4

]

=

[

−1
2

]

of the system. Let

⇀

v1 =

[

3
1

]

,
⇀

v2 =

[

5
4

]

and
⇀

w =

[

−1
2

]

. These vectors are shown in the diagram to the left at

the top of the next page. The solution x1 = −2, x2 = 1 to the system is the scalars that we can use
for a linear combination of the vectors

⇀

v1 and
⇀

v2 to get the vector
⇀

w. That is,

−2

[

3
1

]

+ 1

[

5
4

]

=

[

−1
2

]

.

This is shown in the middle diagram below by the tip-to-tail method, and in the diagram below and to
the right by the parallelogram method.

4

5

w

⇀

v1

⇀

v2

4

-5

⇀

w = −2
⇀

v1 +
⇀

v2

−2
⇀

v1

⇀

v2

tip-to-tail method

4

5

-5

−2
⇀

v1

⇀

v2

parallelogram method
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Section 2.4 Exercises To Solutions

1. Give the linear combination form of each system:

(a) (b)x + y − 3z = 1

−3x+ 2y − z = 7

2x + y − 4z = 0

5x1 + x3 = −1

2x2 + 3x3 = 0

2x1 + x2 − 4x3 = 2

(c) (d)b+ 0.5m = 8.1

b+ 1.0m = 6.9

b+ 1.5m = 6.2

b+ 2.0m = 5.3

b+ 2.5m = 4.5
b+ 3.0m = 3.8

b+ 3.5m = 3.0

x1 − 4x2 + x3 + 2x4 = −1

3x1 + 2x2 − x3 − 7x4 = 0

−2x1 + x2 − 4x3 + x4 = 2

2. Give the system of equations that is equivalent to each vector equation.

(a) x1

[

−3
1

]

+ x2

[

1
1

]

=

[

5
−2

]

(b) x1









5
1

−4
−3









+ x2









−3
2
1

−1









+ x3









2
0
5
4









+ x4









7
−4
6
7









=









−8
1
5
4









(c) x1





3
2
1



+ x2





4
−7
5



+ x3





1
1
1



 =





−5
3

−4





3. The system of equations
2x− 3y = −6
3x− y = 5

has solution x = 3, y = 4. Write the system

in linear combination form, then replace x and y with their values. Finally, sketch a picture
illustrating the resulting vector equation. See the explanation after Example 2.4(a) if you have no
idea what I am talking about.
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2.5 Sets of Vectors

Performance Criterion:

2. (h) Give an algebraic description of a set of a set of vectors that has been
described geometrically, and vice-versa.

(i) Determine whether a set of vectors is closed under vector addition; de-
termine whether a set of vectors is closed under scalar multiplication. If
it is, prove that it is; if it is not, give a counterexample.

One of the most fundamental concepts of mathematics is that of sets, collections of objects called
elements. You have probably encountered various sets of numbers, like the whole numbers

{0, 1, 2, 3, ...}

and the integers
Z = {...,−3,−2,−1, 0, 1, 2, 3, ...}.

As shown above, when we describe a set by listing all or some of its elements, we enclose them with
“curly brackets.” Sets are usually named by upper case letters. The above two sets are infinite sets.

Another kind of infinite set is an interval of the number line, like all real numbers between 1 and
5, including 1 and 5. You have likely seen the interval notation [1, 5] for such sets. This set is also
infinite, but in a different sense than the whole numbers and integers. That difference is not of concern
to us here, but some of you may encounter that idea again. Of course, there are also finite sets like
{2, 4, 6, 8}.

There will be a time soon when we will be very interested in sets of vectors, both finite and infinite.
For example we might be interested in the finite set

A =











1
0
0



 ,





1
1
0











,

or the infinite set of all vectors of the form

[

a

2a

]

, where a is any real number. Let’s examine this

set a bit more.

⋄ Example 2.5(a): Let B be the set of all vectors of the form

[

a

2a

]

, where a is any real

number. Are the vectors
⇀

u =

[

3
10

]

and
⇀

v =

[

−2
−4

]

in B?

Solution: Because 2(3) 6= 10,
⇀

u is not in B. But 2(−2) = −4, so
⇀

v is in B.

⋄ Example 2.5(b): Let C be the set of all vectors of the form

[

a

a+ 1

]

, where a is any real

number. Are the vectors
⇀

u =

[

3
4

]

and
⇀

v =

[

−2
−1

]

in C?

Solution: 3 + 1 = 4 and −2 + 1 = −1, so both
⇀

u and
⇀

v are in C.
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In the future we will also be very interested in this question: Given an infinite set of vectors, is the
sum of any two vectors a vector that is also in the set? When faced with such a question we should do
one of two things:

• Give two specific vectors that are in the set, and show that their sum is not.

• Give two arbitray (general) vectors in the set and show that their sum is also in the set.

The following examples illustrate these.

⋄ Example 2.5(c): Let B be the set of all vectors of the form

[

a

2a

]

, where a is any real

number. Determine whether the sum of any two vectors in B is also in B.

Solution: The vectors

[

3
6

]

and

[

−2
−4

]

are both in B, and their sum

[

1
2

]

is as well.

We may have just gotten lucky, though, and maybe the sum of any two vectors in B is not
necessarily in B. Let’s see if the sum of two arbitrary vectors in B is in B. For any numbers

a and b, the vectors

[

a

2a

]

and

[

b

2b

]

are in B. We then compute their sum to get

[

a

2a

]

+

[

b

2b

]

=

[

a+ b

2a+ 2b

]

=

[

a+ b

2(a+ b)

]

=

[

c

2c

]

,

where c = a+ b. Therefore the sum of any two vectors in B is a vector in B.

⋄ Example 2.5(d): Let C be the set of all vectors of the form

[

a

a+ 1

]

, where a is any real

number. Is the sum of any two vectors in C also a vector in C?

Solution: The vectors

[

3
4

]

and

[

−2
−1

]

are both in C, as shown in Example 2.5(b). Their

sum is the vector

[

1
3

]

, which is not in C because 1 + 1 6= 3. Thus the sum of any two

vectors in C is not necessarily another vector in C.

⋄ Example 2.5(e): Let D be the set of all vectors of the form

[

x

y

]

, where x ≥ 0 and

y ≥ 0. Is the sum of any two vectors in D also a vector in D?

