
5 Linear Transformations

Outcome:

5. Understand linear transformations, their compositions, and their application to
homogeneous coordinates. Understand representations of vectors with respect
to different bases. Understand eigenvalues and eigenspaces, diagonalization.

Performance Criteria:

(a) Evaluate a transformation.

(b) Determine the formula for a transformation in R
2 or R

3 that has been
described geometrically.

(c) Determine whether a given transformation from R
m to R

n is linear. If it
isn’t, give a counterexample; if it is, prove that it is.

(d) Given the action of a transformation on each vector in a basis for a space,
determine the action on an arbitrary vector in the space.

(e) Give the matrix representation of a linear transformation.

(f) Find the composition of two transformations.

(g) Find matrices that perform combinations of dilations, reflections, rota-
tions and translations in R

2 using homogenous coordinates.

(h) Determine whether a given vector is an eigenvector for a matrix; if it is,
give the corresponding eigenvalue.

(i) Determine eigenvectors and corresponding eigenvalues for linear trans-
formations in R

2 or R
3 that are described geometrically.

(j) Find the characteristic polynomial for a 2× 2 or 3× 3 matrix. Use it
to find the eigenvalues of the matrix.

(k) Give the eigenspace Ej corresponding to an eigenvalue λj of a matrix.

(l) Determine the principal stresses and the orientation of the principal axes
for a two-dimensional stress element.

(m) Diagonalize a matrix; know the forms of the matrices P and D from
P−1AP = D.

(n) Write a system of linear differential equations in matrix-vector form.
Write the initial conditions in vector form.

(o) Solve a system of two linear differential equations; solve an initial value
problem for a system of two linear differential equations.
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5.1 Transformations of Vectors

Performance Criteria:

5. (a) Evaluate a transformation.

(b) Determine the formula for a transformation in R
2 or R

3 that has been
described geometrically.

Back in a “regular” algebra class you might have considered a function like f(x) =
√
x+ 5, and you

may have discussed the fact that this function is only valid for certain values of x. When considering
functions more carefully, we usually “declare” the function before defining it:

Let f : [−5,∞) → R be defined by f(x) =
√
x+ 5

Here the set [−5,∞) of allowable “inputs” is called the domain of the function, and the set R is
sometimes called the codomain or target set. Those of you with programming experience will recognize
the process of first declaring the function, then defining it. Later you might “call” the function, which
in math we refer to as “evaluating” it.

In a similar manner we can define functions from one vector space to another, like

Define T : R2 → R
3 by T

([

x1
x2

])

=







x1 + x2
x2

x21







We will call such a function a transformation, hence the use of the letter T . (When we have a
second transformation, we’ll usually call it S.) The word “transformation” implies that one vector is
transformed into another vector. It should be clear how a transformation works:

⋄ Example 5.1(a): Find T

([

−3
5

])

for the transformation defined above.

T

([

−3
5

])

=





−3 + 5
5

(−3)2



 =





2
5
9





It gets a bit tiresome to write both parentheses and brackets, so from now on we will dispense with the
parentheses and just write

T

[

−3
5

]

=





2
5
9





At this point we should note that you have encountered other kinds of transformations. For example,
taking the derivative of a function results in another function,

d

dx
(x3 − 5x2 + 2x− 1) = 3x2 − 10x+ 2,

so the action of taking a derivative can be thought of as a transformation. Such transformations are
often called operators.

Sometimes we will wish to determine the formula for a transformation from R
2 to R

2 or R
3 to

R
3 that has been described geometrically.
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⋄ Example 5.1(b): Determine the formula for the transformation T : R2 → R
2 that reflects

vectors across the x-axis.

Solution: First we might wish to draw a picture to see what such a
transformation does to a vector. To the right we see the vectors

⇀

u=
[3, 2] and

⇀

v= [−1,−3], and their transformations T
⇀

u= [3,−2] and
T

⇀

v= [−1, 3]. From these we see that what the transformation does is
change the sign of the second component of a vector. Therefore

T

[

x1
x2

]

=

[

x1
−x2

]

4

4

-4

-4

⇀

u

T
⇀

u
⇀

v

T
⇀

v

⋄ Example 5.1(c): Determine the formula for the transformation T : R3 → R
3 that projects

vectors onto the xy-plane.

Solution: It is a little more difficult to draw a picture for this one,
but to the right you can see an attempt to illustrate the action of this
transformation on a vector

⇀

u. Note that in projecting a vector onto the
xy-plane, the x- and y-coordinates stay the same, but the z-coordinate
becomes zero. The formula for the transformation is then

T





x

y

z



 =







x

y

0







⇀

u

T
⇀

ux

y

z

Let’s now look at the above example in a different way. Note that the xy-plane is a 2-dimensional
subspace of R

3 that corresponds (exactly!) with R
2. We can therefore look at the transformation as

T : R3 → R
2 that assigns to every point in R

3 its projection onto the xy-plane taken as R
2. The

formula for this transformation is then

T





x

y

z



 =

[

x

y

]

We conclude this section with a very important observation. Consider the matrix

A =





5 1
0 −3

−1 2





and define TA
⇀

x= A
⇀

x for every vector for which A
⇀

x is defined. This transformation acts on
vectors in R

2 and “returns” vectors in R
3. That is, TA : R2 → R

3. In general, we can use any
m× n matrix A to define a transformation TA : Rn → R

m in this manner. In the next section we
will see that such transformations have a desirable characteristic, and that every transformation with
that characteristic can be represented by multiplication by a matrix.
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⋄ Example 5.1(d): Find TA

[

−3
1

]

, where TA is defined as above, for the matrix given.

Solution: TA

[

−3
1

]

=





5 1
0 −3

−1 2





[

−3
1

]

=





−14
−3
5





Section 5.1 Exercises To Solutions

1. For each of the following a transformation T is declared and defined, and one or more vectors
⇀

u,
⇀

v and
⇀

w is(are) given. Find the transformation(s) of the vector(s), labelling your answer(s)
correctly.

(a) T : R2 → R
2, T

[

x1
x2

]

=

[

x1x2
x22

]

,
⇀

u =

[

−1
1

]

,
⇀

v =

[

2
−3

]

(b) T : R2 → R
3, T

[

x1
x2

]

=





x1 + x2
3x2
−x1



,
⇀

u =

[

−1
1

]

,
⇀

v =

[

2
−3

]

(c) T : R3 → R
3, T





x1
x2
x3



 =





x1 + x2
x2 + x3
x3 + x1



,
⇀

v =





−1
1
1



,
⇀

w =





2
−3
5





(d) T : R4 → R
4, T









x1
x2
x3
x4









=









x3
x4
x1
x2









,
⇀

u =









1
2
3
4









(e) T : R3 → R
3, T





x1
x2
x3



 =





x1 + 5
x2 − 2
x3 + 1



,
⇀

u =





−1
1
1



,
⇀

w =





2
−3
5





(f) T : R5 → R
5, T













x1
x2
x3
x4
x5













=













x2 − x1
x3 − x2
x4 − x3
x5 − x4
−x5













,
⇀

v =













2
−7
5
4

−1













2. For each of the transformations in Exercise 1, determine whether there is a matrix A for which
T = TA, as described in the Example 5.1(d) and the discussion preceeding it.
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3. For each of the following, give the transformation T that acts on points/vectors in R
2 or R

3 in
the manner described. Be sure to include both

• a “declaration statement” of the form “Define T : Rm → R
n by” and

• a mathematical formula for the transformation.

To do this you might find it useful to list a few specific points or vectors and the points or vectors
they transform to. Points on the axes are often useful for this due to the simplicity of working
with them.

(a) The transformation that reflects every vector in R
2 across the x-axis.

(b) The transformation that rotates every vector in R
2 90 degrees clockwise.

(c) The transformation that translates every point in R
2 three points to the right and one point

up. We will see soon that this is a very important and interesting kind of transformation.

(d) The transformation that reflects every vector in R
2 across the line y = −x.

(e) The transformation that projects every vector in R
2 onto the x-axis.

(f) The transformation that reflects every point in R
3 across the xz-plane.

(g) The transformation that rotates every point in R
3 counterclockwise 90 degrees, as looking

down the positive z-axis, around the z-axis.

(h) The transformation that rotates every point in R
3 counterclockwise 90 degrees, as looking

down the positive y-axis, around the y-axis.

(i) The transformation that projects every point in R
3 across the xz-plane.

(j) The transformation that projects every point in R
3 onto the y-axis.

(k) The transformation that takes every point in R
2 and puts it at the corresponding point in

R
3 on the plane z = 2.

(l) The transformation that translates every point in R
3 upward by four units and in the

negative y-direction by one unit.

4. The picture to the right shows a plane containing the x-
axis and at a 45 degree angle to the xy-plane. Consider
a transformation T : R

2 → R
3 that is performed

as follows: Each point in R
2 is transformed to the

point in R
3 that is on the 45 degree plane directly

above (or below) its location in the xy-plane. Declare
the transformation and give its formula. Hint: sketch a
picture of just the yz-plane.

45◦

x

y

z

5. Declare and define a transformation T that reflects every point in R
3 across the plane shown

in Exercise 4. If possible, give a matrix A for which T = TA.
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6. The transformation T : R2 → R
2 by T

[

x1
x2

]

=

[

x1 + ax2
x2

]

for any constant a is

a type of transformation called a shear. Such transformations will become quite important

to us soon. Let’s let a = 1, so the transformation becomes T

[

x1
x2

]

=

[

x1 + x2
x2

]

.

(a) Describe what the transformation does geometrically to every point on the horizontal line
with y-coordinate one.

(b) Describe what the transformation does geometrically to every point on the horizontal line
with y-coordinate two.

