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3 Matrices and Vectors

Outcome:

3. Understand matrices, their algebra, and their action on vectors. Use matrices
to solve problems. Understand the algebra of matrices.

Performance Criteria:

(a) Give the dimensions of a matrix. Identify a given entry, row or column
of a matrix.

(b) Identify matrices as square, upper triangular, lower triangular, symmetric,
diagonal. Give the transpose of a given matrix; know the notation for
the transpose of a matrix.

(c) Add or subtract matrices when possible. Multiply a matrix by a scalar.

(d) Multiply a matrix times a vector, give the linear combination form of a
matrix times a vector.

(e) Give a specific matrix that is multiplied times an arbitrary vector to obtain
a given resulting vector.

(f) Express a system of equations as a coefficient matrix times a vector
equalling another vector.

(g) For a given matrix A and vector
⇀

b, find a vector
⇀

x for which

A
⇀

x =
⇀

b,

(h) Determine whether a matrix is a projection matrix, reflection matrix or
rotation matrix, or none of these, by its action on a few vectors.

(i) Determine whether a vector is an eigenvector of a matrix. If it is, give
the corresponding eigenvalue.

(j) Know when two matrices can be multiplied, and know that matrix mul-
tiplication is not necessarily commutative. Multiply two matrices “by
hand.”

(k) Determine whether two matrices are inverses without finding the inverse
of either.

(l) Find the inverse of a 2×2 matrix using the formula. Find the inverse
of a matrix using the Gauss-Jordan method. Describe the Gauss-Jordan
method for finding the inverse of a matrix.

(m) Solve a system of equations using an inverse matrix. Describe how to
use an inverse matrix to solve a system of equations.

(n) Find the determinant of a 2×2 or 3×3 matrix by hand. Use a calculator
to find the determinant of an n× n matrix.

(o) Use the determinant to determine whether a system of equations has a
unique solution.

(p) Determine whether a homogeneous system has more than one solution.

Continued on the next page.
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Outcome:

3. Understand matrices, their algebra, and their action on vectors. Use matrices
to solve problems. Understand the algebra of matrices.

Performance Criteria:

(q) Use Cramer’s rule to solve a system of equations.

(r) Give the geometric or algebraic representations of the inverse or square
of a rotation. Demonstrate that the geometric and algebraic versions are
the same

(s) Give the incidence matrix of a graph or digraph. Given the incidence
matrix of a graph or digraph, identify the vertices and edges using correct
notation, and draw the graph.

(t) Determine the number of k-paths from one vertex of a graph to another.
Solve problems using incidence matrices.

82



3.1 Introduction to Matrices

Performance Criteria:

3. (a) Give the dimensions of a matrix. Identify a given entry, row or column
of a matrix.

(b) Identify matrices as square, upper triangular, lower triangular, symmetric,
diagonal. Give the transpose of a given matrix; know the notation for
the transpose of a matrix.

(c) Add or subtract matrices when possible. Multiply a matrix by a scalar.

A matrix is simply an array of numbers arranged in rows and columns. Here are some examples:

A =

[

1 2

2 3

]

, B =





−5 1

0 4

2 −3



 , D =











3 0 0 0

0 4 0 0

0 0 5 0

0 0 0 6











, L =





1 0 0

−3 1 0

5 −2 1





We will always denote matrices with italicized capital letters. There should be no need to define the
rows and columns of a matrix. The number of rows and number of columns of a matrix are called its
dimensions. The second matrix above, B, has dimensions 3× 2, which we read as “three by two.”
The numbers in a matrix are called its entries. Each entry of a matrix is identified by its row, then
column. For example, the (3, 2) entry of L is the entry in the 3rd row and second column, −2. In
general, we will define the (i, j)th entry of a matrix to be the entry in the ith row and jth column.

There are a few special kinds of matrices that we will run into regularly:

• A matrix with the same number of rows and columns is called a square matrix. Matrices A,
D and L above are square matrices.

• The entries that are in the same number row and column of a square matrix are called the diagonal
entries of the matrix. For example, the diagonal entries of A are 1 and 3. All the diagonal
entries taken together are called the diagonal of the matrix. (This ALWAYS refers to only the
diagonal from upper left to lower right.)

• A square matrix with zeros “above” the diagonal is called a lower triangular matrix; L is an
example of a lower triangular matrix. Similarly, an upper triangular matrix is one whose entries
below the diagonal are all zeros. (Note that the words “lower” and “upper” refer to the triangular
parts of the matrices where the entries are NOT zero.)

• A square matrix all of whose entries above AND below the diagonal are zero is called a diagonal
matrix. D is an example of a diagonal matrix. Any diagonal matrix is also both upper and lower

triangular.

• A diagonal matrix with only ones on the diagonal is called “the” identity matrix. We use the
word “the” because in a given size there is only one identity matrix. We will soon see why it is
called the “identity.”

• Given a matrix, we can create a new matrix whose rows are the columns of the original matrix.
(This is equivalent to the columns of the new matrix being the rows of the original.) The new
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matrix is called the transpose of the original. The transposes of the matrices B and L above are
denoted by BT and LT . They are the matrices

BT =

[ −5 0 2

1 4 −3

]

LT =





1 −3 5

0 1 −2

0 0 1





If a matrix a is m× n, then AT is n×m. Note that when a matrix is square, its transpose
is obtained by “flipping the matrix over its diagonal.”

• Notice that AT = A. Such a matrix is called a symmetric matrix. One way of thinking of
such a matrix is that the entries across the diagonal from each other are equal. Matrix D is also
symmetric, as is the matrix











1 5 0 −2

5 −4 7 3

0 7 0 −6

−2 3 −6 −3











When discussing an arbitrary matrix A with dimensions m × n we refer to each entry as a,
but with a double subscript with each to indicate its position in the matrix. The first number in the
subscript indicates the row of the entry and the second indicates the column of that entry:

A =























a11 a12 a13 · · · a1k · · · a1n

a21 a22 a23 · · · a2k · · · a2n
...

...
...

...

aj1 aj2 aj3 · · · ajk · · · ajn
...

...
...

...

am1 am2 am3 · · · amk · · · amn























Under the right conditions it is possible to add, subtract and multiply two matrices. We’ll save
multiplication for a little, but we have the following:

Definition 3.1.1: Adding and Subtracting Matrices

When two matrices have the same dimensions, they are added or subtracted by
adding or subtracting their corresponding entries.

⋄ Example 3.1(a): Determine which of the matrices below can be added, and add those that
can be.

A =

[

1 2

2 3

]

, B =





−5 1

0 4

2 −3



 , C =

[ −7 4

1 5

]

Solution: B cannot be added to either A or C, but

A+ C =

[

1 2

2 3

]

+

[ −7 4

1 5

]

=

[ −6 6

3 8

]
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It should be clear that A and C could be subtracted, and that A+C = C+A but A−C 6= C−A.

Definition 3.1.2: Scalar Times a Matrix

The result of a scalar c times a matrix A is the matrix each of whose entries are
c times the corresponding entry of A.

⋄ Example 3.1(b): For the matrix A =





3 1 −1
−2 8 5
6 −4 −3



, find 3A.

3A = 3





3 1 −1
−2 8 5
6 −4 −3



 =





9 3 −3
−6 24 15
18 −12 −9





Section 3.1 Exercises To Solutions

1. (a) Give the dimensions of matrices A, B and C in Exercise 3 below.

(b) Give the entries b31 and c23 of the matrices B and C in Exercise 3 below.

2. Give the names of the matrices at the top of the next page that are

(a) square (b) symmetric (c) diagonal

(d) upper triangular (e) lower triangular

A =





−4 0 0
2 6 0

−1 5 3



 B =

[

1 −4 3
−4 5 2

]

C =





3 0 0
0 1 0
0 0 −5





D =

[

1 −4
−4 5

]

E =









2 5 −3 1
0 4 0 2
0 0 −1 6
0 0 0 3









F =





2 7
−1 4
6 5





G =









3 4 −5 0
4 1 7 0

−5 7 −2 0
0 0 0 3









H =

[

3 1
4 5

]

J =





3 2 −1
2 1 3

−1 3 −5





3. Give examples of each of the following types of matrices.

(a) lower triangular (b) diagonal

(c) symmetric (d) identity

(e) upper triangular but not diagonal (f) symmetric but without any zero entries

(g) symmetric but not diagonal (h) diagonal but not a multiple of an identity
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4. Give the transpose of each matrix. Use the correct notation to denote the transpose.

A =





1 0 5
−3 1 −2
4 7 0



 B =





1 0
−3 1
4 7





C =





1 0 −1 3
−3 1 2 0
4 7 0 −2



 D =





1 −3
1 2
1 4





5. Give all possible sums and differences of matrices from Exercise 4.

6. Consider the matrix below and to the left.

(a) What are some ways we could describe the matrix? Give all you can think of.

(b) Below and to the right the dotted lines indicate how the matrix can be broken into four
blocks, each of which is a 3 × 3 matrix. Give all ways you can think of to describe the
matrix consisting of only the block in the upper left.

(c) Give all ways you can think of to describe the matrix consisting of the block in the lower
right.

(d) Give all ways you can think of to describe the matrices in the upper right and lower left.
There is one more word to describe them that was not given in the section. What do you
think it is?







































1

E
− ν

E
− ν

E
0 0 0

− ν

E

1

E
− ν

E
0 0 0

− ν

E
− ν

E

1

E
0 0 0

0 0 0
1

G
0 0

0 0 0 0
1

G
0

0 0 0 0 0
1

G













































































1

E
− ν

E
− ν

E
0 0 0

− ν

E

1

E
− ν

E
0 0 0

− ν

E
− ν

E

1

E
0 0 0

0 0 0
1

G
0 0

0 0 0 0
1

G
0

0 0 0 0 0
1

G







































7. (a) For the matrix A =

[

1 2
3 4

]

, find the matrix B = A+AT .

(b) What kind of matrix is B?
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3.2 Matrix Times a Vector

Performance Criteria:

3. (d) Multiply a matrix times a vector, give the linear combination form of a
matrix times a vector.

(e) Give a specific matrix that is multiplied times an arbitrary vector to obtain
a given resulting vector.

(f) Express a system of equations as a coefficient matrix times a vector
equalling another vector.

(g) For a given matrix A and vector
⇀

b, find a vector
⇀

x for which

A
⇀

x =
⇀

b.

Matrix Times a Vector

Multiplying a matrix times a vector is in some sense THE foundational operation of linear algebra.
When we study algebra, trigonometry and calculus, what we are really interested in how functions act
on numbers. In linear algebra we are interested in how matrices act on vectors. This action is usually
referred to as multiplication of a matrix times a vector, but we will be well served by remembering that
it is truly an action of a matrix on a vector.

Before getting into how to do this, we need to devise a useful notation. Consider the matrix

A =











a11 · · · a1n

a21 · · · a2n
...

. . .
...

am1 · · · amn











Each column of A, taken by itself, is a vector. We’ll refer to the first column as the vector
⇀

a∗1,
with the asterisk * indicating that the row index will range through all values, and the 1 indicating
that the values all come out of column one. Of course

⇀

a∗2 denotes the second column, and so on.
Similarly,

⇀

a1∗ will denote the first row,
⇀

a2∗ the second row, etc. Technically speaking, the rows are
not vectors, but we’ll call them row vectors and we’ll call the columns column vectors. If we use just
the word vector, we will mean a column vector.