Solution: Suppose that

[

x1
y1

]

and

[

x2
y2

]

are both in D, so all of x1, y1, x2, y2 are greater

than or equal to zero. Clearly x1 + x2 ≥ 0 and y1 + y2 ≥ 0, so their sum

[

x1 + x2
y1 + y2

]

is in

D.

Given a set of vectors, we are also interested in whether a scalar multiple of a vector in the set is
in the set as well. In the next example we determine whether that is the case for the set D from the
previous example.
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⋄ Example 2.5(f): Let D be the set of all vectors of the form

[

x

y

]

, where x ≥ 0 and y ≥ 0.

Is any scalar times any vector in D also a vector in D?

Solution: Suppose that

[

x

y

]

is in D, so both x ≥ 0 and y ≥ 0. Is it possible that for

some scalar a, the vector a

[

x

y

]

=

[

ax

ay

]

is NOT in D? That would only be the case if

either ax < 0 or ay < 0, which would happen if a was negative and at least one of x or

y was positive. To give a specific example, for the vector

[

1
2

]

and a = −3,

[

1
2

]

is in

D but (−3)

[

1
2

]

=

[

−3
−6

]

is not.

It is very important that we note the difference between the approaches of Examples 2.5(e) and (f).
When trying to show that something is true in general about a set, we must demonstrate it for arbitrary
elements in the set, as done in Example 2.5(e). When trying to show something is not true all that
is needed is one specific example that fails to be true, which is called a counterexample. The vector
[

1
2

]

and scalar −3 are a specific counterexample for Example 2.5(f). We ALWAYS use specific

counterexamples to show that something is not true, but a general example to show that something IS

true.

Section 2.5 Exercises To Solutions

Do each of the following for each of Exercises 1 - 10.

(a) Give several vectors in the set.

(b) Determine whether the set is closed under addition.

(c) Determine whether the set is closed under scalar multiplication.

1. S =

{[

a

a2

]

∈ R
2

}

2. S =











a

b

a+ b





∣

∣

∣
a, b ∈ R







3. S =

{[

x

y

]

∈ R
2
∣

∣ xy ≥ 0

}

4. S =

{

t

[

1
−2

]

∣

∣

∣
t ∈ R

}

5. S =

{[

3
1

]

+ t

[

1
−2

]

∣

∣

∣
t ∈ R

}

6. S =

{

s

[

3
1

]

+ t

[

1
−2

]

∣

∣

∣
s, t ∈ R

}

7. S =

{[

−4
2

]

+ t

[

2
−1

]

∣

∣

∣
t ∈ R

}

8. S =











a

b

|a|



 ∈ R
3







9. S =











a

2a
3a





∣

∣

∣
a ∈ R







10. S =











1
2
3



+ s





0
1
0



+ t





0
0
1





∣

∣

∣
s, t ∈ R
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11. On separate graphs, plot the points corresponding to each of the sets of vectors (taken as position
vectors) in Exercises 1 - 4 above.

12. (a) The sets in Exercises 5 and 7 look very similar, but one is closed under both addition and
scalar multiplication, and the other is not. What do you notice about the vectors used to
describe the set that IS closed under both addition and scalar multiplication?

(b) Graph the sets from Exercises 5 and 7 on separate graphs. How are the two graphs alike?
How are they different?

13. Determine what the set described in Exercise 10 is, geometrically.

14. You might find it surprising that the vectors

[

17
−22

]

and

[

−10
−10

]

are in the set S described

in Exercise 6 above. For each of those two vectors, determine the values of s and t that give
them, to the nearest hundredth.

15. Determine what the set described in Exercise 6 is, geometrically.
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2.6 Vector Equations of Lines and Planes

Performance Criterion:

2. (j) Give the vector equation of a line through two points in R
2 or R

3 or
the vector equation of a plane through three points in R

3.

The idea of a linear combination does more for us than just give another way to interpret a system
of equations. The set of points in R

2 satisfying an equation of the form y = mx + b is a line;
any such equation can be rearranged into the form ax + by = c. (The values of b in the two
equations are clearly not the same.) But if we add one more term to get ax+ by + cz = d, with the
(x, y, z) representing the coordinates of a point in R

3, we get the equation of a plane, not a line! In
fact, we cannot represent a line in R

3 with a single scalar equation. The object of this section is to
show how we can represent lines, planes and higher dimensional objects called hyperplanes using linear
combinations of vectors.

For the bulk of this course, we will think of most vectors as position vectors. (Remember, this means
their tails are at the origin.) We will also think of each position vector as corresponding to the point
at its tip, so the coordinates of the point will be the same as the components of the vector. Thus, for

example, in R
2 the vector

⇀

x =

[

x1
x2

]

=

[

1
−3

]

corresponds to the ordered pair (x1, x2) = (1,−3).

⋄ Example 2.6(a): Graph the set of points corresponding to all vectors
⇀

x of the form
⇀

x =

t

[

1
−3

]

, where t represents any real number.

Solution: We already know that when t = 1 the the vec-
tor x corresponds to the point (1,−3). We then let
t = −2,−1, 0, 2 and determine the corresponding vectors

⇀

x:

t = −2 ⇒ x =

[

−2
6

]

, t = −1 ⇒ x =

[

−1
3

]

t = 0 ⇒ x =

[

0
0

]

t = 2 ⇒ x =

[

2
−6

]

5

5

-5

-5

t = −2

t = −1

t = 0

t = 1

t = 2

x

y

These vectors correspond to the points with ordered pairs (−2, 6), (−1, 3), (0, 0) and (2,−6),
which lie on a line through the origin. If we were to continue plotting more such points for all
possible values of t we get the line shown above and to the right.

It should be clear from the above example that we could create a line through the origin in any

direction by simply replacing the vector

[

1
−3

]

with a vector in the direction of the desired line. The

next example illustrates how we get a line not through the origin using vectors.
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⋄ Example 2.6(b): Graph the set of points corresponding to all vectors
⇀

x of the form
⇀

x =
[

2
3

]

+ t

[

−3
1

]

, where t represents any real number.

Solution: Performing the scalar multiplication by t and adding
the two vectors, we get

⇀

x =

[

2− 3t
3 + t

]

.

These vectors then correspond to all points of the form (2 −
3t, 3 + t). When t = 0 this is the point (2, 3) so our line
clearly passes through that point. Plotting the points obtained
when we let t = −1, 1, 2 and 3, we see that we will get the
line shown to the right.