(c) Describe what the transformation does geometrically to every point on the horizontal line
with y-coordinate negative one.

(d) Describe what the transformation does geometrically to every point on the horizontal line
with y-coordinate zero.

(e) What does the transformation do to every point with positive y-coordinate. Be as specific
as you can.

(f) What does the transformation do to every point with negative y-coordinate. Be as specific
as you can.

(g) Give a matrix A for which the transformation T

[

x1
x2

]

=

[

x1 + ax2
x2

]

is TA.

7. Now consider the transformation T : R3 → R
3 defined by T





x1
x2
x3



 =





x1 + ax3
x2 + bx3

x3



 for

any constants a and b. This is a shear in R
3.

(a) Suppose that a = 2 and b = −1. Describe what T does to all points in the plane
z = 1 in that case.

(b) Still assuming that a = 2 and b = −1, give a matrix A for which T = TA for just the
points in the plane z = 1.
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5.2 Linear Transformations

Performance Criteria:

5. (c) Determine whether a given transformation from R
m to R

n is linear. If it
isn’t, give a counterexample; if it is, prove that it is.

(d) Given the action of a transformation on each vector in a basis for a space,
determine the action on an arbitrary vector in the space.

To begin this section, recall the transformation from Example 5.1(b) that reflects vectors in R
2 across

the x-axis. In the drawing below and to the left we see two vectors
⇀

u and
⇀

v that are added, and
then the vector

⇀

u +
⇀

v is reflected across the x-axis. In the drawing below and to the right the same
vectors

⇀

u and
⇀

v are reflected across the x-axis first, then the resulting vectors T (
⇀

u) and T (
⇀

v) are
added.

⇀

u

⇀

v

⇀

u +
⇀

v

T (
⇀

u +
⇀

v)

y

x

⇀

u

⇀

v

T (
⇀

u)

T (
⇀

v)

T (
⇀

u) + T (
⇀

v)

y

x

Note that T (
⇀

u +
⇀

v) = T (
⇀

u) + T (
⇀

v). Not all transformations have this property, but those that do
have it, along with an additional property, are very important:

Definition 5.2.1: Linear Transformation

A transformation T : Rm → R
n is called a linear transformation if, for every scalar

c and every pair of vectors
⇀

u and
⇀

v in R
m

1) T (
⇀

u +
⇀

v) = T (
⇀

u) + T (
⇀

v) (additivity) and

2) T (c
⇀

u) = c T (
⇀

u) (homogeneity).

Note that the above statement describes how a transformation T interacts with the two operations
of vectors, addition and scalar multiplication. It tells us that if we take two vectors in the domain and
add them in the domain, then transform the result, we will get the same thing as if we transform the
vectors individually first, then add the results in the codomain. We will also get the same thing if we
multiply a vector by a scalar and then transform as we will if we transform first, then multiply by the
scalar.This is illustrated in the mapping diagram at the top of the next page.
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T

R
m

R
n

w

cw

u

v

u+ v

T (cw) = cTw

Tw

Tu

Tv

T (u+ v) = Tu+ Tv

The following two mapping diagrams are for transformations R and S that ARE NOT linear:

R
R
m

R
n

w

cw R(cw)

Rw

cRw

S
R
m

R
n

u

v

u+ v

Su

Sv

S(u+ v) Su+ Sv

⋄ Example 5.2(a): Let A be an m×n matrix. Is TA : Rn → R
m defined by TA

⇀

x= A
⇀

x a
linear transformation?

Solution: We know from properties of multiplying a vector by a matrix that

TA(
⇀

u +
⇀

v) = A(
⇀

u +
⇀

v) = A
⇀

u +A
⇀

v= TA
⇀

u +TA
⇀

v, TA(c
⇀

u) = A(c
⇀

u) = cA
⇀

u= cTA
⇀

u .

Therefore TA is a linear transformation.
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⋄ Example 5.2(b): Is T : R2 → R
3 defined by T

[

x1
x2

]

=







x1 + x2
x2

x21






a linear transforma-

tion? If so, show that it is; if not, give a counterexample demonstrating that.

Solution: A good way to begin such an exercise is to try the two properties of a linear trans-
formation for some specific vectors and scalars. If either condition is not met, then we have our
counterexample, and if both hold we need to show they hold in general. Usually it is a bit simpler

to check the condition T (c
⇀

u) = c T
⇀

u. In our case, if c = 2 and
⇀

u =

[

3
4

]

,

T

(

2

[

3
4

])

= T

[

6
8

]

=





14
8
36



 and 2T

[

3
4

]

= 2





7
4
9



 =





14
8
18





Because T (c
⇀

u) 6= c T
⇀

u for our choices of c and u, T is not a linear transformation.

The next example shows the process required to show in general that a transformation is linear.

⋄ Example 5.2(c): Determine whether T : R3 → R
2 defined by T





x1
x2
x3



 =

[

x1 + x2
x2 − x3

]

is

linear. If it is, prove it in general; if it isn’t, give a specific counterexample.

Solution: First let’s check condition (1) of a linear transformation with the two specific vectors

⇀

u =





1
2
3



 and
⇀

v =





4
−5
6



. (I threw the negative in there just in case something funny

happens when everything is positive.) Then

T









1
2
3



+





4
−5
6







 = T





5
−3
9



 =

[

2
−12

]

and

T





1
2
3



+ T





4
−5
6



 =

[

3
−1

]

+

[

−1
−11

]

=

[

2
−12

]

so the first condition of linearity appears to hold. Let’s prove it in general. Let
⇀

u=





u1
u2
u3



 and

⇀

v=





v1
v2
v3



 be arbitrary (that is, randomly selected) vectors in R
3. Then

T (
⇀

u +
⇀

v) = T









u1
u2
u3



+





v1
v2
v3







 = T





u1 + v1
u2 + v2
u3 + v3



 =

[

u1 + v1 + u2 + v2
(u2 + v2)− (u3 + v3)

]

=
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[

u1 + u2 + v1 + v2
(u2 − u3) + (v2 − v3)

]

=

[

u1 + u2
u2 − u3

]

+

[

v1 + v2
v2 − v3

]

= T





u1
u2
u3



+T





v1
v2
v3



 = T (
⇀

u)+T (
⇀

v)

This shows that the first condition of linearity holds in general. Let
⇀

u again be arbitrary, along
with the scalar c. Then

T (c
⇀

u) = T



c





u1
u2
u3







 = T





cu1
cu2
cu3



 =

[

cu1 + cu2
cu2 − cu3

]

=

[

c(u1 + u2)
c(u2 − u3)

]

= c

[

u1 + u2
u2 − u3

]

= cT





u1
u2
u3



 = cT (
⇀

u)

so the second condition holds as well, and T is a linear transformation.

There is a handy fact associated with linear transformations:

Theorem 5.2.2: If T is a linear transformation, then T (
⇀

0) =
⇀

0.

Note that this does not say that if T (
⇀

0) =
⇀

0, then T is a linear transformation, as you will see below.

However, the contrapositive of the above statement tells us that if T (
⇀

0) 6=⇀

0, then T is not a linear
transformation.

When working with coordinate systems, one operation we often need to carry out is a translation,
which means a shift of all points the same distance and direction. The transformation in the following
example is a translation in R

2.

⋄ Example 5.2(d): Let a and b be any real numbers, with not both of them zero. Define

T : R2 → R
2 by T

[

x1
x2

]

=

[

x1 + a

x2 + b

]

. Is T a linear transformation?

Solution: Because T

[

0
0

]

=

[

a

b

]

6=
[

0
0

]

(since not both a and b are zero), T is

not a linear transformation.

We will find that the result of this example is quite unfortunate, because translations are very
important in applications and the fact that they are not linear could potentially make them hard
to work with. Fortunately there is a clever way around this problem - you’ll see that in Section
5.5.

⋄ Example 5.2(e): Determine whether T : R2 → R
2 defined by T

[

x1
x2

]

=

[

x1 + x2
x1x2

]

is

linear. If it is, prove it in general; if it isn’t, give a specific counterexample.
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Solution: It is easy to see that T (
⇀

0) =
⇀

0, so we can’t immediately rule out T being linear,
as we did in the last example. Let’s do a quick check of the first condition of the definition of a

linear transformation with an example. Let
⇀

u=

[

−3
2

]

and
⇀

v=

[

1
4

]

. Then

T (
⇀

u +
⇀

v) = T

([

−3
2

]

+

[

1
4

])

= T

[

−2
6

]

=

[

4
−12

]

and

T
⇀

u +T
⇀

v= T

[

−3
2

]

+ T

[

1
4

]

=

[

−1
−6

]

+

[

5
4

]

=

[

4
−2

]

Clearly T (
⇀

u +
⇀

v) 6= T
⇀

u +T
⇀

v, so T is not a linear transformation.

We can “mix” the additivity and homogeneity of the definition of a linear transformation to arrive
at the following:

Theorem 5.2.3: If T : Rm → R
n is a linear transformation if and only if

T (c1
⇀

v1 +c2
⇀

v2 + · · ·+ ck
⇀

vk) = c1T (
⇀

v1) + c2T (
⇀

v2) + · · ·+ ckT (
⇀

vk)

for all
⇀

v1,
⇀

v2, ...,
⇀

vk in R
m and all scalars c1, c2, ..., ck .

This is deceptively powerful result. Suppose, in particular, that the vectors
⇀

v1,
⇀

v2, ...,
⇀

vk in the above
theorem constitute a basis for R

m. Then every vector in R
m can be written as a unique linear

combination of those vectors. If we have a linear transformation T and we know what it does to each
of

⇀

v1,
⇀

v2, ...,
⇀

vk, then the above theorem says that we then know what T does to every vector in
R
m.