⋄ Example 3.2(a): Give
⇀

a2∗ and
⇀

a∗3 for the matrix A =







−5 3 4 −1

7 5 2 4

2 −1 −6 0







⇀

a2∗ =
[

7 5 2 4
]

and
⇀

a∗3 =







4

2

−6







A row vector can be multiplied times a column vector (only in that order) if they have the same
number of components. To do this, we simply multiply each entry of the row vector times each entry
of the column vector and add all the results. The result of a row vector times a column vector is then

a single number. This is shown in the following example.
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⋄ Example 3.2(b): Multiply
⇀

u =
[

5 −3 2
]

times
⇀

v =







−4

2

1






.

⇀

u
⇀

v = (5)(−4) + (−3)(2) + (2)(1) = −20 + (−6) + 2 = −24. Note that if
⇀

u was a true
(column) vector, this would be

⇀

u · ⇀

v.

Technically, the result −24 should be the 1 × 1 matrix [−24], but we are really only interested in
the above operation as it relates to taking a matrix times a vector. Once we are able to do that, there
is no need to do the above operation except as a part of the process of taking a matrix times a vector.
We now define how to multiply a matrix times a vector.

Definition 3.2.1: Matrix Times a Vector

An m× n matrix A can be multiplied times a vector
⇀

x with n components.
The result is a vector with m components, the ith component being the product
of the ith row of A with

⇀

x, as shown below.

A
⇀

x =











a11 · · · a1n

a21 · · · a2n
...

. . .
...

am1 · · · amn





















x1

x2
...

xn











=











a11x1 + · · ·+ a1nxn

a21x1 + · · ·+ a2nxn
...

am1x1 + · · ·+ amnxn











=













⇀

a1∗
⇀

x
⇀

a2∗
⇀

x

...
⇀

am∗
⇀

x













⋄ Example 3.2(c): Multiply







3 0 −1

−5 2 4

1 −6 0













2

1

−7






.







3 0 −1

−5 2 4

1 −6 0













2

1

−7






=







(3)(2) + (0)(1) + (−1)(−7)

(−5)(2) + (2)(1) + (4)(−7)

(1)(2) + (−6)(1) + (0)(−7)






=







13

−36

−4







There is no need for the matrix multiplying a vector to be square, but when it is not, the resulting vector
is not the same length as the original vector:

⋄ Example 3.2(d): Find A
⇀

x for A =

[

7 −4 2

−1 0 6

]

and
⇀

x =







3

−5

1






.

A
⇀

x =

[

7 −4 2

−1 0 6

]







3

−5

1






=

[

(7)(3) + (−4)(−5) + (2)(1)

(−1)(3) + (0)(−5) + (6)(1)

]

=

[

43

3

]
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We sometimes describe what we see in the above example by saying that the matrix A transforms the

vector
⇀

x =







3

−5

1






into the vector

[

43
3

]

. This emphasizes the fact that we are interested in a

matrix times a vector as more than just an algebraic computation.
Note that, if a matrix A is 1 × n and

⇀

x is a vector with n components, the multiplication
⇀

x A can be performed, but such multiplication do not arise naturally in applications. We will always
multiply a matrix times a vector, in that order, so we always write A

⇀

x rather than
⇀

xA.

Matrix Times a Vector Form of a System

We now see an example that has important implications.

⋄ Example 3.2(e): Multiply A =







1 −1 2

−3 4 −2

2 1 5






times the vector

⇀

x =







x1

x2

x3






.

A
⇀

x=







1 −1 2

−3 4 −2

2 1 5













x1

x2

x3






=







x1 − x2 + 2x3

−3x1 + 4x2 − 2x3

2x1 + x2 + 5x3







Consider now the system shown below and to the left:

x1 − x2 + 2x3 = 5

−3x1 + 4x2 − 2x3 = −1

2x1 + x2 + 5x3 = 2







x1 − x2 + 2x3

−3x1 + 4x2 − 2x3

2x1 + x2 + 5x3






=







5

−1

2







Because two vectors are equal if their corresponding components are equal, we can rewrite the system
in the form shown above and to the right and, as a result of Example 3.2(e), this leads to







1 −1 2

−3 4 −2

2 1 5













x1

x2

x3






=







5

−1

2






.

This is what we will refer to as the matrix times a vector form of a system of equations.
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Definition 3.2.2 Matrix Times a Vector Form of a System

A system
a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

am1x1 + am2x2 + · · · + amnxn = bm

of m linear equations in n unknowns can be written as a matrix times a vector
equalling another vector:











a11 a12 · · · a1n
a21 a22 · · · a2n

...
am1 am2 · · · amn





















x1
x2
...
xn











=











b1
b2
...
bm











We will refer to this as the matrix times a vector form of the system of equa-
tions, and we express it compactly as A

⇀

x =
⇀

b.

⋄ Example 3.2(f): Give the matrix times vector form of the system
3x1 + 5x2 = −1
x1 + 4x2 = 2

.

Solution: The matrix times vector form of the system is

[

3 5
1 4

] [

x1
x2

]

=

[

−1
2

]

.

Now we can solve the “inverse problem” of a matrix times a vector:

⋄ Example 3.2(g): Let A =

[

3 5
1 4

]

and
⇀

b =

[

4
−1

]

. Find a vector
⇀

x =

[

x1
x2

]

for

which A
⇀

x =
⇀

b.

Solution: We are trying to solve the matrix-vector equation

[

3 5
1 4

] [

x1
x2

]

=

[

4
−1

]

. This

is the matrix times a vector form of the system

3x1 + x2 = 4
x1 + 4x2 = −1

,

which we can solve by the addition method or row-reduction to obtain
⇀

x =

[

3
−1

]

.
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Linearity of the Action of a Matrix on a Vector

Multiplication of vectors by matrices has the following important properties, which are easily verified.

Theorem 3.2.3

Let A and B be matrices,
⇀

x and
⇀

y be vectors, and c be any scalar. Assuming
that all the indicated operations below are defined (possible), then

(a) A(
⇀

x +
⇀

y) = A
⇀

x +A
⇀

y (b) A(c
⇀

x) = c (A
⇀

x)

(c) (A+B)
⇀

x = A
⇀

x +B
⇀

x

We now come to a very important idea that depends on the first two properties of Theorem 3.2.3. When
we act on a mathematical object with another object, the object doing the “acting on” is often called
an operator. Some operators you are familiar with are the derivative operator and the antiderivative
operator (indefinite integral), which act on functions to create other functions. Note that the derivative
operator has the following two properties, for any functions f and g and real number c:

d

dx
(f + g) =

df

dx
+

dg

dx
,

d

dx
(cf) = c

df

dx

These are the same as the first two properties above for multiplication of a vector by a matrix. A
matrix can be thought of as an operator that operates on vectors (through multiplication). The first
two properties of multiplication of a vector by a matrix, as well as the corresponding properties of the
derivative, are called the linearity properties. Both the derivative operator and the matrix multiplication
operator are then called linear operators. This is why this subject is called linear algebra!

Linear Combination Form of a Matrix Times a Vector

There is another way to compute a matrix times a vector. It is not as efficient to do by hand as the
method implied by Definition 3.2.1, but it will be very important conceptually quite soon. Using our
earlier definition of a matrix A times a vector

⇀

x, we see that

A
⇀

x=











a11x1 + · · ·+ a1nxn

a21x1 + · · ·+ a2nxn
...

am1x1 + · · ·+ amnxn











=











a11x1

a21x1
...

am1x1











+











a21x2

a22x2
...

am2x2











+ · · ·+











a1nxn

a2nxn
...

amnxn











= x1











a11

a21
...

am1











+ x2











a21

a22
...

am2











+ · · · + xn











a1n

a2n
...

amn











Let’s think about what the above shows. It gives us the result below, which is illustrated in Examples
3.2(h) and (i).
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Linear Combination Form of a Matrix Times a Vector

The product of a matrix A and a vector
⇀

x is a linear combination of the columns
of A, with the scalars being the corresponding components of

⇀

x.

⋄ Example 3.2(h): Give the linear combination form of

[

7 −4 2

−1 0 6

]







3

−5

1






.

[

7 −4 2

−1 0 6

]







3

−5

1






= 3

[

7

−1

]

− 5

[

−4

0

]

+ 1

[

2

6

]

⋄ Example 3.2(i): Give the linear combination form of





1 3 −2
3 7 1

−2 1 7









x1
x2
x3



.





1 3 −2
3 7 1

−2 1 7









x1
x2
x3



 = x1





1
3

−2



+ x2





3
7
1



+ x3





−2
1
7





Section 3.2 Exercises To Solutions

1. Multiply





1 0 −1
−3 1 2
4 7 −2









5
−1
2



 and

[

3 −4 0
−1 5 1

]





−1
5
2



 by hand.

2. Multiply each of the following by hand, when possible. Some are on the next page.

(a)

[

3 −1
5 2

] [

−4
1

]

(b)

[

1 −5 2
6 3 −4

]





1
0

−3





(c)

[

1 −5 2
6 3 −4

] [

3
5

]

(d)





1 6
−5 3
2 −4





[

3
5

]

(e)









7 −2 0 4
1 5 3 −3
2 1 −1 5

−3 7 2 1

















−4
1
3
2









(f)





1 0 −5
2 2 3

−4 7 1









2
−3
1





92



3. Give each of the products from Exercise 2 in linear combination form.

4. Give the product





a11 a12 a13
a21 a22 a23
a31 a32 a33









x1
x2
x3



 as

(a) a single vector (b) a linear combination of vectors

5. (a) Find a matrix A such that A

[

x1
x2

]

=

[

3x1 − 5x2
x1 + x2

]

.

(b) Find a matrix B such that B

[

x1
x2

]

=





x1 + 3x2
2x1 − x2
5x1 + 4x2



.

(c) Find a matrix C such that C





x1
x2
x3



 =





2x1 + 4x2 − x3
−5x1 + x2 + 2x3

x1 + 3x2



.

(d) Find a matrix D such that D





x1
x2
x3



 =

[

x1 + x3
x1 − x2 − x3

]

.

6. Give the matrix times a vector form of each system:

(a) (b)x + y − 3z = 1

−3x+ 2y − z = 7

2x + y − 4z = 0

5x1 + x3 = −1

2x2 + 3x3 = 0

2x1 + x2 − 4x3 = 2

(c) (d)b+ 0.5m = 8.1

b+ 1.0m = 6.9

b+ 1.5m = 6.2

b+ 2.0m = 5.3

b+ 2.5m = 4.5
b+ 3.0m = 3.8

b+ 3.5m = 3.0

x1 − 4x2 + x3 + 2x4 = −1

3x1 + 2x2 − x3 − 7x4 = 0

−2x1 + x2 − 4x3 + x4 = 2

7. For each part of this exercise, find a vector
⇀

x for which A
⇀

x =
⇀

b for the A and
⇀

b given.