5

5

-5

-5

t = −1

t = 0

t = 1

t = 2

t = 3

P

Q
x

y

Now let’s make two observations about the set of points represented by the set of all vectors
⇀

x =

[

2
3

]

+ t

[

−3
1

]

, where t again represents any real number. These vectors correspond to the

ordered pairs of the form (2−3t, 3+ t). Plotting these results in the line through the point (2, 3) and

in the direction of the vector

[

−3
1

]

. This is not a coincidence. Consider the line shown below and

to the left, containing the points P and Q. If we let
⇀

u =
−−→
OP and

⇀

v =
−−→
PQ, then the points

P and Q correspond to the vectors
⇀

u and
⇀

u +
⇀

v (in standard position, which you should assume
we mean from here on), as shown in the second picture. From this you should be able to see that if we
consider all the vectors

⇀

x defined by
⇀

x =
⇀

u +t
⇀

v as t ranges over all real numbers, the resulting
set of points is our line! This is shown in the third picture, where t is given the values −1, 0, 1

2
and

2.

O

P

Q

O

P

Q

⇀

u =
−−→
OP

⇀

v =
−−→
PQ

⇀

u +
⇀

v

O

P
Q

⇀

u

⇀

v

− ⇀

v

⇀

u
⇀

u +(−1)
⇀

v

⇀

u +2
⇀

v

⇀

u + 1

2

⇀

v

O

P

Q

⇀

u
⇀

v

This may seem like an overly complicated way to describe a line,
but with a little thought you should see that the idea translates
directly to three (and more!) dimensions, as shown in the picture
to the right. This is all summarized by the following.
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Lines in R
2 and R

3

The vector equation of a line through two points P and Q in R
2 and R

3 (and
even higher dimensions) is

⇀

x =
−−→
OP + t

−−→
PQ.

By this we mean that the line consists of all the points corresponding to the position

vectors
⇀

x as t varies over all real numbers. The vector
−−→
PQ is called the direction

vector of the line.

⋄ Example 2.6(c): Give the vector equation of the line in R
2 through the points P (−4, 1) and

Q(5, 3).

Solution: We need two vectors, one from the origin out to the line, and one in the direction of

the line. For the first we will use
−−→
OP , and for the second we will use

−−→
PQ = [9, 2]. We then

have
⇀

x =
−−→
OP + t

−−→
PQ =

[

−4
1

]

+ t

[

9
2

]

,

where
⇀

x = [x1, x2] is the position vector corresponding to any point (x1, x2) on the line.

⋄ Example 2.6(d): Give a vector equation of the line in R
3 through the points (−5, 1, 2) and

(4, 6,−3).

Solution: Letting P be the point (−5, 1, 2) and Q be the point (4, 6,−3), we get−−→
PQ = 〈9, 5,−5〉. The vector equation of the line is then

⇀

x =
−−→
OP + t

−−→
PQ =





−5
1
2



+ t





9
5

−5



 ,

where
⇀

x = [x1, x2, x3] is the position vector corresponding to any point (x1, x2, x3) on the
line.

The vector equation of a line is not unique! The first vector can be any point on the line, so it

could be the vector
−−→
OQ = [4, 6,−3] instead of [−5, 1, 2], for example. The second vector is simply

a direction vector, so can be any scalar multiple of
−−→
PQ = [9, 5,−5], including

−−→
QP = [−9,−5, 5].

The same general idea can be used to describe a plane in R
3. Before seeing how that works,

let’s define something and look at a situation in R
2. We say that two vectors are parallel if one is a

scalar multiple of the other. Now suppose that
⇀

v and
⇀

w are two nonzero vectors in R
2 that are

not parallel, as shown in Figure 2.6(a) on the next page, and let P be the randomly chosen point in
R
2 shown in the same picture. Figure 2.6(b) shows that a linear combination of

⇀

v and
⇀

w can be
formed that gives us a vector s

⇀

v +t
⇀

w corresponding to the point P . In this case the scalar s is
positive and less than one, and t is positive and greater than one. Figures 2.6(c) and 2.6(d) show the
same thing for another point Q, with s being negative and t positive in that case. It should now
be clear that any point in R

2 can be obtained in this manner.
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⇀

v

⇀

w
P

Figure 2.6(a)

s
⇀

v
t

⇀

w

s
⇀

v +t
⇀

w

P

Figure 2.6(b)

⇀

u

⇀

vQ

Figure 2.6(c)

s
⇀

v

t
⇀

w

s
⇀

v +t
⇀

w

Q

Figure 2.6(d)

Now let
⇀

u,
⇀

v and
⇀

w be three vectors in R
3, and consider the vector

⇀

x =
⇀

u +s
⇀

v +t
⇀

w, where
s and t are scalars that are allowed to take all real numbers as values. The vectors s

⇀

v +t
⇀

w all
lie in the plane containing

⇀

v and
⇀

w. Adding
⇀

u “moves the plane off the origin” to where it
passes through the tip of

⇀

u (again, in standard position). This is probably best visualized by thinking
of adding s

⇀

v and t
⇀

w with the parallelogram method, then adding the result to
⇀

u with the
tip-to-tail method. I have attempted to illustrate this to the left at the top of the next page, with the
gray parallelogram being part of the plane created by all the points corresponding to the vectors

⇀

x.

⇀

u

s
⇀

v

t
⇀

w

s
⇀

v +t
⇀

w

⇀

x =
⇀

u +s
⇀

v +t
⇀

w

x
y

z

P

Q

R

−−→
OP

−−→
PQ

−→
PR

−−→
PQ+

−→
PR

⇀

x =
−−→
OP +

−−→
PQ+

−→
PR

x
y

z

The same diagram above and to the right shows how all of the previous discussion relates to the plane
through three points P , Q and R in R

3. This leads us to the description of a plane in R
3 given

at the top of the next page.

Planes in R
3

The vector equation of a plane through three points P , Q and R in R
3 (or

higher dimensions) is
⇀

x =
−−→
OP + s

−−→
PQ+ t

−→
PR.

By this we mean that the plane consists of all the points corresponding to the
position vectors

⇀

x as s and t vary over all real numbers.