⋄ Example 5.2(f): The set S =











1
0
0



 ,





1
1
0



 ,





1
1
1











is a basis for R
3. Suppose

that T : R3 → R
2 is a linear transformation such that

T





1
0
0



 =

[

−1
4

]

, T





1
1
0



 =

[

5
0

]

, T





1
1
1



 =

[

3
−2

]

.

Find T





2
−7
4



.

Solution: We can see that




2
−7
4



 = 9





1
0
0



− 11





1
1
0



+ 4





1
1
1
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Therefore, by Theorem 2.1.3,

T





2
−7
4



 = T



9





1
0
0



− 11





1
1
0



+ 4





1
1
1









= 9T





1
0
0



− 11T





1
1
0



+ 4T





1
1
1





= 9

[

−1
4

]

− 11

[

5
0

]

+ 4

[

3
−2

]

=

[

−9
36

]

+

[

−55
0

]

+

[

12
−8

]

=

[

−52
28

]

Section 5.2 Exercises To Solutions

1. For each of the following, a transformation T : R2 → R
2 is given by describing its action on a

vector
⇀

x= [x1, x2]. For each transformation, determine whether it is linear by

• finding T (c
⇀

u) and c(T
⇀

u) and seeing if they are equal,

• finding T (
⇀

u +
⇀

v) and T (
⇀

u) + T (
⇀

v) and seeing if they are equal.

For any that you find to be linear, say so. For any that are not, say so and produce a specific
counterexample to one of the two conditions for linearity.

(a) T

[

x1

x2

]

=

[

x2

x1 + x2

]

(b) T

[

x1

x2

]

=

[

x1 + x2

x1 x2

]

(c) T

[

x1

x2

]

=

[ |x1|
|x2|

]

(d) T

[

x1

x2

]

=

[

3x1
x1 − x2

]

2. The transformation T : R2 → R
3 defined by T

[

x1
x2

]

=





x1 + 2x2
3x2 − 5x1

x1



 is linear.

(a) Show that, for vectors
⇀

u=

[

u1
u2

]

and
⇀

v=

[

v1
v2

]

, T (
⇀

u +
⇀

v) = T (
⇀

u) + T (
⇀

v).

Do this via a string of equal expressions, beginning with T (
⇀

u +
⇀

v) and ending with
T

⇀

u +T
⇀

v as done in Example 5.2(c).

(b) Show that, for scalar c and vector
⇀

u=

[

u1
u2

]

, T (c
⇀

u) = cT (
⇀

u) + T
⇀

v. Do this

via a string of equal expressions, beginning with T (c
⇀

u) and ending with cT (
⇀

u).
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3. Two transformations from R
3 to R

2 are given below. One is linear and one is not. For the
one that is, prove it in the manner of Example 5.2(c). For the one that is not, give a specific
counterexample showing that the transformation violates the definition of a linear transformation.
That is, show that one of T (c

⇀

u) = cT
⇀

u or T (
⇀

u +
⇀

v) = T
⇀

u +T
⇀

v fails.

(a) T





x1
x2
x3



 =

[

2x1 − x3

x1 + x2 + x3

]

(b) T





x1
x2
x3



 =

[

x1x2 + x3

x1

]

4. For each of the following transformations,

• if it is linear, give a proof that it is, in the manner of Example 5.2(c)

• if it is not linear, demonstrate that it not with an appropriate counterexample.

(a) The transformation T : R3 → R
3 defined by T





x1
x2
x3



 =





x1 + x3
x2 + x3
x1 + x2



.

(b) The transformation T : R2 → R
2 defined by T

[

x1
x2

]

=

[

x1 + 1
x2 − 1

]

5. (a) T : R2 → R
2 is a linear transformation for which T

[

0
1

]

=

[

−2
5

]

and

T

[

1
1

]

=

[

3
2

]

. Find T

[

−5
−2

]

.

(b) T : R2 → R
2 is a linear transformation for which T

[

2
1

]

=

[

4
3

]

and

T

[

−1
1

]

=

[

5
−4

]

. Find T

[

−6
3

]

.

(c) T : R3 → R
2 is a linear transformation for which T





1
1
0



 =

[

6
−1

]

,

T





1
0
1



 =

[

2
5

]

, and T





0
1
1



 =

[

0
3

]

. Find T





2
7

−1



.

(d) T : R3 → R
2 is a linear transformation for which T





1
2
3



 =





0
5

−1



,

T





1
1
1



 =





2
3
4



, and T





−2
1
4



 =





−1
1
2



. Find T





11
3

−5



.

19



5.3 Linear Transformations and Matrices

Performance Criteria:

5. (e) Give the matrix representation of a linear transformation.

Recall from Example 5.2(a) that if A is an m × n matrix, then TA : Rn → R
m defined by

T (
⇀

x) = A
⇀

x is a linear transformation. It turns out that the converse of this is true as well:

Theorem 5.3.1: Matrix of a Linear Transformation

If T : Rm → R
n is a linear transformation, then there is a matrix A such that

T (
⇀

x) = A
⇀

x for every
⇀

x in R
m. We will call A the matrix that represents the

transformation.

As it is cumbersome and confusing the represent a linear transformation by the letter T and the matrix
representing the transformation by the letter A, we will instead adopt the following convention: We’ll
denote the transformation itself by T , and the matrix of the transformation by [T ].

⋄ Example 5.3(a): Find the matrix [T ] of the linear transformation T : R3 → R
2 of Example

5.2(c), defined by T





x1
x2
x3



 =

[

x1 + x2
x2 − x3

]

.

Solution: We can see that [T ] needs to have three columns and two rows in order for the
multiplication to be defined, and that we need to have

[ ]





x1
x2
x3



 =

[

x1 + x2
x2 − x3

]

From this we can see that the first row of the matrix needs to be 1 1 0 and the second row

needs to be 0 1 − 1. The matrix representing T is then [T ] =

[

1 1 0
0 1 −1

]

.

The sort of “visual inspection” method used above can at times be inefficient, especially when trying
to find the matrix of a linear transformation based on a geometric description of the action of the
transformation. To see a more effective method, let’s look at any linear transformation T : R2 → R

2.

Suppose that the matrix of of the transformation is [T ] =

[

a b

c d

]

. Then for the two standard basis

vectors
⇀

e1=

[

1
0

]

and
⇀

e2=

[

0
1

]

,

T (
⇀

e1) =

[

a b

c d

] [

1
0

]

=

[

a

c

]

and T (
⇀

e2) =

[

a b

c d

] [

0
1

]

=

[

b

d

]

.

This indicates that the columns of [T ] are the vectors T (
⇀

e1) and T (
⇀

e2). In general we have the
following:
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Theorem 5.3.2: Finding the Matrix of a Linear Transformation

Let
⇀

e1,
⇀

e2, ... ,
⇀

em be the standard basis vectors of R
m, and suppose that

T : Rm → R
n is a linear transformation. Then the columns of [T ] are the vectors

obtained when T acts on each of the standard basis vectors
⇀

e1,
⇀

e2, ... ,
⇀

em.
We indicate this by

[T ] = [T (
⇀

e1) T (
⇀

e2) · · · T (
⇀

em) ]

⋄ Example 5.3(b): Let T be the transformation in R
2 that rotates all vectors counterclockwise

by ninety degrees. This is a linear transformation; use the previous theorem to determine its matrix
[T ].

Solution: It should be clear that T (
⇀

e1) = T

[

1
0

]

=

[

0
1

]

and T (
⇀

e2) = T

[

0
1

]

=

[

−1
0

]

.

Then

[T ] = [T (
⇀

e1) T (
⇀

e2) ] =

[

0 −1
1 0

]

The results of this section are particularly powerful from a computational point of view...

Section 5.3 Exercises To Solutions

1. Each of the following transformations T from the Section 5.2 Exercises is linear. Give the matrix
[T ] of each.

(a) T





x1
x2
x3



 =

[

2x1 − x3

x1 + x2 + x3

]

(b) T





x1
x2
x3



 =





x1 + x3
x2 + x3
x1 + x2





(c) T

[

x1
x2

]

=





x1 + 2x2
3x2 − 5x1

x1



 (d) T

[

x1

x2

]

=

[

x2

x1 + x2

]

(e) T

[

x1

x2

]

=

[

3x1
x1 − x2

]

2. In this exercise we’ll apply Theorem 5.3.2 to find the matrix [T ] of the transformation that
reflects every vector in R

2 across the line y = x.

(a) Sketch the R
2 axes, and on that sketch the line y = x and the two standard basis

vectors
⇀

e1=

[

1
0

]

and
⇀

e2=

[

0
1

]

.

(b) Give the vectors T (
⇀

e1) and T (
⇀

e2).

(c) Give [T ], the matrix of the transformation.
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3. Now we’ll use Theorem 5.3.2 to find the matrix of the transformation that projects all vectors
onto the line through the origin and the point (4, 3).

(a) Sketch the R
2 axes, and then the two standard basis vectors

⇀

e1 and
⇀

e2, and the vector
⇀

v from the origin to the point (4, 3).

(b) Recall that the projection of a vector
⇀

u onto a vector
⇀

v is given by

proj
v

⇀

u =

⇀

u · ⇀

v
⇀

v · ⇀

v

⇀

v .

Noting that projecting on the line through the origin and (4, 3) is the same as projecting
on the vector

⇀

v from the origin to the point (4, 3), find T (
⇀

e1) and T (
⇀

e2).

(c) You can now give the matrix [T ] that projects all vectors onto the line through the origin
and (4, 3). Do so!

4. Repeat the process from Exercise 3 to find the matrix [T ] of the transformation that projects
every vector on the line through the origin and the point (a, b).