(a) (b)

A =







3 −1 5

2 0 2

−1 4 −3






,

⇀

b =







3

−2

1






A =

[

1 −3

5 −2

]

,
⇀

b =

[

24
29

]

(c) (d)

A =











1 2.1

1 2.7

1 3.2

1 3.9











,
⇀

b =











2.54

2.78

2.98

3.26











A =











1 3 0 0

3 1 2 0

0 2 1 3

0 0 3 1











,
⇀

b =











13

19

11

7
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8. The relationship between stress and strain in a small cube of solid material can be expressed by
the matrix equation







































1

E
− ν

E
− ν

E
0 0 0

− ν

E

1

E
− ν

E
0 0 0

− ν

E
− ν

E

1

E
0 0 0

0 0 0
1

G
0 0

0 0 0 0
1

G
0

0 0 0 0 0
1

G



































































σxx

σyy

σzz

τxy

τyz

τzx





























=





























ǫxx

ǫyy

ǫzz

γxy

γyz

γzx





























where

E is elastic modulus

G is shear modulus

ν is Poisson’s ratio

ǫ is normal strain

γ is shear strain

σ is normal stress

τ is shear stress

and the subscripts indicate faces of the cube and directions of forces. The vector being multiplied
is the stress vector, and the right hand side is the strain vector.

(a) Give the relationship expressed by the product of the second row of the matrix times the
stress vector.

(b) Give an expression for the ǫzz strain in terms of the three stresses σxx, σyy, σzz and the
parameters E and ν.

(c) Give the relationship between τzx and γzx.

(d) The coefficient matrix is what we call a block matrix made up of blocks, each of which is a
smaller matrix. In this case there are four 3× 3 matrices, two of which are zero matrices.
Each of the nonzero blocks is multiplied by only a portion of the stress vector and gives only
a portion of the strain vector. Write the two matrix equations for the nonzero blocks.
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3.3 Actions of Matrices on Vectors: Transformations in R
2

Performance Criteria:

3. (h) Determine whether a matrix is a projection matrix, reflection matrix or
rotation matrix, or none of these, by its action on a few vectors.

(i) Determine whether a vector is an eigenvector of a matrix. If it is, give
the corresponding eigenvalue.

Most of the mathematics that you have studied revolves around the idea of a function, which is simply
a rule that assigns to every number in the domain of the function another number. There need not be
any logic to how this is done, but usually there is, and that logic is seen in the fact that the function is
given as some sort of specific relationship, like

f(x) = x2 − 5x+ 2 , y =
√
x+ 3 , g(t) = 3 sin(2t− 5) , h(x) = lnx.

(The last two of these are sort of redundant, in the sense that they are built out of other functions, sine
and the natural logarithm.) For those who are visually or mechanically inclined, a function can also be
thought of as a “machine,” commonly named f , whose input is a number x and output is some
other number y. We write y = f(x) and say “y equals f of x” to indicate that y is the result
of the function f acting on x. This is shown in the picture below and to the left.

f

x

y = f(x)

A

⇀

u

⇀

v= A
⇀

u

When we multiply a vector by a matrix, the result is another vector - this is essentially the same

idea as a function, but with vectors playing the role of numbers and a matrix taking the place of the

function. This is shown in the picture above and to the right. We should really think of a matrix
times a vector as the matrix acting on the vector to create another vector. We sometimes say that the
matrix A transforms the original vector

⇀

u to the new one
⇀

v= A
⇀

u. This happens by the purely
computational means that you learned in the previous section.

One powerful tool in the study of any function is its graphical representation. Unfortunately, it is
difficult to graphically represent the action of a matrix on all vectors - we instead must picture the
action of a matrix on vectors one or two vectors at a time. Even that is difficult with vectors in R

3 and
impossible in higher dimensions. Let’s see how we do it in R

2. Suppose that we have the matrix and
vectors
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A =

[

3 −1
2 1

]

,
⇀

u=

[

1
3

]

,
⇀

v=

[

−2
1

]

2

-3

-5

⇀

u

⇀

v

A
⇀

u

A
⇀

v

x

y

for which

A
⇀

u=

[

0
5

]

, A
⇀

v=

[

−7
−3

]

.

The graph to the right shows the vectors
⇀

u,
⇀

v, A
⇀

u and
A

⇀

v, and we can see the result of A acting on
⇀

u and
⇀

v. The two attributes of any vector are of course mag-
nitude and direction, and we can see that A altered
the magnitude and the direction of both vectors, but
apparently not in any special way.

In general, when a matrix acts on a vector the resulting vector will have a different magnitude and
direction than the original vector, with the change in magnitude and direction being different for most
vectors. There are a few notable exceptions to this:

• The matrix that acts on a vector without actually changing it at all is called the identity matrix.
Clearly, then, when the identity matrix acts on a vector, neither the direction or magnitude is
changed.

• A matrix that rotates every vector in R
2 through a fixed angle θ is called a rotation matrix. In

this case the direction changes, but not the magnitude. (Of course the direction doesn’t change
if θ = 0◦ and, in some sense, if θ = 180◦. In the second case, even though the direction is
opposite, the resulting vector is still just a scalar multiple of the original.)

• For most matrices there are certain vectors, called eigenvectors whose directions don’t change
(other than perhaps reversing) when acted on by by the matrix under consideration. In those
cases, the effect of multiplying such a vector by the matrix is the same as multiplying the vector
by a scalar. This has very useful applications.

In the following exercises you will see rotation matrices and eigenvectors, along with some other matrices
that do interesting things to vectors geometrically.

Section 3.2 Exercises

For the following exercises you will be multiplying each of several vectors by a given matrix and trying
to see what the matrix does to the vectors. This can be pretty tedious by hand, so I would suggest that
you use the UCSMP Polygon Plotter that you can link to from the class web page (or find with a web
search for “UCSMP polygon plotter”). You will need to enter each vector as a position vector from the
origin, and then transform it by the transformation matrix you are working with. Here’s how you do all
that:

• Under ”Enter New” you are asked “How Many Points”. Enter 2, meaning you are creating a
polygon with only two vertices (a line segment!).

• Below that you are to describe your polygon as a “matrix.” The first column should be zeros, and
the second column should be the components of your vector. (The first column is the coordinates
of the initial point, and the second column is the coordinates of the terminal point.)

• Once you put the values in for the vector, click “Enter” and you should see your vector, in red.
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• Enter your transformation matrix. For the ones with with entries containing roots, use their
decimal representations rounded to the thousandth’s place. Fractions may be entered as they
are.

• Once you have entered the transformation matrix, click “Transform!” You will see the result of
the transformation as a vector in black.

• If you now look below “Select Polygon:” you will see your vector under “Preimage: AB,” and
the result of the transformation as “Image: A’B’.”

• To multiply another vector by the same transformation, enter the new vector and click “En-
ter” again, followed by “Transform!”

• To repeat all this with a different transformation matrix, click “Clear Grid” at the bottom and
start over.

1. Let A =

[

3 −1

−4 0

]

,
⇀

u =

[

1

1

]

,
⇀

v =

[

−1

2

]

,
⇀

w =

[

0

2

]

.

(a) Find A
⇀

u, A
⇀

v and A
⇀

w by hand. Check your answers with the polygon plotter.

(b) Plot and label
⇀

u,
⇀

v,
⇀

w, A
⇀

u, A
⇀

v and A
⇀

w on one R
2 coordinate grid. Label each

vector by putting its name near its tip.

You should not see any special relationship between the vectors
⇀

x and A
⇀

x (where
⇀

x is to
represent any vector) here.

2. Let B =

[
√
3

2
−1

2

1

2

√
3

2

]

,
⇀

u=

[

4

0

]

,
⇀

v=

[

−3

1

]

,
⇀

w=

[

3

4.5

]

.

(a) Plot and label
⇀

u,
⇀

v,
⇀

w, B
⇀

u, B
⇀

v and B
⇀

w on one R
2 coordinate grid. Label each

vector by putting its name near its tip.

(b) You should be able to see that B does not seem to change the length of a vector. To verify
this, find ‖ ⇀

w ‖ and ‖B ⇀

w ‖ to the nearest hundredth.

(c) What does the matrix B seem to do to every vector? Think about the two attributes
of any vector, direction and magnitude.

(d) The entries of B should look familiar to you. What is special about 1

2
and

√
3

2
?

3. Let C =

[

16

25

12

25

12

25

9

25

]

,
⇀

u=

[

4

0

]

,
⇀

v=

[

−3

1

]

,
⇀

w=

[

4.5

6

]

.

(a) Plot and label
⇀

u,
⇀

v,
⇀

w, C
⇀

u, C
⇀

v and C
⇀

w on one R
2 coordinate grid.

(b) What does the matrix C seem to do to every vector? (Does the magnitude change? Does
the direction change?)
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(c) Try C times

[

−4

−3

]

and

[

3

−4

]

. Hmmm...

(d) Can you see the role of the entries of the matrix here?

4. Let D =

[

7

25

24

25

24

25
− 7

25

]

,
⇀

u=

[

4

0

]

,
⇀

v=

[

−3

1

]

,
⇀

w=

[

4.5

6

]

.

(a) Plot and label
⇀

u,
⇀

v,
⇀

w, D
⇀

u, D
⇀

v and D
⇀

w on one R
2 coordinate grid.

(b) What does the matrix D seem to do to every vector? (Does the magnitude change? Does
the direction change?)

(c) Try D times

[

−4

−3

]

and

[

3

−4

]

. Hmmm...

(d) Can you see the role of the entries of the matrix here?

5. Again let A =

[

3 −1

−4 0

]

, (see Exercise 1) but let

⇀

u=

[

−1

1

]

,
⇀

v=

[

1

2

]

,
⇀

w=

[

1

4

]

.

(a) Plot and label
⇀

u,
⇀

v,
⇀

w, A
⇀

u, A
⇀

v and A
⇀

w on one R
2 coordinate grid.

(b) For one of the vectors, there should be no apparent relationship between the vector and
the result when it is multiplied by the matrix. Discuss what happened to the direction and
magnitude of each of the other two vectors when the matrix acted on it.

(c) Pick one of your two vectors for which something special happened and multiply it by three,
and multiply the result by A; what is the effect of multiplying by A in this case?

(d) Pick the other special vector, multiply it by five, then by A. What effect does multiplying
by A have on the vector?
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3.4 Multiplying Matrices

Performance Criteria:

3. (j) Know when two matrices can be multiplied, and know that matrix mul-
tiplication is not necessarily commutative. Multiply two matrices “by
hand.”

When two matrices have appropriate sizes they can be multiplied by a process you are about to see.
Although the most reliable way to multiply two matrices and get the correct result is with a calculator
or computer software, it is very important that you get quite comfortable with the way that matrices

are multiplied. That will allow you to better understand certain conceptual things you will encounter
later.

The process of multiplying two matrices is a bit clumsy to describe, but I’ll do my best here. First I
will try to describe it informally, then I’ll formalize it with a definition based on some special notation.
To multiply two matrices we just multiply each row of the first with each column of the second as we
did when multiplying a matrix times a vector, with the results becoming the elements of the second
matrix. Here is an informal description of the process:

(1) Multiply the first row of the first matrix times the first column of the second. The result is the
(1,1) entry (first row, first column) of the product matrix.