⋄ Example 2.6(e): Give a vector equation of the plane in R
3 through the points (2,−1, 3),

(−5, 1, 2) and (4, 6,−3). What values of s and t give the point R?

Solution: Letting P be the point (2,−1, 3), Q be (−5, 1, 2) and R be (4, 6,−3), we get
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−−→
PQ = [−7, 2,−1] and

−→
PR = [2, 7,−6]. The vector equation of the plane is then

⇀

x =
−−→
OP + s

−−→
PQ+ t

−→
PR =





2
−1
3



+ s





−7
2

−1



+ t





2
7

−6



 ,

where
⇀

x = [x1, x2, x3] is the position vector corresponding to any point (x1, x2, x3) on the
plane. It should be clear that there are other possibilities for this. The first vector in the equation
could be any of the three position vectors for P , Q or R. The other two vectors could be any
two vectors from one of the points to another.

The vector corresponding to point R is
−−→
OR, which is equal to

⇀

x =
−−→
OP +

−→
PR (think about

that), so s = 0 and t = 1.

We now summarize all of the ideas from this section.

Lines in R
2 and R

3, Planes in R
3

Let
⇀

u and
⇀

v be vectors in R
2 or R

3 with
⇀

v 6= 0. Then the set of points
corresponding to the vector

⇀

x =
⇀

u + t
⇀

v as t ranges over all real numbers is
a line through the point corresponding to

⇀

u and in the direction of
⇀

v. (So if
⇀

u =
⇀

0 the line passes through the origin.)

Let
⇀

u,
⇀

v and
⇀

w be vectors R
3, with

⇀

v and
⇀

w being nonzero and not parallel.
(That is, not scalar multiples of each other.) Then the set of points corresponding
to the vector

⇀

x =
⇀

u + s
⇀

v + t
⇀

w as s and t range over all real numbers is
a plane through the point corresponding to

⇀

u and containing the vectors
⇀

v and
⇀

w. (If
⇀

u =
⇀

0 the plane passes through the origin.)

Section 2.6 Exercises To Solutions

1. For each of the following, give the vector equation of the line or plane described.

(a) The line in R
2 through the points P (3,−1) and Q(6, 0).

(b) The plane in R
3 through the points P (3,−1, 4), Q(2, 6, 0) and R(−1, 0, 3).

(c) The line in R
3 through the two points P (3,−1, 4) and Q(2, 6, 0).

(d) The line in R
2 through the points (−1, 4) and (2, 5).

(e) The line in R
2 through (−4, 3) and the origin. (Hint: Use the method of Example 2.6(c),

taking P to be (0, 0) and Q to be (−4, 3).)

(f) The plane in R
3 through (−5, 1, 3), (2, 0, 4) and (1,−2, 3).

(g) The line in R
3 through (2, 0,−1) and (1, 1, 3).

(h) The plane in R
3 through (−4, 5, 1), (2, 2, 2) and the origin.

(i) The line in R
3 through (1, 2, 3) and the origin.
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2. Each of the lines or planes in the previous exercise constitutes a set of points in R
2 or R

3.
Which are sets closed under addition and scalar multiplication?

3. Give the equation of the three-dimensional hyperplane in R
4 containing the points (−2, 1, 1, 5),

(3, 7,−5, 2), (4, 0, 5,−2) and (3,−5, 4, 7).

4. Consider the two points P (5,−1, 4) and Q(1, 1, 2) in R
3.

(a) Give the vector equation of the line for which the value t = 0 for the parameter gives the
point Q and t = 1 gives the point P .

(b) Give the vector equation of the line for which the value t = 0 for the parameter gives the
point Q and t = −1 gives the point P .

(c) Give the vector equation of the line for which the value t = 0 for the parameter gives the
point P and t = 2 gives the point Q.

5. Consider the two points P (−3, 1) and Q(2, 5) in R
2.

(a) Give the “next” point with integer coordinates as one goes from P to Q.

(b) Give the vector equation for the line for which the parameter value t = 0 gives the point
P and t = 1 gives Q.

(c) What value of t in your equation from (b) gives the point you found in part (a)?

(d) Give the “next” point with integer coordinates as one goes from Q to P . What value of
the parameter t in your equation from (b) gives this point?

6. Consider the three points P (1, 6,−2), Q(−5, 7, 4) and R(3, 0,−1) in R
3. Give the vector

equation of plane in the form
⇀

x =
⇀

u + s
⇀

v + t
⇀

w for which s = 0 and t = 0 gives the point
Q, s = 0 and t = 1 gives R, and s = 1, t = 0 gives P .

7. Give the “next” three points on the line in R
3 containing P (5,−1, 4) and Q(1, 1, 2), traveling

in the direction from P to Q.

8. Find another point in the plane containing P1(−2, 1, 5), P2(3, 2, 1) and P3(4,−2,−3). Show
clearly how you do it. (Hint: Find and use the vector equation of the plane.)

9. “Usually” a vector equation of the form
⇀

x =
⇀

p + s
⇀

u + t
⇀

v gives the equation of a plane in R3.
Answer the following first allowing any of

⇀

p,
⇀

u and
⇀

v to be the zero vector, then give answers
assuming that none of them are zero.

(a) Under what conditions on
⇀

p and/or
⇀

u and/or
⇀

v would this be the equation of a line?

(b) Under what conditions on
⇀

p and/or
⇀

u and/or
⇀

v would this be the equation of a plane
through the origin?
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2.7 Interpreting Solutions to Systems of Linear Equations

Performance Criterion:

2. (k) Write the solution to a system of equations in vector form and determine
the geometric nature of the solution.

We begin this section by considering the following two systems of equations.

3x1 − 3x2 + 3x3 = 9

2x1 − x2 + 4x3 = 7

3x1 − 5x2 − x3 = −3

x1 − x2 + 2x3 = 1

−3x1 + 3x2 − 6x3 = −3

2x1 − 2x2 + 4x3 = 2

The augmented matrices for these two systems reduce to the following matrices, respectively.