5. In this exercise we’ll determine the matrix of the transformation T that rotates every vector 90
degrees counterclockwise (when looking along the positive z-axis toward the origin) around the
z-axis, then 90 degrees counterclockwise around the x-axis (again, with counterclockwise being
as one looks along the positive x-axis toward the origin).

(a) Consider the vector
⇀

v=





4
0
3



. What is the vector
⇀

v1 obtained when
⇀

v is rotated 90

degrees counterclockwise around the z-axis? What is the vector
⇀

v2 obtained when when
⇀

v1 is rotated 90 degrees counterclockwise around the x-axis? Note that
⇀

v2 = T (
⇀

v).

(b) The standard basis vectors in R
3 are

⇀

e1 =





1
0
0



,
⇀

e1 =





0
1
0



, and
⇀

e3 =





0
0
1



.

Find T (
⇀

e1), T (
⇀

e2) and T (
⇀

e3).

(c) Give the matrix [T ]. Multiply it times the vector
⇀

v from part (a) and see if you get the
final result of that part,

⇀

v2. (You should!)
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5.4 Compositions of Transformations

Performance Criterion:

5. (f) Find the composition of two transformations.

It is likely that at some point in your past you have seen the concept of the composition of two
functions; if the functions were denoted by f and g, one composition of them is the new function f ◦ g.
We call this new function “f of g”, and we must describe how it works. This is simple - for any x,
(f ◦g)(x) = f [g(x)]. That is, g acts on x, and f then acts on the result. There is another composition,
g ◦ f , which is defined the same way (but, of course, in the opposite order). For specific functions, you
were probably asked to find the new rule for these two compositions. Here’s a reminder of how that is
done:

⋄ Example 5.4(a): For the functions f(x) = 2x − 1 and g(x) = 4x − x2, find the formulas for
the composition functions f ◦ g and g ◦ f .

Solution: Basic algebra gives us

(f ◦ g)(x) = f [g(x)] = f [4x− x2] = 2(4x − x2)− 1 = 8x− 2x2 − 1 = −2x2 + 8x− 1

and

(g ◦ f)(x) = g[f(x)] = g[2x− 1] = 4(2x− 1)− (2x− 1)2 =

(8x− 4)− (4x2 − 4x+ 1) = 8x− 4− 4x2 + 4x− 1 = −4x2 + 12x − 5

The formulas are then (f ◦ g)(x) = −2x2 + 8x− 1 and (g ◦ f)(x) = −4x2 + 12x− 5.

Worthy of note here is that the two compositions f ◦ g and g ◦ f are not the same!
One thing that was probably glossed over when you first saw this concept was the fact that the

range (all possible outputs) of the first function to act must fall within the domain (allowable inputs) of
the second function to act. Suppose, for example, that f(x) =

√
x− 4 and g(x) = x2. The function f

will be undefined unless x is at least four; we indicate this by writing f : [4,∞) → R. This means that
we need to restrict g in such a way as to make sure that g(x) ≥ 4 if we wish to form the composition
f ◦ g. One simple way to do this is to restrict the domain of g to [2,∞). (We could include the interval
(−∞,−2] also, but for the sake of simplicity we will just use the positive interval.) The range of g is then
[4,∞), which coincides with the domain of f . We now see how these ideas apply to transformations,
and we see how to carry out a process like that of Example 5.4(a) for transformations.

⋄ Example 5.4(b): Let S : R3 → R
2 and T : R2 → R

2 be defined by

S





x1
x2
x3



 =

[

x21
x2x3

]

, T

[

x1
x2

]

=

[

x1 + 3x2
2x2 − x1

]

Determine whether each of the compositions S ◦T and T ◦S exists, and find a formula for either
of them that do.
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Solution: Since the domain of S is R
3 and the range of T is a subset of R2, the composition

S ◦T does not exist. The range of S falls within the domain of T , so the composition T ◦S does
exist. Its equation is found by

(T ◦ S)





x1
x2
x3



 = T



S





x1
x2
x3







 = T

[

x21
x2x3

]

=

[

x21 + 3x2x3
2x2x3 − x21

]

Let’s formally define what we mean by a composition of two transformations.

Definition 5.4.1 Composition of Transformations

Let S : Rp → R
n and T : Rm → R

p be transformations. The composition of
S and T , denoted by S ◦T , is the transformation S ◦T : Rm → R

n defined by

(S ◦ T ) ⇀

x= S(T
⇀

x)

for all vectors
⇀

x in R
m.

Although the above definition is valid for compositions of any transformations between vector spaces,
we are primarily interested in linear transformations. Recall that any linear transformation between vector
spaces can be represented by matrix multiplication for some matrix. Suppose that S : R3 → R

3 and
T : R2 → R

3 are linear transformations that can be represented by the matrices

[S] =





3 −1 5
0 2 1
4 0 −3



 and [T ] =





2 7
−6 1
1 −4





respectively.

⋄ Example 5.4(c): For the transformations S and T just defined, find (S ◦ T )
⇀

x= (S ◦

T )

[

x1
x2

]

. Then find the matrix of the transformation S ◦ T .

Solution: We see that

(S ◦ T )
[

x1
x2

]

= S

(

T

[

x1
x2

])

= S









2 7
−6 1
1 −4





[

x1
x2

]





= S





2x1 + 7x2
−6x1 + x2
x1 − 4x2





=





3 −1 5
0 2 1
4 0 −3









2x1 + 7x2
−6x1 + x2
x1 − 4x2
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=





3 −1 5
0 2 1
4 0 −3









2x1 + 7x2
−6x1 + x2
x1 − 4x2





=





3(2x1 + 7x2)− (−6x1 + x2) + 5(x1 − 4x2)
0(2x1 + 7x2) + 2(−6x1 + x2) + (x1 − 4x2)
4(2x1 + 7x2) + 0(−6x1 + x2)− 3(x1 − 4x2)





=





17x1 + 0x2
−11x1 − 2x2
5x1 + 40x2





From this we can see that the matrix of S ◦ T is [S ◦ T ] =





17 0
−11 −2

5 40



 .

Recall that the linear transformations of this example have matrices [S] and [T ], and we find that

[S][T ] =





3 −1 5
0 2 1
4 0 −3









2 7
−6 1
1 −4



 =





17 0
−11 −2

5 40



 .

This illustrates the following:

Theorem 5.4.2 Matrix of a Composition

Let S : Rp → R
n and T : Rm → R

p be linear transformations with matrices
[S] and [T ]. Then

[S ◦ T ] = [S][T ]

Section 5.4 Exercises To Solutions

1. Let R : R2 → R
2, S : R2 → R

3 and T : R3 → R
2 be defined by

R

[

x1
x2

]

=

[

x1x2

x1 − x2

]

, S

[

x1
x2

]

=







2x1 + x2

x2

x2 − 3x1






, T





x1
x2
x3



 =

[

x2 − 5

x1 + x3 + 2

]

.

For each of the following compositions, give the declaration statement of the form transformation :
R
m → R

n and the formula for the transformation, showing your work as done in Example 5.4(b),
and simplify by combining like terms when possible.

(a) S ◦R (b) T ◦ S (c) R ◦ T (d) S ◦ T

2. Let S : R3 → R
2 and T : R2 → R

3 be defined by

S





x1
x2
x3



 =

[

2x1 − x3

x1 + x2 + x3

]

and T

[

x1
x2

]

=





x1 + 1
x2 − 1
x1 + x2



 .
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(a) Give both S ◦ T and T ◦ S in the same sort of way that S and T are given above.
Combine like terms in each component, where possible.

(b) Write statements of the the form S ◦ T : Rm → R
n for each composition, with the correct

values of m and n.

3. Let S : R2 → R
2 and T : R2 → R

3 be defined by

S





x1
x2
x3



 =







x2

x3

x1






and T

[

x1
x2

]

=





x1 + 1
x2 − 1
x1 + x2



 .

Only one of S ◦ T and T ◦ S is possible. Give it in the same sort of way that S and T are
given above, and write a statement of the form transformation : Rm → R

n, with the correct
values of m and n.

4. Consider the linear transformations S

[

x

y

]

=





x+ y

2x
−3y



 , T

[

x

y

]

=

[

5x− y

x+ 4y

]

.

(a) Since both of these are linear transformations, there are matrices [S] and [T ] representing
them. Give those two matrices.

(b) Give equations for either (or both) of the compositions S ◦ T and T ◦ S that exist.

(c) Give the matrix for either (or both) of the compositions that exist. Label it, with the notation
[S ◦ T ].

(d) Find either (or both) of [S][T ] and [T ][S] that exist.

(e) What did you notice in parts (c) and (d)? Answer this with a complete sentence.

5. Consider the three transformations

R





x1
x2
x3



 =

[

2x1 − x3

x1 + x2 + x3

]

, S





x1
x2
x3



 =

[

x1x2 + x3

x1

]

, T





x1
x2
x3



 =





x1 + x3
x2 + x3
x1 + x2





(a) Any time that we have three transformations, there are six potentially possible compositions
of them, with R ◦ S being the “first.” list the other five.

(b) Only some of the transformations that you listed are possible. Give each that is, in the same
way that you have been doing, or as is shown in Example 5.4(b) and (c). Be sure to simplify
where possible.

(c) Two of the transformations are linear, as is one of the compositions of them. Give the
matrices of the two that are linear and the matrix of their composition. Verify that Theorem
5.4.2 holds.
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5.5 Transformations and Homogeneous Coordinates

Performance Criteria:

5. (g) Find matrices that perform combinations of dilations, reflections, rota-
tions and translations in R

2 using homogenous coordinates.

We are now equipped to return to the applications of rotation and reflection matrices in the context of
linear transformations. We know from Example 5.2(a) that a transformation from R

2 to R
2 defined by

multiplication by a matrix is a linear transformation. One should be able to convince oneself geometrically
as well that rotations and reflections are linear.