(2) Multiply the first row of the first matrix times the second column of the second. The result is the
(1,2) entry (first row, second column) of the product matrix.

(3) Continue multiplying the first row of the first matrix times each column of the second to fill out
the first row of the product matrix, stopping after multiplying the first row of the first matrix
times the last column of the second matrix.

(4) Begin filling out the second row of the product matrix by multiplying the second row of the first
matrix times the first column of the second matrix to get the (2,1) entry (second row, first column)
of the product matrix.

(5) Continue multiplying the second row of the first matrix times each column of the second until the
second row of the product matrix is filled out.

(6) Continue multiplying each row of the first matrix times each column of the second until the last
row of the first has been multiplied times the last column of the second, at which point the product
matrix will be complete.

Note that for this to work the number of columns of the first matrix must be equal the number of rows
of the second matrix. Let’s look at an example.

⋄ Example 3.4(a): For A =





−5 1

0 4

2 −3



 and B =

[

1 2

7 3

]

, find the product AB.

Video Example
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Solution:

AB =





−5 1

0 4

2 −3





[

1 2

7 3

]

=





−5(1) + 1(7) −5(2) + 1(3)

0(1) + 4(7) 0(2) + 4(3)

2(1) + (−3)(7) 2(2) + (−3)(3)



 =





2 −7

28 12

−19 −5





In order to make a formal definition of matrix multiplication, we need to remember the special
notation from Section 3.2 for rows and columns of a matrix. Given a matrix

A =











a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn











,

we refer to, for example the third row as
⇀

a3∗. Here the first subscript 3 indicates that we are
considering the third row, and the ∗ indicates that we are taking the elements from the third row in

all columns. Therefore
⇀

a3∗ refers to a 1× n matrix. Similarly,
⇀

a∗2 is the vector that is the second
column of A. So we have

⇀

a3∗ =
[

a31 a32 · · · a3n
]

⇀

a∗2 =











a12
a22
...

a2m











A 1 × n matrix like
⇀

a3∗ can be thought of like a vector; in fact, we sometimes call such a matrix
a row vector. Note that the transpose of such a vector is a column vector. We then define a product
like product

⇀

ai∗

⇀

b∗j by

⇀

ai∗

⇀

b∗j= ai1b1j + ai2b2j + ai3b3j + · · · + ainbnj =
n
∑

k=1

aikbkj

This is the basis for the following formal definition of the product of two matrices.
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Definition 3.4.1: Matrix Multiplication

Let A be an m× n matrix whose rows are the vectors
⇀

a1∗,
⇀

a2∗, ...,
⇀

am∗ and
let B be an n×p matrix whose columns are the vectors

⇀

b∗1,
⇀

b∗2, ...,
⇀

b∗p. Then
AB is the m× p matrix

AB =











a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn





















b11 b12 · · · b1p

b21 b22 · · · b2p
...

...
. . .

...

bn1 bn2 · · · bnp











=













⇀

a1∗
⇀

a2∗

...
⇀

am∗













[
⇀

b∗1

⇀

b∗2

⇀

b∗3 · · · ⇀

b∗p ]

=













⇀

a1∗

⇀

b∗1
⇀

a1∗

⇀

b∗2 · · · ⇀

a1∗

⇀

b∗p
⇀

a2∗

⇀

b∗1
⇀

a2∗

⇀

b∗2 · · · ⇀

a2∗

⇀

b∗p

...
...

. . .
...

⇀

am∗

⇀

b∗1
⇀

am∗

⇀

b∗2 · · · ⇀

am∗

⇀

b∗p













For the above computation to be possible, products in the last matrix.This implies
that the number of columns of A must equal the number of rows of B.

⋄ Example 3.4(b): For C =





−5 1 −2

7 0 4

2 −3 6



 and D =





1 2 −1

−3 −7 0

5 2 3



, find CD and

DC.

Solution:

CD =





−5 1 −2

7 0 4

2 −3 6









1 2 −1

−3 −7 0

5 2 3



 =





−5− 3− 10 −10− 7− 4 5 + 0− 6

7 + 0 + 20 14 + 0 + 8 −7 + 0 + 12

2 + 9 + 30 4 + 21 + 12 −2 + 0 + 18





=





−18 −21 −1

27 22 5

41 37 16





DC =





1 2 −1

−3 −7 0

5 2 3









−5 1 −2

7 0 4

2 −3 6



 =





7 4 0

−34 −3 −22

−5 −4 16





We want to notice in the last example that CD 6= DC! This illustrates something very important:
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Matrix multiplication is not necessarily commutative! That is, given two
matrices A and B, it is not necessarily true that AB = BA. It is possible,
but is not “usually” the case. In fact, one of AB and BA might exist and
the other not.

This is not just a curiosity; the above fact will have important implications in how certain computations
are done. The next example, along with Example 3.4(a), shows that one of the two products might
exist and the other not.

⋄ Example 3.4(c): For the same matrices A =





−5 1

0 4

2 −3



 and B =

[

1 2

7 3

]

from

Example 3.4(a), find the product BA.

Solution: When we try to multiply BA =

[

1 2

7 3

]





−5 1

0 4

2 −3



 it is not even possible. We

can’t find the dot product of a row of B with a column of A because, as vectors, they don’t
have the same number of components. Therefore the product BA does not exist.

⋄ Example 3.4(d): For I2 =

[

1 0

0 1

]

, C =

[

3 0

0 3

]

and B =

[

1 2

7 3

]

, find the products

I2B, BI2, CB and BC.

Solution:

I2B = BI2 =

[

1 2

7 3

]

, CB = BC =

[

3 6

21 9

]

The notation I2 here means the 2× 2 identity matrix. Note that when it is multiplied by another
matrix A on either side the result is just the matrix A.

Let’s take a minute to think a bit more about the idea of an “identity.” In the real numbers we say
zero is the additive identity because adding it to any real number a does not change the value of the
number:

a+ 0 = 0 + a = a

Similarly, the number one is the multiplicative identity:

a× 1 = 1× a = a

Here the symbol × is just multiplication of real numbers. When we talk about an identity matrix,
we are talking about a multiplicative identity, like the number one. There is no confusion because even
though there are matrices that could be considered to be additive identities, they are not useful, so we
don’t consider them. When the size of the identity matrix is clear from the context, which is almost
always the case, we omit the subscript and just write I.
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There are many other special and/or interesting things that can happen when multiplying two
matrices. Here’s an example that shows that we can take powers of a matrix if it is a square matrix.

⋄ Example 3.4(e): For the matrix A =





3 1 −1
−2 8 5
6 −4 −3



, find A2 and A3.

Solution:

A2 = AA =





3 1 −1
−2 8 5
6 −4 −3









3 1 −1
−2 8 5
6 −4 −3



 =





1 15 5
8 42 27
8 −14 −17





A3 = AA2 =





3 1 −1
−2 8 5
6 −4 −3









1 15 5
8 42 27
8 −14 −17



 =





3 101 59
102 236 121
−50 −36 −





In Section 3.1 we saw that a scalar times a matrix is defined by multiplying each entry of the matrix
by the scalar. With a little thought the following should be clear:

Theorem 3.4.2

Let A and B be matrices for which the product AB is defined, and let c be
any scalar. Then

c(AB) = (cA)B = A(cB)

Note this carefully - when multiplying a product of two matrices by a scalar, we can instead multiply
one or the other, but NOT BOTH of the two matrices by the scaler, then multiply the result with the
remaining matrix.

Although one can do a great deal of study of matrices themselves, linear algebra is primarily concerned
with the action of matrices on vectors. The following simple result is extremely important conceptually:

Theorem 3.4.3

Let A and B be matrices and
⇀

x a vector. Assuming that all the indicated
operations below are defined (possible), then

(AB)
⇀

x= A(B
⇀

x)

The following illustrates the difference between (AB)
⇀

x and A(B
⇀

x) from a computational standpoint.

⋄ Example 3.4(g): For the matrices A =

[

1 −1
−2 5

]

and B =

[

4 −3
7 0

]

and the vector

⇀

x =

[

3
−6

]

, find (AB)
⇀

x and A(B
⇀

x).
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Solution: Be sure to note the difference between the how the two calculations are performed,
along with the fact that the resluts are the same:

(AB)
⇀

x=

([

1 −1
−2 5

] [

4 −3
7 0

])[

3
−6

]

=

[

−3 −3
27 6

] [

3
−6

]

=

[

9
45

]

A(B
⇀

x) =

[

1 −1
−2 5

]([

4 −3
7 0

] [

3
−6

])

=

[

1 −1
−2 5

] [

30
21

]

=

[

9
45

]

Let’s now continue the analogy between functions and multiplication of a vector by a matrix. Con-
sider the functions

f(x) = x2 and g(x) = 2x− 1.

Suppose that we wanted to apply g to the number three, and then apply f to the result. We show
this symbolically by

f
[

g(3)
]

= f
[

2(3)− 1
]

= f [5] = 25.

We can form a new function called the composition of f and g, f ◦ g. This function is defined for
any value of x by

(f ◦ g)(x) = f
[

g(x)
]

.

In the case of our particular f and g the composition is

(f ◦ g)(x) = f
[

g(x)
]

= f [2x− 1] = (2x− 1)2 = 4x2 − 4x+ 1,

and
(f ◦ g)(3) = 4(3)2 − 4(3) + 1 = 36− 12 + 1 = 25,

showing that f ◦ g does indeed act on the number three just as f and g did in sequence. Let’s
reiterate - f ◦ g is a single new function that is equivalent to performing g followed by f , in that

order. If we were to perform the two functions on the number three, but in the opposite order, we would
get

g
[

f(3)
]

= g
[

32
]

= g[9] = 2(9) − 1 = 17.

We also see that
(g ◦ f)(x) = g

[

f(x)
]

= g[x2] = 2x2 − 1,

so the functions f ◦ g and g ◦ f are not the same!

Now Theorem 3.4.3 tells us that, for two matrices A and B and any vector
⇀

x,

(AB)
⇀

x= A(B
⇀

x)

when all of the operations are defined. Here A and B can be thought of like the functions f and
g above, except they act on vectors rather than numbers. The product AB is like the composition
f ◦ g - it is a single matrix whose action

⇀

x is equivalent to B acting on
⇀

x, and then A acting on
the result B

⇀

x. The fact that CD is not usually equal to DC for two matrices C and D for which
both CD and DC exist (see Example 3.4(b)) is analogous to the fact that the two compositions
f ◦ g and g ◦ f of two functions f and g are not generally the same.

104



Section 3.4 Exercises To Solutions

1. Multiply (a)

[

2 −1
−3 4

] [

4 1
5 −1

]

and (b)





1 2 −1
−3 4 1
2 −1 3









−2 4 1
3 −5 −1
0 1 2



 by

hand.

2. For the following matrices, there are THIRTEEN multiplications possible, including squaring some
of the matrices. Find and do as many of them do as many of them as you can. When writing
your answers, tell which matrices you multiplied to get any particular answer. For example, it IS
possible to multiply A times B (how about B times A?), and you would then write

AB =

[

−10 0 25

−14 21 −4

]

to give your answer. Now you have twelve left to find and do.