1 0 3 4
0 1 2 1
0 0 0 0









1 −1 2 1
0 0 0 0
0 0 0 0





Let’s look at the first system. x3 is a free variable, and x1 and x2 are leading variables. The general
solution is x1 = −3t+ 4, x2 = −2t+ 1, x3 = t. Algebraically, x1, x2 and x3 are just numbers, but we
can think of (x1, x2, x3) as a point in R

3. The corresponding position vector is

⇀

x =







x1

x2

x3






=







4− 3t

1− 2t

t






=







4

1

0






+







−3t

−2t

t






=







4

1

0






+ t







−3

−2

1







We will call this the vector form of the solution to the system of equations. The beauty of expressing
the solutions to a system of equations in vector form is that we can see what the set of all solutions looks
like. In this case, the set of solutions is the set of all points in R

3 on the line through (4, 1, 0) and
with direction vector [−3,−2, 1].

⋄ Example 2.7(a): The general solution to the second system of equations is x1 = 1 + s − 2t,
x2 = s, x3 = t. Express the solution in vector form and determine the geometric nature of the
solution set in R

3.

Solution: A process like the one just carried out leads to the general solution with position vector

⇀

x =







x1

x2

x2






=







1

0

0






+ s







1

1

0






+ t







−2

0

1







(Check to make sure that you understand how this was arrived at.) Here the set of solutions is
the set of all points in R

3 on the plane through (1, 0, 0) with direction vectors [1, 1, 0] and
[−2, 0, 1].
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Now recall that the three equations from this last example,

x1 − x2 + 2x3 = 1

−3x1 + 3x2 − 6x3 = −3

2x1 − 2x2 + 4x3 = 2

represent three planes in R
3, and when we solve the system we are looking for all points in R

3 that
are solutions to all three equations. Our results tell us that the set of solution points in this case is
itself a plane, which can only happen if all three equations represent the same plane. If you look at
them carefully you can see that the second and third equations are multiples of the first, so the points
satisfying them also satisfy the first equation.

⋄ Example 2.7(b): The general solution to the second system of equations is x1 = 1 + s − 2t,
x2 = s, x3 = t. Express the solution in vector form and determine the geometric nature of the
solution set in R

3.

Solution: A process like the one just carried out leads to the general solution with position vector

⇀

x =







x1

x2

x3






=







1

0

0






+ s







1

1

0






+ t







−2

0

1







(Check to make sure that you understand how this was arrived at.) Here the set of solutions is
the set of all points in R

3 on the plane through (1, 0, 0) with direction vectors [1, 1, 0] and
[−2, 0, 1].

⋄ Example 2.7(c): Give the vector form of the solution to the system

3x2 − 6x3 − 4x4 − 3x5 = −5

x1 − 3x2 + 10x3 + 4x4 + 4x5 = 2

2x1 − 6x2 + 20x3 + 2x4 + 8x5 = −8

Solution: The augmented matrix of the system reduces to







1 0 4 0 1 −3

0 1 −2 0 −1 1

0 0 0 1 0 2







We can see that x3 and x5 are free variables, and we can also see that x4 = 2. Letting
x5 = t and x3 = s, x2 = 1 + 2s+ t and x1 = −3− 4s− t. Therefore

⇀

x =

















x1

x2

x3

x4

x5

















=

















−3

1

0

2

0

















+ s

















−4

2

1

0

0

















+ t

















−1

1

0

0

1
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How do we interpret this result geometrically? The set of points (x1, x2, x3, x4, x5) represents a
two-dimensional plane in five-dimensional space. We could also have ended up with one, three or four
dimensional “plane”, often called a hyperplane, in five-dimensional space.

Section 2.7 Exercises To Solutions

1. For each of the following, a student correctly finds the given the general solution (x1, x2, x3) to
a system of three equations in three unknowns. Give the vector form of the solution, then tell
whether the set of all particular solutions is a point, line or plane.

(a) x1 = s− t+ 5, x2 = s, x3 = t (b) x1 = 2t+ 5, x2 = t, x3 = −1

(c) x1 = s− 2t+ 5, x2 = s, x3 = t

2. In each of the following, the vector form of the solution to a system of linear equations is given.
Give the dimension of the solution, and the dimension of the space it is in. For example you might
answer “three-dimensional plane in five-dimensional space.”

(a)

⇀

x =













x1

x2

x3

x4













=













5

1

−1

4













+ r













3

7

1

−4













+ s













6

3

−10

8













+ t













1

1

1

1













(b)

⇀

x =

















x1

x2

x3

x4

x5

















= r

















−3

1

0

2

0

















+ s

















−4

2

1

0

0

















+ t

















−1

1

0

0

1

















(c)

⇀

x =





























1

0

−3

1

0

2

0





























+ t1





























5

−3

−4

2

1

0

0





























+ t2





























1

5

−1

1

0

0

1





























+ t3





























2

−5

1

0

3

9

3





























+ t4





























5

7

−4

−2

1

−4

5





























+ t5





























3

1

−1

6

10

−4

1





























(d)

⇀

x =

















x1

x2

x3

x4

x5

















=

















4

−7

3

6

−1

















+ t

















2

0

−8

−1

4
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(e)

⇀

x =













x1

x2

x3

x4













=













1

1

1

1













+ s













3

7

1

−4













+ s













6

3

−10

8













(f)

⇀

x =





























x1

x2

x3

x4

x5

x6

x7





























= t1





























1

5

−1

1

0

0

1





























+ t2





























2

−5

1

0

3

9

3





























+ t3





























5

7

−4

−2

1

−4

5





























+ t4





























3

1

−1

6

10

−4

1
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2.8 The Dot Product of Vectors, Projections

Performance Criteria:

3. (g) Find the dot product of two vectors, determine the length of a single
vector.

(h) Determine whether two vectors are orthogonal (perpendicular).

(i) Find the projection of one vector onto another, graphically or alge-
braically.

The Dot Product and Orthogonality

There are two ways to “multiply” vectors, both of which you have likely seen before. One is called
the cross product, and only applies to vectors in R

3. It is quite useful and meaningful in certain
physical situations, but it will be of no use to us here. More useful is the other method, called the dot
product, which is valid in all dimensions.