If we wanted to perform a rotation T followed by a reflection S, this would be done by the
composition S ◦T , and we know from the previous section that the matrix of S ◦T is simply [S][T ].
Using formulas from Chapter 3 to get the matrices [S] and [T ], it is then fairly simple to come up
with a single matrix to perform the desired composition. Transformations like rotations and reflections
are quite useful in areas like robotics and computer graphics, and when using them we often wish to
compose several such transformations as just described.

In example 5.2(d) we saw that translations like

T

[

x1
x2

]

=

[

x1 + a

x2 + b

]

(1)

are not linear, so they do not have matrix representations. What we will find in this section is that if
we work in the two-dimensional plane z = 1 in R

3, a translation like (1) becomes a shear in R
3,

which IS linear. Before looking into how this is done, we first see a method for multiplying a matrix
times several vectors all at the same time.

⋄ Example 5.5(a): Let A =

[

3 −1
2 5

]

,
⇀

u1 =

[

1
4

]

,
⇀

u2 =

[

7
−2

]

,
⇀

u3 =

[

3
3

]

. Find each

of A
⇀

u1, A
⇀

u2, A
⇀

u3.

Solution: A
⇀

u1 =

[

−1
22

]

, A
⇀

u2 =

[

23
4

]

, A
⇀

u3 =

[

6
21

]

.

⋄ Example 5.5(b): Let A be as in the previous example, and let B =

[

1 7 3
4 −2 3

]

, the

matrix whose columns are
⇀

u1,
⇀

u2 and
⇀

u3 from Example 5.5(a). Compute AB.

Solution: AB =

[

3 −1
2 5

] [

1 7 3
4 −2 3

]

=

[

−1 23 6
22 4 21

]

.

We note in the above two examples that the columns of AB are simply the results of multiplying
each column of B individually by A. The reason that this is of interest to us is that we will wish to
perform a linear transformation, like a rotation, on a geometric object in R

2. Conceptually we would
then multiply every point (of which there are infinitely many) of the object by a rotation matrix. In
practice, if the object is a polygon all we have to do is transform each of the vertices of the polygon
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and connect the resulting vertices with line segments in order to transform the entire polygon. Let’s
demonstrate with an example. We will utilize the fact that the matrix

A =

[

0 −1
1 0

]

rotates all points in R
2 90 degrees counterclockwise around the origin.

⋄ Example 5.5(c): Find the triangle △P ′Q′R′ obtained by ro-
tating the triangle △PQR shown to the right counterclockwise
90 degrees around the origin.

3

5

P Q

R

Solution: We can represent the triangle △PQR by the matrix [PQR] =

[

2 4 4
1 1 2

]

.

From the above discussion we know we can create the new triangle △P ′Q′R′ by simply multi-
plying the matrix [PQR] representing △PQR by the rotation matrix A given above to get
a matrix [P ′Q′R′] whose columns are the points P ′, Q′ and R′ of the transformed triangle
△P ′Q′R′. We then simply plot the vertices P ′, Q′ and R′ and connect them in order to get
△P ′Q′R′.

[P ′Q′R′] = A [PQR] =

[

0 −1
1 0

] [

2 4 4
1 1 2

]

=

[

−1 −1 −2
2 4 4

]

(2)

On the grid to the right we see the original triangle
△PQR and the transformed triangle △P ′Q′R′ whose ver-
tices are given by the columns of the matrix [P ′Q′R′] ob-
tained by the multiplication (2) above.

5

5

P Q

R
P ′

Q′

R′

In Example 5.5(a) we found that if A =

[

3 −1
2 5

]

and
⇀

u1 =

[

1
4

]

, then A
⇀

u1 =

[

−1
22

]

.

Note how this result compares with the following example.

⋄ Example 5.5(d): Let C =





3 −1 0
2 5 0
0 0 1



,
⇀

w =





1
4
1



. Find the product C
⇀

w.

Solution: C
⇀

w=





3 −1 0
2 5 0
0 0 1









1
4
1



 =





−1
22
1
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Observe carefully how the matrix C was obtained from A by augmenting with a column of zeros
and then adding a row of two zeros and a one, and how

⇀

w was obtained from
⇀

u1 by adding a
third component of one. The result of C

⇀

w is then the result of A
⇀

u1, but also with an additional
component of one. We can thus do R

2 transformations, like rotations and reflections, in the plane
z = 1 in this manner.

Why would we want to do this? The following example will show that.

⋄ Example 5.5(e): What is the result when the matrix A =





1 0 a

0 1 b

0 0 1



 acts on the vector

⇀

xh=





x1
x2
1



 through multiplication?

Solution: A
⇀

xh =





1 0 a

0 1 b

0 0 1









x1
x2
1



 =





x1 + a

x2 + b

1





We say that
⇀

xh is the homogeneous coordinate vector in R
3 for the vector

⇀

x =

[

x1
x2

]

in

R
2, and we can see that the first two components of A

⇀

xh are the result of the translation

T

[

x1
x2

]

=

[

x1 + a

x2 + b

]

.

A translation is not linear in R
2, but it IS linear when performed as a shear in the plane z = 1 in

R
3. This allows us to do a translation with a homogenous matrix in R

3.

⋄ Example 5.5(f): Use a homogenous matrix to translate
⇀

x =

[

5
2

]

three units left an one

unit up.

Solution: In this case the homogeneous translation matrix is A =





1 0 −3
0 1 1
0 0 1



 and the

homogeneous form of
⇀

x is
⇀

xh =





5
2
1



. Multiplying them gives us

A
⇀

xh =





1 0 −3
0 1 1
0 0 1









5
2
1



 =





2
3
1



 ,

so the translation of
⇀

x is

[

2
3

]

.
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Now we’re finally ready to do something interesting! Consider the square
ABCD shown to the right, and suppose that we wish to rotate it 30
degrees counterclockwise about its center. We know how to obtain
a matrix that rotates objects 30 degrees counterclockwise around the
origin, but not around other points. The idea here is simple, though.
Let T be the translation that shifts the square so that its center is at
the origin, and let R30 be a rotation of 30 degrees counterclockwise
around the origin. If we first apply

the transformation T , then R30, then T−1 (to move the square back after rotating it), we will
accomplish what we want. We translate the square to the origin, rotate it there, then move the rotated
square back to the original location. This is the composition T−1 ◦ R30 ◦ T (remember that the
rightmost transformation acts first!), and from the previous section we know that the matrix of this
transformation is the product [T−1][R30][T ] of the individual transformation matrices. We will need
to recall the following from Chapter 3:

Rotation Matrix in R
2

For the matrix A =

[

cos θ − sin θ

sin θ cos θ

]

and any position vector
⇀

x in R
2,

the product A
⇀

x is the vector resulting when
⇀

x is rotated counterclockwise
around the origin by the angle θ.

⋄ Example 5.5(g): Create a homogenous matrix to rotate the square ABCD 30 degrees coun-
terclockwise around its center.

Solution: Note that the transformation T shifts every point three units to the left and two
units down, so T−1 must shift every point three units to the right and two units up. We can
determine the homogeneous matrices of these by using the form demonstrated in Example 5.5(e),
and the rotation matrix can be obtained using the formula above, but we need to augment with
a column of zeros and add the row 0 0 1. We thus have

[T ] =







1 0 −3

0 1 −2

0 0 1






, [T−1] =







1 0 3

0 1 2

0 0 1






, [R30] =







√
3
2 −1

2 0

1
2

√
3
2 0

0 0 1






.

The matrix that rotates the square 30 degrees counterclockwise around its center is then the
product [T−1][R30][T ], computed below:







1 0 3

0 1 2

0 0 1













√
3
2 −1

2 0

1
2

√
3
2 0

0 0 1













1 0 −3

0 1 −2

0 0 1






=







√
3
2 −1

2
8−3

√
3

2
1
2

√
3
2

1−2
√
3

2

0 0 1
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⋄ Example 5.5(h): Apply the matrix from Example 5.5(g) to the
square ABCD shown to the right to rotate it 30 degrees counter-
clockwise around its center.

Solution: We can represent the square ABCD with a homoge-
nous matrix, shown below and to the left. Each column gives the
coordinates of a vertex, with an extry component of one to repre-
sent the point in homogeneous coordinates. Converting the entries
of the transformation matrix from Example 5.5(g) to decimal form
gives the matrix to the right below.

[ABCD] =





2 4 4 2
3 3 1 1
1 1 1 1



 , [T−1 ◦R30 ◦ T ] =





0.87 −0.50 1.40
0.50 0.87 −1.23
0 0 1





To get the coordinates of the vertices of the new square A′B′C ′D′ we let our transformation act
on the original through the product [T−1 ◦R30 ◦ T ][ABCD] to get the homogeneous matrix of
the new square, shown below and to the left. The new square is graphed below and to the right,
and we can see that it is square ABCD rotated 30 degrees counterclockwise around its center.

[A′B′C ′D′] =





1.64 3.38 4.38 2.64
2.38 3.38 1.64 0.64
1 1 1 1





4

5

A′

B′

C′

D′

We end this section with a comment. Pretty much every calculation we have done all term boils
down to adding and multiplying. If one were to be writing code to do the things you’ve done in this
assignment, you would simply do it as a bunch of multiplications and additions, rather than doing it
with matrices. For example, to rotate the point (x, y) by an angle of θ around the origin we would
simply compute the new coordinates (w, z) by

w = x cos θ − y sin θ, z = x sin θ + y cos θ

The advantage of linear algebra for tasks like this is not computational, but conceptual. Without the
theory that we have developed, figuring out how to do transformations like the ones you will see in some
of the exercises would be far more difficult!
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Section 5.5 Exercises To Solutions

For these exercises we will use the following notation, which is not necessarily standard. Those of you
who encounter these ideas in a robotics course will see a standard notation that is somewhat more
complicated than we need now. Here is what we’ll use.