A =

[

0 5

−3 1

]

B =

[

4 −7 3

−2 0 5

]

C =





−5
4
−7





D =







6 0 3

−5 4 2

1 1 0






E =

[

5 −1 2
]

F =

[

2 −1

6 9

]

3. Fill in the blanks:







−5 1 3

2 4 0

1 −1 −6













6 0 −1

−5 7 2

−4 1 3






=







∗ ∗ ∗
∗ ∗

∗ ∗







4. Suppose that A =













a11 a12 a13 · · ·
a21 a22

a31
. . .

...













is a 5× 5 matrix. Write an expression for the

third row, second column entry of A2.

5. In the previous section you found that the matrix P =

[

16

25

12

25

12

25

9

25

]

projects every vector in

R
2 onto the line through the origin and the point (4, 3). If we wish to calculate P 2 we can

apply Theorem 3.4.2 to factor 1

25
out of each copy of the matrix, multiply the resulting matrices

with integer entries, then multiply the product of the two 1

25
scalars back in at the end. Do

this using your calculator for multiplying numbers, but not the actual matrix multiplication, and
reduce the entries when you are done. The result may surprise you a bit!
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6. Let A =





−5 1

0 4

2 −3



.

(a) Give AT , the transpose of A.

(b) Find ATA and AAT . Are they the same (equal)?

(c) Your answers to (b) are special in two ways. What are they? (What I’m looking for here is
two of the special types of matrices described in Section 3.1.)
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3.5 Inverse Matrices

Performance Criteria:

3. (k) Determine whether two matrices are inverses without finding the inverse
of either.

(l) Find the inverse of a 2×2 matrix using the formula. Find the inverse
of a matrix using the Gauss-Jordan method. Describe the Gauss-Jordan
method for finding the inverse of a matrix.

(m) Solve a system of equations using an inverse matrix. Describe how to
use an inverse matrix to solve a system of equations.

Inverse Matrices

Let’s begin with an example!

⋄ Example 3.5(a): Find AC and CA for A =

[

5 7
2 3

]

and C =

[

3 −7
−2 5

]

.

Solution:

AC =

[

5 7
2 3

] [

3 −7
−2 5

]

=

[

1 0
0 1

]

, CA =

[

3 −7
−2 5

] [

5 7
2 3

]

=

[

1 0
0 1

]

We see that AC = CA = I2!

Now let’s remember that the identity matrix is like the number one for multiplication of numbers. Note
that, for example, 1

5
· 5 = 5 · 1

5
= 1. This is exactly what we are seeing in the above example. We say

the numbers 5 and 1

5
are multiplicative inverses, and we say that the matrices A and C above

are inverses of each other.

Definition 3.5.1 Inverse Matrices

Suppose that for matrices A and B we have AB = BA = I, with the size
of the identity being the same in both cases. Then we say that A and B are
inverse matrices.

Notationally we write B = A−1 or A = B−1, and we will say that A and B are invertible. Note
that in order for us to be able to do both multiplications AB and BA, both matrices must be square
and of the same dimensions. It also turns out that that to test two square matrices to see if they are
inverses we only need to multiply them in one order:

Theorem 3.5.2 Test for Inverse Matrices

To test two square matrices A and B to see if they are inverses, compute AB.
If it is the identity, then the matrices are inverses.
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Here are a few notes about inverse matrices:

• Not every square matrix has an inverse, but “many” do. If a matrix does have an inverse, it is
said to be invertible.

• The inverse of a matrix is unique, meaning there is only one.

• Matrix multiplication IS commutative for inverse matrices.

Two questions that should be occurring to you now are

1) How do we know whether a particular matrix has an inverse?

2) If a matrix does have an inverse, how do we find it?

There are a number of ways to answer the first question; here is one:

Theorem 3.5.3 Test for Invertibility of a Matrix

A square matrix A is invertible if, and only if, rref (A) = I.

Finding Inverse Matrices

Here is the answer to the second question above in the case of a 2× 2 matrix:

Theorem 3.5.4 Inverse of a 2× 2 Matrix

The inverse of a 2× 2 matrix A =

[

a b

c d

]

is A−1 =
1

ad− bc

[

d −b

−c a

]

.

⋄ Example 3.5(b): Find the inverse of A =

[

−2 7
1 −5

]

.

Solution:

A−1 =
1

(−2)(−5)− (1)(7)

[

−5 −7
−1 −2

]

=
1

3

[

−5 −7
−1 −2

]

=

[

−5

3
−7

3

−1

3
−2

3

]

Before showing how to find the inverse of a larger matrix we need to go over the idea of augmenting
a matrix with a vector or another matrix. To augment a matrix A with a matrix B, both matrices
must have the same number of rows. A new matrix, denoted [A |B ] is formed as follows: the first
row of [A |B ] is the first row of A followed by the first row of B, and every other row in [A |B ] is
formed the same way.
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⋄ Example 3.5(c): Let A =





−5 1 −2

7 0 4

2 −3 6



, B =





9 1

−1 8

−6 −3



 and
⇀

x=





−7

10

4



.

Give the augmented matrices [ A | ⇀

x ] and [A |B ].

Solution:
[ A | ⇀

x ] =





−5 1 −2 −7

7 0 4 10

2 −3 6 4



 , [A |B ] =





−5 1 −2 9 1

7 0 4 −1 8

2 −3 6 6 −3





Gauss-Jordan Method for Finding Inverse Matrices

Let A be an n×n invertible matrix and In be the n×n identity matrix. Form
the augmented matrix [A | In ] and find rref ([A | In ]) = [ In |B ]. (The result
of row-reduction will have this form.) Then B = A−1.

⋄ Example 3.5(d): Find the inverse of A =





2 3 0

1 −2 1

2 0 1



, if it exists.

Solution: We begin by augmenting with the 3×3 identity: [A | I3 ] =





2 3 0 1 0 0

1 −2 1 0 1 0

2 0 1 0 0 1



.

Row reducing then gives





1 0 0 2 3 −3

0 1 0 −1 −2 2

0 0 1 −4 −6 7



, so A−1 =





2 3 −3

−1 −2 2

−4 −6 7



.

The above example is a bit unusual; the inverse of a randomly generated matrix will usually contain
fractions.

⋄ Example 3.5(e): Find the inverse of B =





1 −1 2

1 2 −1

0 2 −2



, if it exists.

Solution: We compute

[B | In ] =





1 −1 2 1 0 0

1 2 −1 0 1 0

0 2 −2 0 0 1





rref
=⇒





1 0 1 0 1 −1

0 1 −1 0 0 1

2

0 0 0 1 −1 3

2



 .

Because the left side of the reduced matrix is not the identity, the matrix B is not invertible.
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⋄ Example 3.5(f): Find a matrix B such that AB = C, where A =

[

−3 1
2 −1

]

and

C =

[

1 −3
−2 3

]

.

Solution: Note that if we multiply both sides of AB = C on the left by A−1 we get
A−1AB = A−1C. But A−1AB = IB = B, so we have

B = A−1C =

[

−1 −1
−2 −3

] [

1 −3
−2 3

]

=

[

1 0
4 −3

]

Inverse Matrices and Systems of Equations

Let’s consider a simple algebraic equation of the form ax = b, where a and b are just constants.
If we multiply both sides on the left by 1

a
, the multiplicative inverse of a, we get x = 1

a
· b. for

example,
3x = 5

1

3
(3x) = 1

3
· 5

(

1

3
· 3
)

x = 5

3

1x = 5

3

x = 5

3

The following shows how an inverse matrix can be used to solve a system of equations by exactly the
same idea:

A
⇀

x =
⇀

b

A−1(A
⇀

x) = A−1
⇀

b

(A−1A)
⇀

x = A−1
⇀

b

I
⇀

x = A−1
⇀

b

⇀

x = A−1
⇀

b

Note that this only “works” if A is invertible! The upshot of all this is that when A is invertible
the solution to the system A

⇀

x =
⇀

b is given by
⇀

x = A−1
⇀

b. The above sequence of steps shows
the details of why this is. Although this may seem more straightforward than row reduction, it is more
costly in terms of computer time than row reduction or LU -factorization and can lead to poor results.
Therefore it is not used in practice.

⋄ Example 3.5(g): Solve the system of equations
5x1 + 4x2 = 25

−2x1 − 2x2 = −12
using an inverse

matrix, showing all steps given above.

Solution: The matrix form of the system is

[

5 4

−2 −2

][

x1

x2

]

=

[

25

−12

]

, and A−1 =

−1

2

[

−2 −4

2 5

]

. A−1 can now be used to solve the system:
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[

5 4

−2 −2

][

x1

x2

]

=

[

25

−12

]

−1

2

[

−2 −4

2 5

]([

5 4

−2 −2

][

x1

x2

])

= −1

2

[

−2 −4

2 5

][

25

−12

]

(

−1

2

[

−2 −4

2 5

] [

5 4

−2 −2

])[

x1

x2

]

= −1

2

[

−2

−10

]

[

1 0

0 1

][

x1

x2

]

=

[

1

5

]

[

x1

x2

]

=

[

1

5

]

The solution to the system is (1, 5).

Section 3.5 Exercises To Solutions

1. Determine whether A =

[

2 5

3 8

]

and C =

[

8 −4

−3 2

]

are inverses, without actually finding

the inverse of either. Show clearly how you do this.

2. Consider the matrices A =

[

3 0 −1
−1 −1 1

]

and B =





2 1
3 1
5 3



. Find AB, then give two

reasons why A and B are not inverses.

3. Consider the matrix

[

2 3

4 5

]

.

(a) Apply row reduction (“by hand”) to [A | I2 ] until you obtain [ I2 | B ]. That is, find the
reduced row-echelon form of [A | I2 ].

(b) Find AB and BA.

(c) What does this illustrate?

4. Assume that you have a system of equations A
⇀

x =
⇀

b for some invertible matrix A. Show
how the inverse matrix is used to solve the system, showing all steps in the process clearly. Check
your answer against what is shown at the bottom of page 111.
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5. Consider the system of equations
2x1 − 3x2 = 4

4x1 + 5x2 = 3
.

(a) Write the system in matrix times a vector form A
⇀

x =
⇀

b.

(b) Apply the formula in Theorem 3.5.4 to obtain the inverse matrix A−1. Show a step or
two in how you do this.

(c) Demonstrate that your answer to (b) really is the inverse of A.

(d) Use the inverse matrix to solve the system. Show ALL steps outlined in Example 3.5(g),
and give your answer in exact form.

(e) Apply row reduction (“by hand”) to [A | I2 ] until you obtain [ I2 | B ]. That is, find
the reduced row-echelon form of [A | I2 ]. What do you notice about B?

6. Consider the system of equations
5x+ 7y = −1
2x+ 3y = 4

(a) Write the system in A
⇀

x =
⇀

b form.

(b) Use Theorem 3.5.4 to find A−1.

(c) Give the matrix that is to be row reduced to find A−1 by the Gauss-Jordan method. Then
give the reduced row-echelon form obtained using your calculator.

(d) Repeat EVERY step of the process for solving A
⇀

x =
⇀

b using the inverse matrix.
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3.6 Determinants and Systems of Equations

Performance Criterion:

3. (n) Find the determinant of a 2×2 or 3×3 matrix by hand. Use a calculator
to find the determinant of an n× n matrix.