Definition 2.8.1: Dot Product

Let
⇀

u= [u1, u2, ..., un] and
⇀

v= [v1, v2, ..., vn]. The dot product of
⇀

u and
⇀

v,
denoted by

⇀

u · ⇀

v, is given by

⇀

u · ⇀

v= u1v1 + u2v2 + u3v3 + · · · + unvn

The dot product is useful for a variety of things. Recall that the length of a vector
⇀

v= [v1, v2, ..., vn] is

given by ‖ ⇀

v ‖ =
√

v2
1
+ v2

2
+ · · ·+ v2

n
=

√
⇀

v · ⇀

v. Note also that v2
1
+ v2

2
+ · · ·+ v2

n
=

⇀

v · ⇀

v, which

implies that ‖ ⇀

v ‖ =
√

⇀

v · ⇀

v. Perhaps the most important thing about the dot product is that the
dot product of two vectors in R

2 or R
3 is zero if, and only if, the two vectors are perpendicular. In

general, we make the following definition.

Definition 2.8.2: Orthogonal Vectors

Two vectors
⇀

u and
⇀

v in R
n are said to be orthogonal if, and only if,

⇀

u · ⇀

v= 0.

⋄ Example 2.8(a): For the three vectors u =







5

−1

2






, v =







−1

3

4






and w =







2

−1

−3






,

find
⇀

u · ⇀

v,
⇀

u · ⇀

w and
⇀

v · ⇀

w. Are any of the vectors orthogonal to each other?

Solution: We find that

⇀

u · ⇀

v= (5)(−1) + (−1)(3) + (2)(4) = −5 + (−3) + 8 = 0,
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⇀

u · ⇀

w= (5)(2) + (−1)(−1) + (2)(−3) = 10 + 1 + (−6) = 5,
⇀

v · ⇀

w= (−1)(2) + (3)(−1) + (4)(−3) = −2 + (−3) + (−12) = −17

From the first computation we can see that
⇀

u and
⇀

v are orthogonal.

Projections

Given two vectors
⇀

u and
⇀

v, we can create a new vector
⇀

w called the projection of
⇀

u onto
⇀

v,
denoted by projv

⇀

u. This is a very useful idea, in many ways. Geometrically, we can find projv
⇀

u as
follows:

• Bring
⇀

u and
⇀

v together tail-to-tail.

• Sketch in the line containing
⇀

v, as a dashed line.

• Sketch in a dashed line segment from the tip of
⇀

u to the dashed line containing
⇀

v, perpendicular

to that line.

• Draw the vector projv
⇀

u from the point at the tails of
⇀

u and
⇀

v to the point where the
dashed line segment meets

⇀

v or the dashed line containing
⇀

v.

Note that projv
⇀

u is parallel to
⇀

v; if we were to find proju
⇀

v instead, the result would be parallel
to

⇀

u in that case. The above steps are illustrated in the following example.

⋄ Example 2.8(b): For the vectors
⇀

u and
⇀

v shown to the right, find the projection

projv
⇀

u.
⇀

u

⇀

v

Solution: Following the above steps we get

⇀

u

⇀

v

=⇒
⇀

u

⇀

v

=⇒
⇀

u

⇀

v

=⇒
⇀

u

projv
⇀

u

Projections are a bit less intuitive when the angle between the two vectors is obtuse, as seen in the
next example.

76



⋄ Example 2.8(c): For the vectors
⇀

u and
⇀

v shown to the right, find

the projection proju
⇀

v.

⇀

v ⇀

u

Solution: We follow the steps again, noting that this time we are projecting
⇀

v onto
⇀

u:

⇀

v
⇀

u

=⇒
⇀

v
⇀

u

=⇒
⇀

v
⇀

u

=⇒
⇀

v
⇀

u

proju
⇀

v

Here we see that proju
⇀

v is in the direction opposite
⇀

u.

We will also want to know how to find projections algebraically:

Definition 2.8.3: The Projection of One Vector on Another

For two vectors
⇀

u and
⇀

v, the vector projv
⇀

u is given by

projv
⇀

u=

⇀

u · ⇀

v
⇀

v · ⇀

v

⇀

v

Note that since both
⇀

u · ⇀

v and
⇀

v · ⇀

v are scalars, so is

⇀

u · ⇀

v
⇀

v · ⇀

v
. That scalar is then multiplied

times
⇀

v, resulting in a vector parallel
⇀

v. if the scalar is positive the projection is in the direction of
⇀

v, as shown in Example 2.8(b); when the scalar is negative the projection is in the direction opposite
the vector being projected onto, as shown in Example 2.8(c).

⋄ Example 2.8(d): For the vectors u =







5

−1

2






and v =







2

−1

−3






, find proju

⇀

v.

Note that here we are projecting
⇀

v onto
⇀

u. first we find

⇀

v · ⇀

u= (2)(5) + (−1)(−1) + (−3)(2) = 5 and
⇀

u · ⇀

u= 52 + (−1)2 + 22 = 30

Then

proju
⇀

v=

⇀

v · ⇀

u
⇀

u · ⇀

u

⇀

u=
5

30







5

−1

2






=

1

6







5

−1

2






=







5

6

−1

6

1

3
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As stated before, the idea of projection is extremely important in mathematics, and arises in situations
that do not appear to have anything to do with geometry and vectors as we are thinking of them now.
You will see a clever geometric use of vectors in one of the exercises.

Section 2.8 Exercises To Solutions

1. Consider the vectors
⇀

v=

[

−2
7

]

and
⇀

b=

[

1
3

]

.

(a) Draw a neat and accurate graph of
⇀

v and
⇀

b, with their tails at the origin, labeling each.

(b) Use the formula to find projb
⇀

v, with its components rounded to the nearest tenth.

(c) Add projb
⇀

v to your graph. Does it look correct?

2. For each pair of vectors v and b below, do each of the following

i) Sketch v and b with the same initial point.

ii) Find projb
⇀

v algebraically, using the formula for projections.

iii) On the same diagram, sketch the projb
⇀

v you obtained in part (ii). If it does not look the
way it should, find your error.

iv) Find projb
⇀

v, and sketch it as a new sketch. Compare with your previous sketch.

(a) v =

[

3
1

]

, b =

[

5
−2

]

(b) v =

[

−5
0

]

, b =

[

−2
1

]

(c) v =

[

3
1

]

, b =

[

−2
−4

]

3. For each pair of vectors
⇀

u and
⇀

v, sketch projv
⇀

u. Indicate any right angles with the standard
symbol.

⇀

u

⇀

v

(a)

⇀

u

⇀

v
(b)

⇀

u

⇀

v

(c)

⇀

u

⇀

v

(d)

(
⇀

u and
⇀

v are orthogonal)
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B Solutions to Exercises

B.2 Chapter 2 Solutions

Section 2.1 Solutions Back to 2.1 Exercises

1. (a) Plane, intersects the x, y and z-axes at (3, 0, 0), (0, 6, 0) and (0, 0,−2), respectively.