• Rθ will be a rotation of θ, with the rotation being copunterclockwise if θ is positive, and
clockwise if θ is negative.

• T(a,b) will be a translation by a units in the x-direction and b units in the y-direction.

• R(a,b) will be a reflection across the line through the origin and the point (a, b).

Note that we are using R for both rotations and reflections, but which it is in each case should be
clear from the subscripts.

1. For each of the following, give the 3 × 3 homogeneous matrix that would be used to perform
the given transformation on vectors/points in R

2 expressed in homogeneous coordinates. You
should not need a formula for the given reflections.

(a) R−90◦ (b) T(3,−5) (c) R(1,0)

(d) T(1,2) (e) R(1,−1) (f) Rπ/3

2. Use the notation described at the start of these xercises to describe each of the following trans-
formations as a composition of rotations, translations and reflections.

(a) A reflection across the line y = 3
2x followed by a rotation of 50 degrees counterclockwise

around the origin.

(b) A rotation of 50 degrees counterclockwise around the origin followed by a reflection across
the line y = 3

2x.

(c) A rotation of 25 degrees clockwise around the point (6,−2).

(d) A reflection across the line y = x− 3. (Hint: Translate so that the line goes through the
origin, reflect, translate back.)

3. (a) Find a homogenous matrix that will rotate all points in R
2 90◦ counterclockwise about

the point (2, 3), using homogeneous coordinates.

(b) Consider the triangle △PQR shown to the right below. Sketch what you think the result
△P ′Q′R′ of the rotation 90◦ counterclockwise about the point (2, 3) would look like.

(c) Use your answer to (a) and a homogenous coordinate
representation of the triangle △PQR to find the ro-
tated coordinates P ′, Q′ and R′.

(d) Plot the rotated points and draw the rotated triangle
△P ′Q′R′ on the grid to the right. If it doesn’t look
like what you predicted in (b), figure out which is wrong
and correct it.

5

5

P Q

R
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4. Suppose that we wish to reflect △PQR across the line through the origin and at an angle of
60◦ to the positive x-axis, as shown in the picture below and to the right. We already know how
to reflect across the x-axis, so we’ll take advantage of that fact. What we want to do is rotate
the line to the x-axis, reflect, then rotate back.

(a) Find the single matrix that does this by multiplying some
other matrices. Round the entries of the final matrix
to the nearest hundredth, or give them in exact form.

(b) Apply the matrix to the homogenous coordinates of P ,
Q and R to get vertices of a new triangle △P ′Q′R′.

(c) Draw △P ′Q′R′ on the graph to the right. If it doesn’t
look like the reflection of △PQR across the line, find
your error and correct it.

5

5

P Q

R

5. Use a method like that of the previous exercise to derive the following formula. You will need to
use the facts that the cosine of an angle of a right triangle is the adjacent side over the hypotemuse
and the sine of the angle is the opposite side over the hypotenuse.

Reflection Matrix in R
2

For the matrix C =









a2 − b2

a2 + b2
2ab

a2 + b2

2ab

a2 + b2
b2 − a2

a2 + b2









and any position vector
⇀

x in

R
2, the product C

⇀

x is the vector resulting when
⇀

x is reflected across the line
containing the origin and the point (a, b).

6. Find a single homogeneous matrix that will reflect
△PQR across the line through the point (0, 1) and at
an angle of 60◦ to the x-axis, shown on the graph to the
right. Test your result as you have been. Round the en-
tries of the matrix to the nearest hundredth, or give
them in exact form.

5

5

P Q

R
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5.6 An Introduction to Eigenvalues and Eigenvectors

Performance Criteria:

5. (h) Determine whether a given vector is an eigenvector for a matrix; if it is,
give the corresponding eigenvalue.

(i) Determine eigenvectors and corresponding eigenvalues for linear trans-
formations in R

2 or R
3 that are described geometrically.

Recall that the two main features of a vector in R
n are direction and magnitude. In general, when

we multiply a vector
⇀

x in R
n by an n×n matrix A, the result A

⇀

x is a new vector in R
n whose

direction and magnitude are different than those of
⇀

x. For every square matrix A there are some
vectors whose directions are not changed (other than perhaps having their directions reversed) when
multiplied by the matrix. That is, multiplying

⇀

x by A gives the same result as multiplying
⇀

x by
a scalar. It is very useful for certain applications to identify which vectors those are, and what the
corresponding scalar is. Let’s use the following example to get started:

⋄ Example 5.6(a): Multiply A =

[

−4 −6
3 5

]

times
⇀

u =

[

1
3

]

and
⇀

v =

[

2
−1

]

and

determine whether multiplication by A is the same as multiplying by a scalar in either case.

Solution:

A
⇀

u =

[

−4 −6
3 5

] [

1
3

]

=

[

−22
18

]

, A
⇀

v =

[

−4 −6
3 5

] [

2
−1

]

=

[

−2
1

]

For the first multiplication there appears to be nothing special going on. For the second multipli-
cation, the effect of multiplying

⇀

v by A is the same as simply multiplying
⇀

v by −1. Note
also that

[

−4 −6
3 5

] [

−6
3

]

=

[

6
−3

]

,

[

−4 −6
3 5

] [

8
−4

]

=

[

−8
4

]

It appears that if we multiply any scalar multiple of
⇀

v by A the same thing happens; the result
is simply the negative of the vector. That is, A

⇀

x = (−1)
⇀

x for every scalar multiple of
⇀

x.

We say that
⇀

v =

[

2
−1

]

and all of its scalar multiples are eigenvectors of A, with

corresponding eigenvalue −1. Here is the formal definition of an eigenvalue and eigenvector:

Definition 5.6.1: Eigenvalues and Eigenvectors

A scalar λ is called an eigenvalue of a matrix A if there is a nonzero vector
⇀

x such that
A

⇀

x= λ
⇀

x .

The vector
⇀

x is an eigenvector corresponding to the eigenvalue λ.

34



Make special note of this:

An eigenvector must be a nonzero vector, but zero IS allowed as an eigenvalue.

One comment is in order at this point. Suppose that
⇀

x has n components. Then λ
⇀

x does as well,
so A must have n rows. However, for the multiplication A

⇀

x to be possible, A must also have
n columns. For this reason, only square matrices have eigenvalues and eigenvectors. We now see how
to determine whether a vector is an eigenvector of a matrix.

⋄ Example 5.6(b): Determine whether either of
⇀

w1 =

[

4
−1

]

and
⇀

w2 =

[

−3
3

]

are eigen-

vectors for the matrix A =

[

−4 −6
3 5

]

of Example 5.6(a). If either is, give the corresponding

eigenvalue.

Solution: We see that

A
⇀

w1 =

[

−4 −6
3 5

] [

4
−1

]

=

[

−10
7

]

and A
⇀

w2 =

[

−4 −6
3 5

] [

−3
3

]

=

[

−6
6

]

⇀

w1 is not an eigenvector of A because there is no scalar λ such that A
⇀

w1 is equal to λ
⇀

w1.
⇀

w2 IS an eigenvector, with corresponding eigenvalue λ = 2, because A
⇀

w2 = 2
⇀

w2.

Note that for the 2× 2 matrix A of Examples 5.6(a) and (b) we have seen two eigenvalues now.
It turns out that those are the only two eigenvalues, which illustrates the following:

Theorem 5.6.2: The number of eigenvalues of an n× n matrix is at most n.

Do not let the use of the Greek letter lambda intimidate you - it is simply some scalar! It is tradition
to use λ to represent eigenvalues. Now suppose that

⇀

x is an eigenvector of an n × n matrix A,
with corresponding eigenvalue λ, and let c be any scalar. Then for the vector c

⇀

x we have

A(c
⇀

x) = c(A
⇀

x) = c(λ
⇀

x) = (cλ)
⇀

x = λ(c
⇀

x)

This shows that any scalar multiple of
⇀

x is also an eigenvector of A with the same eigenvalue λ.
We saw this in Example 5.6(a). The set of all scalar multiples of

⇀

x is of course a subspace of R
n,

and we call it the eigenspace corresponding to λ.
⇀

x, or any scalar multiple of it, is a basis for the
eigenspace. The two eigenspaces you have seen so far have dimension one, but an eigenspace can have
a higher dimension.

Definition 5.6.3: Eigenspace Corresponding to an Eigenvalue

For a given eigenvalue λj of an n×n matrix A, the eigenspace Ej corresponding
to λ is the set of all eigenvectors corresponding to λj . It is a subspace of R

n.
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So far we have been looking at eigenvectors and eigenvalues from a purely algebraic viewpoint, by
looking to see if the equation A

⇀

x= λ
⇀

x held for some vector
⇀

x and some scalar λ. It is useful to have
some geometric understanding of eigenvectors and eigenvalues as well. In the next two examples we
consider eigenvectors and eigenvalues of two linear transformations in R

2 from a geometric standpoint.
Although we have defined eigenvalues in terms of matrices, recall that any linear transformation T can
be represented by a matrix T , so it makes sense to talk about eigenvectors and eigenvalues of a
transformation, as long as it is linear. We simply substitute the equation T(

⇀

x) = λ
⇀

x, which tells us
that

⇀

x is an eigenvector if the action of T on it leaves its direction unchanged or opposite of what
it was (or, in the case of λ = 0, “shrinks it to the zero vector”).

⋄ Example 5.6(c): The transformation T that reflects very vector in R
2 over the line l with

equation y = 1
2x is a linear transformation. Determine the eigenvectors and corresponding

eigenvalues for this transformation.