(o) Use the determinant to determine whether a system of equations has a
unique solution.

(p) Determine whether a homogeneous system has more than one solution.

(q) Use Cramer’s rule to solve a system of equations.

Associated with every square matrix is a scalar that is called the determinant of the matrix, and
determinants have numerous conceptual and practical uses. For a square matrix A, the determinant is
denoted by det(A). This notation implies that the determinant is a function that takes a matrix returns

a scalar. The determinant of the matrix

[

a b

c d

]

written as det

[

a b

c d

]

or

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

.

There is a simple formula for finding the determinant of a 2× 2 matrix:

Definition 3.6.1: Determinant of a 2× 2 Matrix

The determinant of the matrix A =

[

a b

c d

]

is det(A) = ad− bc.

⋄ Example 3.6(a): Find the determinant of A =

[

5 4

−2 −2

]

det(A) = (5)(−2) − (−2)(4) = −10 + 8 = −2

There is a fairly involved method of breaking the determinant of a larger matrix down to where it
is a linear combination of determinants of 2 × 2 matrices, but we will not go into that here. It is
called the cofactor expansion of the determinant, and can be found in any other linear algebra book,
or online. Of course your calculator will find determinants of matrices whose entries are numbers, as
will online matrix calculators and various software like MATLAB.

Later we will need to be able to find determinants of matrices containing an unknown parameter,
and it will be necessary to find determinants of 3 × 3 matrices. For that reason, we now show a
relatively simple method for finding the determinant of a 3×3 matrix. (This will not look simple here,
but it is once you are familiar with it.) This method only works for 3 × 3 matrices. To perform this
method we begin by augmenting the matrix with its own first two columns, as shown below.

A =







a11 a12 a13

a21 a22 a23

a31 a32 a33






=⇒

a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32
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a11a22a33
a12a23a31

a13a21a32

a31a22a13
a32a23a11

a33a21a12

a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32

We get the determinant by adding up each of the results of the downward multiplications and then
subtracting each of the results of the upward multiplications. This is shown below.

det(A) = a11a22a33 + a12a23a31 + a13a21a32 − a31a22a13 − a32a23a11 − a33a21a12

⋄ Example 3.6(b): Find the determinant of A =







−1 5 2

3 1 6

−5 2 4






. Video Example

det







−1 5 2

3 1 6

−5 2 4






=⇒

−1 5 2 −1 5

3 1 6 3 1

−5 2 4 −5 2
−4

−150
12

−10
−12

60

det(A) = (−4) + (−150) + 12− (−10) − (−12) − 60 = −4− 150 + 12 + 10 + 12− 60 = −180

In the future we will need to compute determinants like the following.

⋄ Example 3.6(c): Find the determinant of B =







1− λ 0 3

1 −1− λ 2

−1 1 −2− λ






.

det(B) = (1− λ)(−1 − λ)(−2 − λ) + (0)(2)(−1) + (3)(1)(1)

− (−1)(−1− λ)(3) − (1)(2)(1 − λ)− (−2− λ)(1)(0)

= (−1 + λ2)(−2− λ) + 3− 3− 3λ− 2 + 2λ

= 2 + λ− 2λ2 − λ3 − λ− 2

= −λ3 − 2λ2

Here is why we care about determinants right now:
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Theorem 3.6.2: Determinants and Invertibility, Systems

Let A be a square matrix.

(a) A is invertible if, and only if, det(A) 6= 0.

(b) The system A
⇀

x =
⇀

b has a unique solution if, and only if, A is invertible.

(c) If A is not invertible, the system A
⇀

x =
⇀

b will have either no solution or
infinitely many solutions.

Recall that when things are “nice” the system A
⇀

x=
⇀

b can be solved as follows:

A
⇀

x =
⇀

b

A−1(A
⇀

x) = A−1
⇀

b

(A−1A)
⇀

x = A−1
⇀

b

I
⇀

x = A−1
⇀

b

⇀

x = A−1
⇀

b

In this case the system will have the unique solution
⇀

x = A−1
⇀

b. (When we say unique, we mean only
one.) If A is not invertible, the above process cannot be carried out, and the system will not have a

single unique solution. In that case there will either be no solution or infinitely many solutions.
We previously discussed the fact that the above computation is analogous to the following one

involving simple numbers and an unknown number x:

3x = 5

1

3
(3x) = 1

3
· 5

(

1

3
· 3
)

x = 5

3

1x = 5

3

x = 5

3

Now let’s consider the following two equations, of the same form ax = b but for which a = 0:

0x = 5 0x = 0

We first recognize that we can’t do as before and multiply both sides of each by 1

0
, since that is

undefined. The first equation has no solution, since there is no number x that can be multiplied by
zero and result in five! In the second case, every number is a solution, so the system has infinitely many
solutions. These equations are analogous to A

⇀

x =
⇀

b when det(A) = 0. The one difference is that

A
⇀

x=
⇀

b can have infinitely many solutions even when
⇀

b is NOT the zero vector.

Homogenous systems are important and will come up in a couple places in the future, but there is
not a whole lot that can be said about them! A homogeneous system is one of the form A

⇀

x= 0.
With a tiny bit of thought this should be clear: Every homogenous system has at least one solution - the

zero vector! Given the Theorem 3.6.2, if A is invertible (so det(A) 6= 0), that is the only solution.
If A is not invertible there will be infinitely many solutions, the zero vector being just one of them.
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Cramer’s Rule

Cramer’s rule is a method for finding solutions to systems of equations. It is not generally used for
solving large systems with numerical solutions, but it is used sometimes for solving smaller systems
containing an unknown parameter.

Let’s consider the system of equations
5x+ 3y = 1
4x+ 2y = 2

. To solve for x we can multiply the first

equation by 2 and the second equation by −3 to obtain

10x+ 6y = 2
−12x− 6y = −6

.

We then add the two equations to obtain the equation −2x = −4, so x = 2. Note that we could
instead multiply the first equation by 2, the second by 3, and then subtract the two equations to get

5x+ 3y = 1
4x+ 2y = 2

=⇒
=⇒

10x+ 6y = 2
12x+ 6y = 6

−2x = −4,

solving the resulting equation to get x = 2. Using this process on a general system of two equations
we get

ax+ by = e

cx+ dy = f

=⇒
=⇒

adx+ bdy = ed

bcx+ bdy = bf

adx− bcx = ed− bf

=⇒ (ad− bc)x = ed− bf =⇒ x =
ed− bf

ad− bc
(1)

We can also multiply the top equation by c and the bottom equation by a and then subtract the top
equation from the bottom one to get

ax+ by = e

cx+ dy = f

=⇒
=⇒

acx+ bcy = ce

acx+ ady = af

ady − bcy = af − ce

=⇒ (ad− bc)y = af − ce =⇒ y =
af − ce

ad− bc
(2)

Note the matrix form of the system of equations:

[

a b

c d

] [

x

y

]

=

[

e

f

]

. If we look carefully

at the expressions for x and y that were obtained in (1) and (2) above, we see that they both have
the same denominator ad− bc, the determinant of the coefficient matrix! How about the numerators
of the expressions for x and y? We can see that they are the determinants

∣

∣

∣

∣

e b

f d

∣

∣

∣

∣

and

∣

∣

∣

∣

a e

c f

∣

∣

∣

∣

,

respectively. This leads us to

116



Theorem 3.6.3: Cramer’s Rule

The system of two equations in two unknowns with standard and matrix forms

ax+ by = e

cx+ dy = f
and

[

a b

c d

] [

x

y

]

=

[

e

f

]

.

has solution given by

x =

∣

∣

∣

∣

e b

f d

∣

∣

∣

∣

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

and y =

∣

∣

∣

∣

a e

c f

∣

∣

∣

∣

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

.

when the determinant of the coefficient matrix is not zero.

We reiterate: the denominators of both of these fractions are the determinant of the coefficient matrix.
The numerator for finding x is the determinant of the matrix obtained when the coefficient matrix has
its first column (the coefficients of x) replaced with the numbers to the right of the equal signs. Let’s
see an example:

⋄ Example 3.6(d): Use Cramer’s rule to solve the system of equations
5x+ 3y = 1
4x+ 2y = 2

.

Solution: Cramer’s Rule gives us

x =

∣

∣

∣

∣

1 3
2 2

∣

∣

∣

∣

∣

∣

∣

∣

5 3
4 2

∣

∣

∣

∣

=
1 · 2− 2 · 3
5 · 2− 4 · 3 =

−4

−2
= 2 y =

∣

∣

∣

∣

5 1
4 1

∣

∣

∣

∣

∣

∣

∣

∣

5 3
4 2

∣

∣

∣

∣

=
5 · 2− 4 · 1
5 · 2− 4 · 3 =

6

−2
= −3

We conclude by noting that the use of Cramer’s rule is not restricted to systems of two equations
in two unknowns:

Theorem 3.6.4: Cramer’s Rule for More Unknowns

Any system of n equations in n unknowns whose coefficient matrix has nonzero
determinant can be solved in the same manner as above. That is, the value of each
unknown is obtained by replacing the column of the coefficient matrix corresponding
to that unknown with the right hand side vector, then dividing the determinant of
the resulting matrix by the determinant of the coefficient matrix.
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Section 3.6 Exercises To Solutions

1. Find the determinant of each matrix by hand, giving your answer in fraction form.

(a) A =

[

3 5
1 3

]

(b) B =

[

2 2
−1 4

]

(c) C =

[

2 −1
2 3

]

(d) A =

[

−1 −2
3 1

]

(e) B =





1 2 1
3 1 2
1 1 1



 (f) C =





1 1 1
3 1 2
1 1 1





(e) A =





1 1 2
3 1 2
1 1 1



 (f) B =





1 1 2
2 1 1
1 1 3





2. (a)

[

1− λ 2
2 4− λ

]

(b)

[

2− λ −1
−1 2− λ

]

(c)





1− λ −1 0
−1 2− λ −1
0 −1 1− λ



 (d)





3− λ 2 4
2 0− λ 2
4 −2 3− λ





3. Explain/show how to use the determinant to determine whether

x+ 3y − 3z = −5

2x− y + z = −3

−6x+ 3y − 3z = 4

has a unique solution. You may use your calculator for finding determinants - be sure to
conclude by saying whether or not this particular system has a solution!

4. Suppose that you hope to solve a system A
⇀

x =
⇀

b of n equations in n unknowns.

(a) If the determinant of A is zero, what does it tell you about the nature of the solution?
(By “the nature of the solution” I mean no solution, a unique solution or infinitely many
solutions.)

(b) If the determinant of A is NOT zero, what does it tell you about the nature of the solution?

5. Suppose that you hope to solve a system A
⇀

x =
⇀

0 of n equations in n unknowns.

(a) If the determinant of A is zero, what does it tell you about the nature of the solution?
(By “the nature of the solution” I mean no solution, a unique solution or infinitely many
solutions.)

(b) If the determinant of A is NOT zero, what does it tell you about the nature of the solution?
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6. Use Cramer’s Rule to solve each of the following systems of equations. Check your answers by
solving with rref.