(b) Plane, intersects the x and z-axes at (6, 0, 0) and (0, 0, 2), respectively. Does not intersect
the y-axis.

(c) Plane, intersects only the y-axis, at (0,−6, 0).

(d) Not a plane.

(e) Plane, intersects the x, y and z-axes at (−6, 0, 0), (0, 3, 0) and (0, 0,−2), respectively.

2. (a) 10x+ 4y + 5z = 20 (b) −7x+ 21y + 3z = 21

(c) 2x− 3z = 6 (d) y = 4 (e) −y + 4z = 4 (f) z = −2

3.

5

5

2

x

y

z(a)

3

2

x

y

z(b)

6

2

x

y

z(c)

4

2

8

x

y

z(d)

3

x

y

z(e)

2
6

3

x

y

z(f)
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4

2

x

y

z(g)

5

x

y

z(h)

1

3

1

x

y

z(i)

Section 2.2 Solutions Back to 2.2 Exercises

1. ‖ ⇀

u ‖ =
√
14 , ‖ ⇀

x ‖ =
√
74 , ‖ ⇀

v ‖ =
√
30 , ‖ ⇀

b ‖ =
√

b2
1
+ b2

2
+ b2

3
+ b2

4

2. (a)
−−→
PQ =





17
−6

−15



 , ‖−−→PQ‖ =
√
550 = 23.4

(b)
−−→
PQ =

[

12
−3

]

, ‖−−→PQ‖ =
√
153 = 12.4

(c)
−−→
PQ =









10
−1
−7
9









, ‖−−→PQ‖ =
√
231 = 15.2

3. (a) Q(5, 4) (b) Q(6, 7,−1,−7, 7) (c) P (9,−8, 5)

4. (a) ‖ ⇀

u ‖ = 3 (b)

⇀

u

‖ ⇀

u ‖
=







2

3

1

3

−2

3






(c)

∥

∥

∥

∥

⇀

u

‖ ⇀

u ‖

∥

∥

∥

∥

= 1

5. (a) ‖ ⇀

v ‖ = 5 (b)

⇀

v

‖ ⇀

v ‖
=

[

4

5

−3

5

]

(c)

∥

∥

∥

∥

⇀

v

‖ ⇀

v ‖

∥

∥

∥

∥

= 1

For any vector
⇀

v, the magnitude of

⇀

v

‖ ⇀

v ‖
is always one.

Section 2.3 Solutions Back to 2.3 Exercises

1. Tip-to-tail: Parallelogram:

−⇀

u

⇀

v

⇀

v

−⇀

u +2
⇀

v

−⇀

u

⇀

v

⇀

v

−⇀

u +2
⇀

v

2.

[

−45
30

]

3.





−c1 − 8c2
3c1 + c2

−6c1 + 4c2
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5. (a) 0
⇀

u1 + 2
⇀

u2 + 1
⇀

u3 =
⇀

v (b) 2
⇀

u1 − 3
⇀

u2 =
⇀

v

(c) −5
⇀

u1 +
⇀

u2 + 3
⇀

u3 =
⇀

v

(d) Any vector of the form (−1

2
t+ 7

2
)
⇀

u1 + (1
2
t− 5

2
)
⇀

u2 + t
⇀

u3 equals
⇀

v

(e) 2
⇀

u1 −⇀

u2 + 4
⇀

u3 − 5
⇀

u4 =
⇀

v

(f) There is no linear combination of
⇀

u1,
⇀

u2 and
⇀

u3 equalling
⇀

v.

(g) Any vector of the form (1− 2t)
⇀

u1 + (4− 3t)
⇀

u2 + t
⇀

u3 equals
⇀

v

6. (a) a1 =
3

2
, a2 = 4, a3 = −1

2
(b) There are no such b1, b2 and b3

(c) det(A) = −42, det(B) = 0

Section 2.4 Solutions Back to 2.4 Exercises

1. (a) x







1

−3

2






+ y







1

2

1






+ z







−3

−1

−4






=







1

7

0







(b) x1







5

0

2






+ x2







0

2

1






+ x3







1

3

−4






=







−1

0

2







(c) b





























1

1

1

1

1

1

1





























+m





























0.5

1.0

1.5

2.0

2.5

3.0

3.5





























=





























8.1

6.9

6.2

5.3

4.5

3.8

3.0





























(d) x1







1

3

−2






+ x2







−4

2

1






+ x3







1

−1

−4






+ x4







2

−7

1






=







−1

0

2







2. (a) (b)−3x1 + x2 = 5

x1 + x2 = −2
5x1 − 3x2 + 2x3 + 7x4 = −8

x1 + 2x2 − 4x4 = 1

−4x1 + x2 + 5x3 + 6x4 = 5

−3x1 − x2 + 4x3 + 7x4 = 4

(c) 3x1 + 4x2 + x3 = −5

2x1 − 7x2 + x3 = 3

x1 + 5x2 + x3 = −4
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3. x

[

2
3

]

+ y

[

−3
−1

]

=

[

−6
5

]

=⇒ 3

[

2
3

]

+ 4

[

−3
−1

]

=

[

−6
5

]

[

2
3

]

[

−3
−1

]

[

−6
5

]

3

[

2
3

]

=

[

6
9

]

4

[

−3
−1

]

=

[

−12
−4

]

[

−6
5

]

tip-to-tail method

3

[

2
3

]

=

[

6
9

]

4

[

−3
−1

]

=

[

−12
−4

]

[

−6
5

]

parallelogram method

Section 2.5 Solutions Back to 2.5 Exercises

1. (a)

[

0
0

]

,

[

1
1

]

,

[

3
9

]

,

[

−2
4

]

,

[

π

π2

]

, · · ·

(b) The set is not closed under addition. (c) S is not closed under scalar multiplication.

2. (a)





0
0
0



 ,





1
1
2



 ,





5
−7
−2



 ,





−3
−1
−4



 ,





π

e

π + e



 , · · ·

(b) The set is closed under addition. (c) The set is closed under scalar multiplication.