⇀

x= T (
⇀

x)
⇀

u

T (
⇀

u)

⇀

v

T (
⇀

v)

l

x

y

Solution: We begin by observing that any vector that lies on l will
be unchanged by the reflection, so it will be an eigenvector, with
eigenvalue λ = 1. These vectors are all the scalar multiples of
⇀

x =

[

2
1

]

; see the picture to the right. A vector not on the

line,
⇀

u, is shown along with its reflection T (
⇀

u) as well. We
can see that its direction is changed, so it is not an eigenvector.
However, for any vector

⇀

v that is perpendicular to l we have
T (

⇀

v) = − ⇀

v. Therefore any such vector is an eigenvector with
eigenvalue λ = −1. Those vectors are all the scalar multiples of
⇀

x =

[

−1
2

]

.

⋄ Example 5.6(d): Let T be the transformation T that rotates every vector in R
2 by

thirty degrees counterclockwise; this is a linear transformation. Determine the eigenvectors and
corresponding eigenvalues for this transformation.

Solution: Because every vector in R
2 will be rotated by thirty degrees, the direction of every

vector will be altered, so there are no eigenvectors for this transformation.

Our conclusion in Example 5.6(d) is correct in one sense, but incorrect in another. Geometrically, in
a way that we can see, the conclusion is correct. Algebraically, the transformation has eigenvectors,
but their components are complex numbers, and the corresponding eigenvalues are complex numbers as
well. In this course we will consider only real eigenvectors and eigenvalues.

Section 5.6 Exercises To Solutions

1. Consider the matrix A =

[

1 1

−2 4

]

.

(a) Find A
⇀

x for each of the following vectors:

⇀

x1 =

[

3
6

]

,
⇀

x2 =

[

2
−1

]

,
⇀

x3 =

[

1
5

]

,
⇀

x4 =

[

−3
−3

]

,
⇀

x5 =

[

2
2

]
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(b) Give the vectors from part (a) that are eigenvectors and, for each, give the corresponding
eigenvalue.

(c) Give one of the eigenvalues that you have found. Then give the general form for any
eigenvector corresponding to that eigenvalue.

(d) Repeat part (c) for the other eigenvalue that you have found.

2. For each of the following a matrix is given, along with several vectors. Determine which of the
vectors are eigenvectors, and give the corresponding eigenvalue for each.

(a) A =

[

2 7
−1 −6

]

,
⇀

u1 =

[

1
2

]

,
⇀

u2 =

[

−1
1

]

,
⇀

u3 =

[

−7
1

]

,
⇀

u4 =

[

1
1

]

(b) A =

[

1 2
2 4

]

,
⇀

v1 =

[

1
2

]

,
⇀

v2 =

[

−1
1

]

,
⇀

v3 =

[

1
1

]

,
⇀

v4 =

[

2
−1

]

(c) A =





1 1 0
0 2 0
0 −1 4



 ,
⇀

w1 =





1
0
0



 ,
⇀

w2 =





0
0
1



 ,
⇀

w3 =





1
1
1



 ,
⇀

w4 =





2
2
1





(d) A =





1 −1 0
−1 2 −1
0 −1 1



 ,
⇀

u1=





1
0

−1



 ,
⇀

u2=





0
0
1



 ,
⇀

u3=





1
1
1



 ,
⇀

u4 =





1
−2
1



 ,
⇀

u5 =





2
2
1





3. Suppose that a matrix A has eigenvectors
⇀

x1 =





3
1

−1



 and
⇀

x2 =





1
0
2



 with

respective eigenvalues λ1 = 2 and λ2 = −1. Which of the following are also eigenvectors, and
what are their corresponding eigenvalues?

⇀

v1 =





−6
0

−12



 ,
⇀

v2 =





2
0
1



 ,
⇀

v3 =





6
2

−2



 ,
⇀

v4 =







−3
2

−1
2
1
2






,

⇀

v5 =





2
0
4





4. The previous exercise is based on the idea that if
⇀

x is an eigenvector of A, then any scalar
multiple of

⇀

x is also an eigenvector, with the same eigenvalue. This exercise will show that there
can be linearly independent eigenvectors that share the same eigenvalue. Determine which of the
vectors below are eigenvectors for the matrix

A =





3 2 4
2 0 2
4 2 3



 .

For those that are, give the corresponding eigenvalue.

⇀

u1 =





1
0

−2



 ,
⇀

u2 =





1
−2
0



 ,
⇀

u3 =





1
2

−1



 ,
⇀

u4 =





0
−2
1



 ,
⇀

u5 =





2
1
2
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5. For each transformation described geometrically, give as many independent eigenvectors, and their
corresponding eigenvalues, as you can. Keep in mind that any vectors that become the zero vector
under the transformation, with zero as an eigenvalue.

(a) The transformation that reflects every vector in R
2 across the y-axis.

(b) The transformation that projects every vector in R
2 onto the y-axis.

(c) The transformation that projects every vector in R
2 onto the line y = 3x.

(d) The transformation that reflects every vector in R
3 across the yz-plane.

(e) The transformation that rotates every vector in R
3 90 degrees around the z-axis.

(f) The transformation that projects every vector in R
3 onto the xz-plane.

(g) The transformation that reflects every vector in R
3 across the plane with equation z = −y.

(Hint: Sketch a picture of the graph of this equation in the yz-plane.)
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5.7 Finding Eigenvalues and Eigenvectors

Performance Criteria:

5. (j) Find the characteristic polynomial for a 2× 2 or 3× 3 matrix. Use it
to find the eigenvalues of the matrix.

(k) Give the eigenspace Ej corresponding to an eigenvalue λj of a matrix.

(l) Determine the principal stresses and the orientation of the principal axes
for a two-dimensional stress element.

So where are we now? We know what eigenvectors, eigenvalues and eigenspaces are, and we know
how to determine whether a vector is an eigenvector of a matrix. There are two big questions at this
point:

• Why do we care about eigenvalues and eigenvectors?

• If we are just given a square matrix A, how do we find its eigenvalues and eigenvectors?

We will not see the answer to the first question until the end of this section. First we’ll address the
second question.

Finding Eigenvalues

We begin by rearranging the eigenvalue/eigenvector equation A
⇀

x = λ
⇀

x a little. First, we can
subtract λ

⇀

x from both sides to get
A

⇀

x −λ
⇀

x =
⇀

0 .

Note that the right side of this equation must be the zero vector, because both A
⇀

x and λ
⇀

x are
vectors. At this point we want to factor

⇀

x out of the left side, but if we do so carelessly we will get a
factor of A−λ, which makes no sense because A is a matrix and λ is a scalar! Note, however, that
we can replace

⇀

x with I
⇀

x, thus we can replace λ
⇀

x with (λI)
⇀

x, allowing us to factor
⇀

x out:

A
⇀

x −λ
⇀

x =
⇀

0

A
⇀

x − (λI)
⇀

x =
⇀

0

(A− λI)
⇀

x =
⇀

0

Now A− λI is just a matrix - let’s call it B for now. Any nonzero (by definition) vector
⇀

x that is a

solution to B
⇀

x =
⇀

0 is an eigenvector for A. Clearly the zero vector is a solution to B
⇀

x =
⇀

0, and
if B is invertible that will be the only solution. But since eigenvectors are nonzero vectors, A will
have eigenvectors only if B is not invertible. Recall that one test for invertibility of a matrix is whether
its determinant is nonzero. For B to not be invertible, then, its determinant must be zero. But B is
A − λI, so we want to find values of λ for which det(A − λI) = 0. (Note that the determinant
of a matrix is a scalar, so the zero here is just the scalar zero.) We introduce a bit of special language
that we use to discuss what is happening here:

Definition 5.7.1: Characteristic Polynomial and Equation

Taking λ to be an unknown, det(A−λI) is a polynomial called the characteristic
polynomial of A. The equation det(A − λI) = 0 is called the characteristic
equation for A, and its solutions are the eigenvalues of A.
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Before looking at a specific example, you would probably find it useful to go back and look at
Examples 3.8(a), (b) and (c), and to recall the following.

Determinant of a 2× 2 Matrix

The determinant of the matrix

[

a b

c d

]

is det(A) = ad− bc.

Determinant of a 3× 3 Matrix

To find the determinant of a 3× 3 matrix,

• Augment the matrix with its first two columns.

• Find the product down each of the three complete “downward diagonals”
of the augmented matrix, and the product up each of the three “upward
diagonals.”

• Add the products from the downward diagonals and subtract each of the
products from the upward diagonals. The result is the determinant.

Now we’re ready to look at a specific example of how to find the eigenvalues of a matrix.

⋄ Example 5.7(a): Find the eigenvalues of the matrix A =

[

−4 −6
3 5

]

.

Solution: We need to find the characteristic polynomial det(A− λI), then set it equal to zero
and solve.

A− λI =

[

−4 −6
3 5

]

− λ

[

1 0
0 1

]

=

[

−4 −6
3 5

]

−
[

λ 0
0 λ

]

=

[

−4− λ −6
3 5− λ

]

det(A− λI) = (−4− λ)(5− λ)− (3)(−6)) = (−20− λ+ λ2) + 18 = λ2 − λ− 2

We now factor this and set it equal to zero to find the eigenvalues:

λ2 − λ− 2 = (λ− 2)(λ+ 1) = 0 =⇒ λ = 2,−1

We use subscripts to distinguish the different eigenvalues: λ1 = 2, λ2 = −1.

Finding Eigenvectors

We now need to find the eigenvectors or, more generally, the eigenspaces, corresponding to each
eigenvalue. We defined eigenspaces in the previous section, but here we will give a slightly different (but
equivalent) definition.
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Definition 5.7.2: Eigenspace Corresponding to an Eigenvalue

For a given eigenvalue λj of an n×n matrix A, the eigenspace Ej corresponding
to λj is the set of all solutions to the equation

(A− λjI)
⇀

x =
⇀

0 .