(a)
−2x+ 5y = 13
4x+ 7y = 25

(b)
1x− 3y = −17

−2x+ 5y = 29

(c)
8x− 3y = 32
4x− 5y = 16

(d)
1x+ 7y = 48

4y = 28
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3.7 Applications: Transformation Matrices, Graph Theory

Performance Criteria:

3. (r) Give the geometric or algebraic representations of the inverse or square
of a rotation. Demonstrate that the geometric and algebraic versions are
the same

(s) Give the incidence matrix of a graph or digraph. Given the incidence
matrix of a graph or digraph, identify the vertices and edges using correct
notation, and draw the graph.

(t) Determine the number of k-paths from one vertex of a graph to another.
Solve problems using incidence matrices.

Rotation, Projection and Reflection Matrices

In the Section 3.3 Exercises you encountered matrices that rotated every vector in R
2 thirty degrees

counterclockwise, projected every vector in R
2 onto the line y = 3

4
x, and reflected every vector

in R
2 across the line y = 3

4
x. Here are the general formulas for rotation, projection and reflection

matrices in R
2:

Rotation Matrix in R
2

For the matrix A =

[

cos θ − sin θ

sin θ cos θ

]

and any position vector
⇀

x in R
2, the

product

A
⇀

x is the vector resulting when
⇀

x is rotated counterclockwise around the origin
by the angle θ.

Projection Matrix in R
2

For the matrix B =









a2

a2 + b2
ab

a2 + b2

ab

a2 + b2
b2

a2 + b2









and any position vector
⇀

x in R
2,

the

product B
⇀

x is the vector resulting when
⇀

x is projected onto the line containing
the origin and the point (a, b).
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Reflection Matrix in R
2

For the matrix C =









a2 − b2

a2 + b2
2ab

a2 + b2

2ab

a2 + b2
b2 − a2

a2 + b2









and any position vector
⇀

x in R
2,

the

product C
⇀

x is the vector resulting when
⇀

x is reflected across the line containing
the origin and the point (a, b).

Graphs and Digraphs

A graph is a set of dots, called vertices, connected by segments of lines or curves, called edges.
An example is shown to the left below. We will usually label each of the vertices with a subscripted
v, as shown. Note that a vertex can be connected to itself, as shown by the circles at v2 and v4.
We can then create a matrix, called an incidence matrix to show which pairs of vertices are connected
(and which are not). The (i, j) and (j, i) entries of the matrix are one if vi and vj are connected
by a single edge and a zero if they are not. If i = j the entry is a one if that vertex is connected to
itself by an edge, and zero if it is not. You should be able to see this by comparing the graph and and
corresponding incidence matrix below. Note that the incidence matrix is symmetric; that is the case for

all incidence matrices of graphs.

v1

v2

v3

v4

v5 











0 1 1 1 0
1 1 1 0 0
1 1 0 1 1
1 0 1 1 1
0 0 1 1 0













Even though there is no edge from vertex one to vertex five for the graph shown, we can get from
vertex one to vertex five via vertex three or vertex four. We call such a “route” a path, and we denote
the paths by the sequence of vertices, like v1v3v5 or v1v4v5. These paths, in particular, are called
2-paths, since they consist of two edges. There are other paths from vertex one to vertex five, like the
3-path v1v2v3v5 and the 4-path v1v2v2v3v5.

⋄ Example 3.7(a): Give two more 3-paths from vertex v1 to vertex v5.

Solution: v1v3v4v5 is a fairly obvious 3-path from v1 to vertex v5. Less obvious is v1v4v4v5,
which travels the edge from v4 to itself.

We should note that when forming a path we are allowed to travel the same edge multiple times,
including reversing the direction. Thus, for example, v1v4v5v4v5 is a 4-path from v1 to v5. It is
often desired to find all n-paths from one vertex to another, and it can be difficult to determine when
all of them have been found. You will find in the exercises a clever way to determine how many n-paths
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there are from one vertex to another, so we know how many we are looking for. This doesn’t necessarily
make it any easier to find them, but we can know whether we have them all or not.

In some cases we want the edges of a graph to be “one-way.” We indicate this by placing an arrow
on each edge, indicating the direction it goes. We will not put two arrowheads on one edge; if we can

travel both ways between two vertices, we will show that by drawing TWO edges between them. Such
a graph is called a directed graph, or digraph for short. Below is a digraph and its incidence matrix.
The (i, j) entry of the incidence matrix is one only if there is a directed edge from vi to vj . Of
course the incidence matrix for a digraph need not be symmetric, since there may be an edge going one
way between two vertices but not the other way. Digraphs have incidence matrices as well. Below is a
digraph and its incidence matrix.

v1 v2

v3 v4









0 0 1 0
0 1 0 1
1 1 0 0
0 1 1 0









Both the graph and the digraph above are what we call connected graphs, meaning that every two
vertices are connected by some path (but not necessarily an edge). A graph that is not connected will
appear to be two or more separate graphs. All graphs that we will consider will be connected; we will
leave further discussion/investigation of graphs and incidence matrices to the exercises.

Section 3.7 Exercises To Solutions

1. Here we investigate projections.

(a) Sketch a set of coordinate axes in R
2, with an additional line passing through the origin.

Let P be the matrix that projects all vectors onto the line.

(b) Sketch a position vector
⇀

u that is on the line. What can you say about the vector P
⇀

u in
this case?

(c) Sketch a position vector
⇀

v that is perpendicular to the line. What is P
⇀

v?

(d) Sketch a third vector
⇀

w that is not on the line or perpendicular to it. Draw the vector
P

⇀

w. Now suppose that we applied P to P
⇀

w to get P (P
⇀

w) = P 2 ⇀

w. How does that
result compare with P

⇀

w? What does this tell us about P 2?

(e) Discuss P 3, P 4, ..., Pn.

(f) Suppose that we know P
⇀

x for some unknown vector
⇀

x. Can we determine
⇀

x? What
does this tell us about P−1?

2. And now we investigate reflections.

(a) Sketch another set of coordinate axes in R
2, with an additional line passing through the

origin. Let C be the matrix that reflects all vectors across the line.

(b) Sketch a position vector
⇀

u that is on the line. What can you say about the vector C
⇀

u in
this case?
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(c) Sketch a position vector
⇀

v that is perpendicular to the line. What is C
⇀

v?

(d) Sketch a third vector
⇀

w that is not on the line or perpendicular to it. Draw the vector
C

⇀

w. Now suppose that we applied C to C
⇀

w to get C(C
⇀

w) = C2 ⇀

w. What does this
tell us about C2?

(e) Discuss C3, C4, ..., Cn.

(f) Suppose that we know C
⇀

x for some unknown vector
⇀

x. Can we determine
⇀

x? What
does this tell us about C−1?

Some Trigonometric Identities

sin2 θ + cos2 θ = 1 cos(−θ) = cos θ sin(−θ) = − sin θ

sin(2θ) = 2 sin θ cos θ cos(2θ) = cos2 θ − sin2 θ

3. Consider the general rotation matrix A =

[

cos θ − sin θ

sin θ cos θ

]

.

(a) Suppose that we were to apply A to a vector
⇀

x, then apply A again, to the result.
Thinking only geometrically (don’t do any calculations), give a single matrix B that should
have the same effect.

(b) Find the matrix A2 algebraically, by multiplying A by itself.

(c) Use some of the trigonometric facts above to continue your calculations from part (b) until
you arrive at matrix B. This of course shows that that A2 = B.

4. Consider again the general rotation matrix A =

[

cos θ − sin θ

sin θ cos θ

]

.

(a) Give a matrix C that should “undo” what A does. Do this thinking only geometrically.

(b) Find the matrix A−1 algebraically, using the formula for the inverse of a 2× 2 matrix..

(c) Use some of the trigonometric facts above to show that C = A−1. Do this by starting
with C, then modifying it a step at a time to get to A−1.

(d) Give the transpose matrix AT . It should look familiar - tell how.

5. Let Rθ be the matrix that rotates all vectors counter-clockwise by the angle θ.

(a) R2

θ is equal to Rφ for what angle φ, in terms of θ?

(b) R−1

θ is equal to Rφ for what angle φ, in terms of θ?

(c) Give an angle θ for which R3

θ = I.

(d) Give an angle θ for which R−1

θ = Rθ. That is, what rotation is its own inverse?
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6. Use the graph to the right for the following.

(a) Give all 2-paths from v3 to v4.

(b) Give all three paths from v1 to v4. Don’t forget that you
can follow the same edge more than once, including in opposite
directions.

(c) Give the incidence matrix A for the graph, and give the additional
matrices A2 and A3.

(d) Look at the (3, 4) and (4, 3) entries of A2. How do they relate
to the number of 2-paths from v3 to v4?

v1 v2

v3v4

(e) Look at the (1, 4) and (4, 1) entries of A3. How do they relate to the number of 3-paths
from v1 to v4? (You won’t see the connection here if you didn’t find all of the 3-paths
from v1 to v4. You should have found five.)

(f) Based on what you observed in parts (d) and (e), how many 3-paths from v2 to v3 are
there? Give all 3-paths from v2 to v3. In this case, figure that you can follow the same
edge more than once, including in opposite directions, and that you can travel the edge from
v2 to itself.

7. (a) Draw the graph with the incidence matrix A shown below, with vertices labeled v1, v2, ...

(b) Draw the directed graph with the incidence matrix B shown below.

A =









0 1 1 0
1 0 1 1
1 1 0 0
0 1 0 1









B =









1 0 1 0
1 0 0 0
1 1 0 0
0 1 1 0









8. Use the graph to the right for the following.

(a) Give the incidence matrix for the graph; call it A. Find and give
A3 also.

(b) How many 3-paths from v1 to v4 do you expect? Give all of
them by listing the vertices the path goes through, in order and

including v2 and v4, as done in class. (For example, then, a
path from v4 to v3, through v2 would be denoted v4v2v3.)

(c) How many 3-paths are there from v4 to v1? What characteristic of the matrix A3 relates
your answer to the number of 3-paths from v1 to v4?

v1 v2

v3 v4
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9. Use the directed graph to the right for the following.

(a) Give the incidence matrix; again, call it A.

(b) The number of n-paths from vertex i to vertex j is given by the
(i, j) entry of An. How many 4-paths are there from v1 to v3?
Show how you get your answer.

(c) Give all 4-paths from v2 to v3.

(d) Give all 3-paths from v3 to v2. Is it the same as the number
from v2 to v3?

v1

v2

v3
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B Solutions to Exercises

B.3 Chapter 3 Solutions

Section 3.1 Solutions Back to 3.1 Exercises

1. (a) A is 3× 3, B is 3× 2, C is 3× 4

(b) b31 = 4, c23 = 2

2. (a) all but B, F (b) C, D, G, J (c) C (d) C, E (e) A, C

3. The following are possible answers:

(a)





2 0 0
−5 1 0
7 3 −8



 (b)





2 0 0
0 1 0
0 0 −8



 (c)





2 −5 7
−5 1 3
7 3 −8





(d)





1 0 0
0 1 0
0 0 1



 (e)





2 −1 5
0 4 3
0 0 −8



 (f) see (c)

(g) see (c) (h) see (b)

4. AT =





1 −3 4
0 1 7
5 −2 0



 BT =

[

1 −3 4
0 1 7

]

CT =









1 −3 4
0 1 7

−1 2 0
3 0 −2









5. B +D =





2 −3
−2 3
5 11



, B −D =





0 3
−4 −1
3 3



, D −B =





0 −3
4 1

−3 −3





6. (a) The matrix is square and symmetric. (b) The matrix is square and symmetric.