3. (a)

[

0
0

]

,

[

1
1

]

,

[

5
0

]

,

[

2
3

]

,

[

−2
−3

]

,

[

0
−5

]

,

[

−1
−1

]

, · · ·

(b) S is not closed under addition. (c) S is closed under scalar multiplication.

4. (a)

[

0
0

]

,

[

1
−2

]

,

[

2
−4

]

,

[

3
−6

]

,

[

−3
6

]

,

[

−1
2

]

, · · ·
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(b) S is closed under scalar multiplication. (c) The set is closed under addition.

5. (a)

[

3
1

]

,

[

4
−1

]

,

[

5
−3

]

,

[

6
−5

]

,

[

0
7

]

,

[

2
3

]

, · · ·

(b) S is not closed under addition. (c) S is not closed under scalar multiplication.

6. (a)

[

0
0

]

,

[

3
1

]

,

[

1
−2

]

,

[

4
−1

]

,

[

5
−3

]

,

[

17
−22

]

,

[

−10
−10

]

, · · ·

(b) The set is closed under addition. (c) S is closed under scalar multiplication.

7. (a)

[

−4
−2

]

,

[

−2
1

]

,

[

0
0

]

,

[

2
−1

]

,

[

−6
3

]

, · · ·

(b) The set is closed under addition. (c) S is closed under scalar multiplication.

8. (a)





0
0
0



 ,





1
1
1



 ,





−3
5
3



 ,





2
1
2



 ,





−8
0
8



 , · · ·

(b) The set is not closed under addition. (c) The set is not closed under scalar
multiplication.

9. (a)





0
0
0



 ,





1
2
3



 ,





2
4
6



 ,





−1
−2
−3



 ,





−2
−4
−6



 ,





π

2π
3π



 , · · ·

(b) S is closed under addition. (c) S is closed under scalar multiplication.

10. (a)





1
2
3



 ,





1
3
3



 ,





1
2
4



 ,





1
200

−300



 ,





1
π

e



 ,





1
−7
1



 , · · ·

(b) The set is not closed under addition. (c) The set is not closed under scalar
multiplication.

Section 2.6 Solutions Back to 2.6 Exercises

1. Each of the following is just one possibility - each line or plane has more than one equation
possible.

(a)
⇀

x =

[

3

−1

]

+ t

[

3

1

]

(b)
⇀

x =







3

−1

4






+ s







−1

7

−4






+ t







−4

1

−1







(c)
⇀

x =







3

−1

4






+ t







−1

7

−4






(d)

⇀

x =

[

−1

4

]

+ t

[

3

−1

]
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(e)
⇀

x = t

[

−4

3

]

(f)
⇀

x =







−5

1

3






+ s







7

−1

1






+ t







6

−3

−1







(g)
⇀

x =







2

0

−1






+ t







−1

1

4






(h)

⇀

x = s







−4

5

1






+ t







2

2

2







(i)
⇀

x = t







1

2

3







2. The sets described in parts (e), (h) and (i) are closed under addition and scalar multiplication.

3.
⇀

x =













−2

1

1

5













+ r













5

6

−6

−3













+ s













6

−1

4

−7













+ t













5

−6

3

2













4. (a)
⇀

x =







1

1

2






+ t







4

−2

2






(b)

⇀

x =







1

1

2






+ t







−4

2

−2







(c)
⇀

x =







5

−1

4






+ t







−2

1

−1







5. (a) (7, 9) (b)
⇀

x =

[

−3

1

]

+ t

[

5

4

]

(c) t = 2 (d) (−8,−3), t = −1

6.
⇀

x =







−5

7

4






+ s







6

−1

−6






+ t







8

−7

−5






7. (−3, 3, 0), (−7, 5,−2), (−11, 7,−4)

8. The vector equation of the plane is
⇀

x =







−2

1

5






+ s







5

1

−4






+ t







6

−3

−8






. Letting s = 1

and t = 1 gives the point (9,−1,−7). (This is just one possibility - we can get other points by
choosing other values of s and t.)

9. (a) If either, but not both, of
⇀

u or
⇀

v are the zero vector, then
⇀

x =
⇀

p + s
⇀

u + t
⇀

v will

be the equation of a line. If
⇀

u 6= ⇀

0 and
⇀

v 6= ⇀

0 are scalar multiples of each other, then
⇀

x =
⇀

p + s
⇀

u + t
⇀

v will be the equation of a line.

(b) If
⇀

p is the zero vector, then
⇀

x =
⇀

p + s
⇀

u + t
⇀

v will be the equation of a plane through

the origin. If
⇀

p 6= ⇀

0 is a scalar multiple of either
⇀

u 6= ⇀

0 or
⇀

v 6= ⇀

0 and
⇀

u and
⇀

v are NOT scalar multiples of each other, then
⇀

x =
⇀

p + s
⇀

u + t
⇀

v will be the equation
of a plane through the origin.
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Section 2.7 Solutions Back to 2.7 Exercises

1. (a)
⇀

x =







5

0

0






+ s







1

1

0






+ t







−1

0

1






(b)

⇀

x =







5

0

−1






+ t







2

1

0







(c)
⇀

x =







5

0

0






+ s







1

1

0






+ t







−2

0

1







2. (a) three-dimensional plane in four-dimensional space

(b) three-dimensional plane in five-dimensional space

(c) five-dimensional plane in seven-dimensional space

(d) one-dimensional plane (line) in five-dimensional space

(e) two-dimensional plane in four-dimensional space

(f) four-dimensional plane in seven-dimensional space

Section 2.8 Solutions Back to 2.8 Exercises

2. (a) projb
⇀

v=
15− 2

25 + 4

[

5
−2

]

=
13

29

[

5
−2

]

=

[

65

29

−26

29

]

(b) projb
⇀

v=
10− 0

4 + 1

[

−2
1

]

= 2

[

−2
1

]

=

[

−4
2

]

(c) projb
⇀

v=
−6− 4

16 + 4

[

−2
−4

]

= −1

2

[

−2
−4

]

=

[

1
2

]

3.

projv
⇀

u

(tail is where
⇀

u and
⇀

v meet)

⇀

u

⇀

v

(a)

projb
⇀

u

⇀

u
⇀

v

(b)

projv
⇀

u⇀

u

⇀

v

(c)

⇀

u

⇀

v

(d)

because
⇀

u and
⇀

v are orthogonal,
projv

⇀

u is the zero vector
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