(c) The matrix is square, symmetric, diagonal and both upper and lower triangular.

(d) The matrices are square, symmetric, diagonal and both upper and lower triangular. They
are also called zero matrices.

7. (a) B =

[

2 5
5 8

]

(b) B is a symmetric matrix.

Section 3.2 Solutions Back to 3.2 Exercises

1.





3
−12

9



,

[

−23
28

]
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2. (a)

[

−13
−18

]

(b)

[

−5
18

]

(c) not possible

(d)





−3
1

−28



 (e)









−22
4
0
27









(f)





33
0

−14





3. (a) −4

[

3
5

]

+ 1

[

−1
2

]

(b) 1

[

1
6

]

+ 0

[

−5
3

]

− 3

[

2
−4

]

(c) not possible (d) 3





1
−5
2



+ 5





6
3

−4





(e) −4









7
1
2

−3









+ 1









−2
5
1
7









+ 3









0
3

−1
2









+ 2









4
−3
5
1









(f) 2





1
2

−4



− 3





0
2
7



+ 1





−5
3
1





4. (a)





a11x1 + a12x2 + a13x3
a21x1 + a22x2 + a23x3
a31x1 + a32x2 + a33x3



 (b) x1





a11
a21
a31



+ x2





a12
a22
a32



+ x3





a13
a23
a33





5. (a) A =

[

3 −5
1 1

]

(b) B =





1 3
2 −1
5 4





(c) C =





2 4 −1
−5 1 2
1 3 0



 (d) D =

[

1 0 1
1 −1 −1

]

6. (a) (b)




1 1 3
−3 2 −1
2 1 −4









x

y

z



 =





1
7
0









1 1 3
−3 2 −1
2 1 −4









x

y

z



 =





1
7
0





(c) (d)



















1 0.5
1 0.5
1 0.5
1 0.5
1 0.5
1 0.5
1 0.5





















[

b

m

]

=





















8.1
6.9
6.2
5.3
4.5
3.8
3.0

























1 −4 1 2
3 2 −1 −7

−2 1 −4 1













x1
x2
x3
x4









=





−1
0
2
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7. (a)
⇀

x=





−5
2
4



 (b)
⇀

x=

[

3
−7

]

(c)
⇀

x=

[

1.7
0.4

]

(d)
⇀

x=









4
3
2
1









8. (a) −νσxx

E
+

σyy

E
− νσzz

E
= ǫyy (b) −νσxx

E
− νσyy

E
+

σzz

E
= ǫzz (c)

τzx

γzx

(d)













1

E
− ν

E
− ν

E

− ν

E

1

E
− ν

E

− ν

E
− ν

E

1

E























σxx

σyy

σzz











=











ǫxx

ǫyy

ǫzz











,













1

G
0 0

0
1

G
0

0 0
1

G























τxy

τyz

τzx











=











γxy

γyz

γzx











Section 3.4 Solutions Back to 3.4 Exercises

1. (a)

[

3 3
8 −7

]

(b)





4 −7 −3
18 −31 −5
−7 16 9





2. A2 =

[

−15 5
−3 −14

]

AF =

[

30 45
0 12

]

BC =

[

−69
−25

]

BD =

[

62 −25 −2
−121 80 36

]

CE =





−25 5 −10
20 −4 8

−35 7 −14



 DC =





−51
27
−1





D2 =





39 3 18
−48 18 −7

1 4 5



 EC =
[

−43
]

ED =
[

37 −2 13
]

FA =

[

3 9
−27 39

]

FB =

[

10 −35 10
6 147 −18

]

F 2 =

[

−2 −11
66 75

]

3. The (2, 1) entry is −8 and the (3, 2) entry is −13.

4. a31a12 + a32a22 + a33a32 + a34a42 + a35a52

5. P 2 =

[

16

25

12

25

12

25

9

25

][

16

25

12

25

12

25

9

25

]

=
(

1

25

)(

1

25

)

[

16 12

12 9

][

16 12

12 9

]

=

(

1

625

)

[

400 300

300 225

]

=

[

16

25

12

25

12

25

9

25

]

6. (a) AT =

[

−5 0 2
1 4 −3

]

(b) ATA =

[

29 −11
−11 26

]

, AAT =





26 4 −13
4 16 −12

−13 −12 13





(c) ATA and AAT are both square, symmetric matrices
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Section 3.5 Solutions Back to 3.5 Exercises

1. Because

[

2 5
3 8

] [

8 −4
−3 2

]

=

[

1 2
0 4

]

6= I2, the matrices are not inverses.

2. AB = I2 but A and B are not inverses because (1) neither is square and (2) BA 6= I

3. (a) [I2 | B] =

[

1 0 −5

2

3

2

0 1 2 −1

]

(b) AB = BA = I2 (c) B is the inverse of A

5. (a)

[

2 −3
4 5

] [

x1
x2

]

=

[

4
3

]

(b) A−1 =
1

10− (−12)

[

5 3
−4 2

]

= 1

22

[

5 3
−4 2

]

(c) 1

22

[

5 3
−4 2

] [

2 −3
4 5

]

= 1

22

[

22 0
0 22

]

=

[

1 0
0 1

]

(d) (e)
[

2 −3
4 5

] [

x1
x2

]

=

[

4
3

] [

2 −3 1 0
4 5 0 1

]

1

22

[

5 3
−4 2

]([

2 −3
4 5

] [

x1
x2

])

= 1

22

[

5 3
−4 2

] [

4
3

] [

2 −3 1 0
0 11 −2 1

]

(

1

22

[

5 3
−4 2

] [

2 −3
4 5

])[

x1
x2

]

= 1

22

[

5 3
−4 2

] [

4
3

] [

2 −3 1 0
0 1 − 2

11

1

11

]

[

1 0
0 1

] [

x1
x2

]

= 1

22

[

29
−10

]

[

2 0 5

11

3

11

0 1 − 2

11

1

11

]

[

x1
x2

]

=

[

29

22

−10

22

] [

1 0 5

22

3

22

0 1 − 2

11

1

11

]

6. (a)

[

5 7
2 3

] [

x

y

]

=

[

−1
4

]

(b) A−1 =
1

(5)(3) − (2)(7)

[

3 −7
−2 5

]

=

[

3 −7
−2 5

]

(c)

[

5 7 1 0
2 3 0 1

]

rref
=⇒

[

1 0 3 −7
0 1 −2 5

]

, so A−1 =

[

3 −7
−2 5

]

(d)
[

5 7
2 3

] [

x

y

]

=

[

−1
4

]

[

3 −7
−2 5

]([

5 7
2 3

] [

x

y

])

=

[

3 −7
−2 5

] [

−1
4

]

([

3 −7
−2 5

] [

5 7
2 3

])[

x

y

]

=

[

−31
22

]

[

1 0
0 1

] [

x

y

]

=

[

−31
22

]

[

x

y

]

=

[

−31
22

]
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Section 3.6 Solutions Back to 3.6 Exercises

1. (a) det(A) = 4 (b) det(B) = 10 (c) det(C) = 8

(d) det(A) = 5 (e) det(B) = 1 (f) det(C) = 0

(e) det(A) = 2 (f) det(B) = −1

2. (a) λ2 − 5λ (b) λ2 − 4λ+ 3

(c) −λ3 + 4λ2 − 3λ (d) −λ3 + 6λ2 + 15λ+ 8

3. The determinant of the coefficient matrix is zero, so the system DOES NOT have a unique
solution.

4. (a) If the determinant of A is zero, then the system has no solution or infinitely many solutions.

(b) If the determinant of A is not zero, then the system has a unique solution.

5. (a) If the determinant of A is zero, then the system has infinitely many solutions. (It can’t have
no solutions, because

⇀

x= 0 is a solution.

(b) If the determinant of A is not zero, then the system has the unique solution
⇀

x= 0.

Section 3.7 Solutions Back to 3.7 Exercises

1. (b) P
⇀

u =
⇀

u (c) P
⇀

v =
⇀

0 (d) P (P
⇀

w) = P 2 ⇀

w = P
⇀

w, so P 2 = P

(e) Pn = P for n = 1, 2, 3, 4, .... This says that once we have projected a vector, any
additional projecting of the result is just what we got on the first projection.

(f) (Infinitely) many different vectors project to the same vector, so if we know the result of a
projection we cannot determine the original vector. Therefore P−1 does not exist for a
projection matrix P .

2. (b) C
⇀

u =
⇀

u (c) C
⇀

v = −⇀

v (d) C(C
⇀

w) = C2 ⇀

w =
⇀

w, so C2 = I

(e) Cn = I if n is even, and Cn = C if n is odd.

(f) Yes, we can determine
⇀

x by simply applying C to C
⇀

x. C is invertible and, in fact,
C is its own inverse!

5. (a) R2

θ = R2θ (b) R−1

θ = R−θ (c) R3
120◦

= R360◦ = I

(d) R−1

180◦
= R180◦ This holds for any multiple of 180◦.

6. (a) v3v2v4, v3v1v4 (b) v1v3v1v4, v1v3v2v4, v1v4v1v4, v1v4v2v4, v1v4v3v4

(c) A =









0 0 1 1
0 1 1 1
1 1 0 1
1 1 1 0









A2 =









2 2 1 1
2 3 2 2
1 2 3 2
1 2 2 3









A3 =









2 4 5 5
4 7 7 7
5 7 5 6
5 7 6 5









(d) The (3, 4) and (4, 3) entries of A2 are both two, the number of 2-paths from v3 to v4.

(e) The (1, 4) and (4, 1) entries of A3 are both five, the number of 3-paths from v1 to v4.
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(e) There are seven 3-paths from v2 to v3. They are v1v2v2v3, v2v2v4v3, v2v3v1v3, v2v3v2v3,
v2v3v4v3, v2v4v1v3, v2v4v2v3

7.
v1 v2

v3 v4

(a)
v1 v2

v3 v4

(b)

8. (a)
A =









0 1 1 1
1 1 0 1
1 0 0 1
1 1 1 0









A3 =









5 7 5 6
7 7 4 7
5 4 2 5
6 7 5 5









(b) We expect six 3-paths from v1 to v4. they are

v1v2v1v4

v1v2v2v4

v1v4v1v4

v1v4v2v4

v1v4v3v4

v1v3v1v4

(c) There are six 3-paths from v4 to v1. This is indicated by the fact that the matrix A3 is
symmetric.

9. (a)

A =





1 1 1
1 0 1
0 1 0





(b) There are eight 4-paths from v1 to v3, as indicated by the (1, 3) entry of

A4 =





8 8 8
5 6 5
3 2 3





(c) v2v3v2v1v3

v2v1v2v1v3

v2v1v1v1v3

v2v1v1v2v3

v2v1v3v2v3

(d) v3v2v3v2

v3v2v1v2

No, there are two 3-paths from v3 to v2, but three 3-paths from v2 to v3.
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