It is a subspace of R
n.

Note that we indicate the correspondence of an eigenspace with an eigenvalue by subscripting them
with the same number.

⋄ Example 5.7(b): Find the eigenspace E1 of the matrix A =

[

−4 −6
3 5

]

corresponding to

the eigenvalue λ1 = 2.

Solution: For λ1 = 2 we have A− λI =

[

−4 −6
3 5

]

−
[

2 0
0 2

]

=

[

−6 −6
3 3

]

The augmented matrix of the system (A−λI)
⇀

x =
⇀

0 is then

[

−6 −6 0
3 3 0

]

, which reduces

to

[

1 1 0
0 0 0

]

. The top row represents the equation x1 + x2 = 0 so any values of x1 and

x2 that make this true will give us an eigenvector so, for example, we can take
⇀

x to be

[

−1
1

]

.

The eigenspace corresponding to λ1 = 2 can then be described by either of

E1 =

{

t

[

−1
1

]}

or E1 = span

([

−1
1

])

It would be beneficial for the reader to repeat the above process for the second eigenvalue λ2 = −1 and
verify that

E2 =

{

t

[

−2
1

]}

.

When first seen, the whole process for finding eigenvalues and eigenvectors can be a bit bewildering!
Here is a summary of the process:

Finding Eigenvalues and Bases for Eigenspaces

The following procedure will give the eigenvalues and corresponding eigenspaces for
a square matrix A.

1) Find det(A− λI). This is the characteristic polynomial of A.

2) Set the characteristic polynomial equal to zero and solve for λ to get the
eigenvalues.

3) For a given eigenvalue λi, solve the system (A− λjI)
⇀

x =
⇀

0. The set of
solutions is the eigenspace corresponding to λj. The vector or vectors whose
linear combinations make up the eigenspace are a basis for the eigenspace.
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⋄ Example 5.7(c): Give the characteristic polynomial of the matrix

A =





1 −1 0
−1 2 −1
0 −1 1





and use it to determine the eigenvalues. Then, given that one of the eigenvalues is λ1 = 3, give
the corresponding eigenspace E1.

Solution: First we see that

A− λI =





1 −1 0
−1 2 −1
0 −1 1



− λ





1 0 0
0 1 0
0 0 1





=





1 −1 0
−1 2 −1
0 −1 1



−





λ 0 0
0 λ 0
0 0 λ





=





1− λ −1 0
−1 2− λ −1
0 −1 1− λ





The characteristic polynomial is

det(A− λI) = det









1− λ −1 0
−1 2− λ −1
0 −1 1− λ









= (1− λ)(2 − λ)(1− λ)− (1− λ)− (1− λ)

= (1− λ)(2 − λ)(1− λ)− 2(1 − λ).

Ordinarily we would just multiply everything out, combine like terms and solve by factoring using
algebra methods or a computational tool. In this case, however, we can factor (1 − λ) out of
both terms to get

det(A− λI) = (1− λ)[(2 − λ)(1− λ)− 2]

= (1− λ)[(2 − 3λ+ λ2)− 2]

= (1− λ)(λ2 − 3λ)

= λ(1− λ)(λ− 3).

This last expression is the characteristic polynomial, in factored form, and we can see that the
eigenvalues are 0, 1 and 3.

To find the eigenspace corresponding to λ1 = 3 we solve the characteristic equation
(A− λI)

⇀

x =
⇀

0 for λ = 3. First we compute

A− λI =





1 −1 0
−1 2 −1
0 −1 1



− 3





1 0 0
0 1 0
0 0 1





=





−2 −1 0
−1 −1 −1
0 −1 −2
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The augmented matrix for (A− λI)
⇀

x =
⇀

0 is shown below and to the left, and its row reduced
form is below and to the right.





−2 −1 0 0
−1 −1 −1 0
0 −1 −2 0





rref
=⇒





1 0 −1 0
0 1 2 0
0 0 0 0



 (1)

We see that x3 is a free variable. Letting x3 = t and solving x2+2x3 = 0 gives us x2 = −2t.
Solving x1 − x3 = 0 gives us x1 = t. The solution to (A − λI)

⇀

x =
⇀

0 is then the set of
vectors of the form





t

−2t
t



 = t





1
−2
1





and the eigenspace corresponding to λ1 = 3 is

E1 =







t





1
−2
1











.

We can vary the above process slightly as follows. After obtaining the row-reduced form (1) we get
the equation x2 + 2x3 = 0, and we can see that x2 = −2 and x3 = 1 is a solution. For that
choice of x3 the first equation x1 − x3 = 0 gives us that x1 = 1 as well. This gives us the single

eigenvector





1
−2
1



, and the corresponding eigenspace is all scalar multiples of that vector, as shown

above.

An Application - Principal Stress

Figure 5.7(a) below and to the left shows a cantilevered beam embedded in a wall at its right end.
There is a force acting downward on the left end of the beam, due to the weight of the beam and
perhaps a load applied to the end of the beam. The small square stress element shown on the side of
the beam toward us is an imaginary square extending back through to the far side of the beam. That
element is subject to stresses of tension (indicated by the little arrows) and compression, as well as
some shear stress. The element is blown up in Figure 5.7(b) and all of the stresses on it are shown.
σx and σy are normal stresses, and τxy and τyx are shear stresses. The fact that the element
is not rotating gives us that τxy = τyx.

Force

Figure 5.7(a)

y

x
σxσx

σy

σy

τxy

τxy

τyx

τyx

τxy = τyx

Figure 5.7(b)

yp

xp

σx

σx

σy

σy

θ

Figure 5.7(c)

We can rotate the stress element about its center and the stresses will all change as we do that.
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There is one angle of rotation we are particularly interested in. If we rotate by a particular angle θ all
of the stress will be normal, with no shear stresses. This is depicted in Figure 5.7(c) above and to the
right. The new axes xp and yp are called the principal axes. The two normal stresses for this
orientation of the stress element are called principal stresses, and one of them is the greatest stress
at the location of the stress element in the beam. The key to finding the principal stresses and their
directions is eigenvalues and eigenvectors! We begin by setting up a stress matrix:

[

σx τxy
τyx σy

]

,

keeping in mind that τxy = τyx. Stresses oriented in the directions of the arrows in Figure 5.7(b) are
taken to be positive, any oriented opposite of those arrows are considered to be negative. We then find
the eigenvalues and corresponding eigenvectors of the stress matrix. The eigenvalues give us the normal
stresses in the directions of their corresponding eigenvectors. If we reorient the stress element to have
the principal stresses as its normal stresses there will be no shear stresses. Let’s see how this happens
in practice.

⋄ Example 5.7(d): The normal and shear stresses on
a stress element are shown to the right. Determine the
principal stresses and the angle of rotation (from the
positive x-axis, as shown in Figure 5.7(c)). Sketch the
stress element and indicate the stresses when the normal
stresses are the principal stresses. Give values in decimal
form, rounded to the nearest tenth.

y

x
70
MPa

70
MPa

50 MPa

50 MPa

20
MPa

Solution: Accounting for the orientations of the stresses, the stress matrix is

[

−70 −20
−20 50

]

.

The characteristic polynomial is (−70 − λ)(50 − λ) − (−20)2 = λ2 + 20λ − 3900. Setting it
equal to zero and solving with the quadratic formula gives us λ = −73.2, 53.2. The augmented
matrices for the system (A− λI)

⇀

x =
⇀

0 for each of these eigenvalues are
[

3.2 −20 0
−20 126.2 0

]

and

[

−126.2 −20 0
−20 −3.2 0

]

.

These will not row-reduce to give a second row of zeros because of needing to round the eigen-
values, so we assume that they reduce to

[

3.2 −20 0
0 0 0

]

and

[

−126.2 −20 0
0 0 0

]

.

An eigenvector for λ1 = −73.2 is

[

20
3.2

]

and for λ = 53.2 we get the eigenvector

[

−20
126.2

]

.

We can verify that these vectors are essentially perpendic-
ular by taking their dot product and seeing that it is very
close to zero, and would be if we hadn’t rounded our eigen-
values. The angle of the first vector with the x-axis is

θ = tan−1 3.2

20
= 9.1◦. (Draw a sketch of the vector to

see how we get this.) The stress element reoriented along
the principal axes, along with the principal stresses, is shown
to the right.

y
p

x
p

73.2 MPa

73.2 MPa

53.2
MPa

53.2
MPa

9.1◦
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When analyzing beams we generally encounter stress elements like the one in Example 5.7(d), with
tension in one direction (the y- and yp-directions in this case) and compression in the other (here in the
x- and xp-directions). When analyzing a sheet structure we can see tension in both normal directions,
and something like soil underground can exhibit compression in both normal directions. Those cases
will arise in the exercises.

Section 5.7 Exercises To Solutions

1. Use the method of Example 5.7(b) to find the eigenspace of A =

[

−4 −6
3 5

]

corresponding

to λ2 = −1.

2. Find the eigenvalues and corresponding eigenspaces for each of the following matrices. Answers
are given in the back of the book, but check your answers yourself by multiplying the matrix times
each basis eigenvector to make sure the result is the same as multiplying the eigenvector by the
eigenvalue.

(a)

[

8 3
2 7

]

(b)

[

2 −1
−1 2

]

(c)

[

2 −4
−1 −1

]

3. For each of the following a matrix is given, and it’s action as a transformation on vectors/points
in R

2 is described. Find the eigenvectors and eigenspaces, and make sure that your results make
sense for the transformation described.

(a)

[

0 1
1 0

]

, which reflects vectors across the line y = x.

(b)

[

1
2 −1

2

−1
2

1
2

]

, which projects vectors onto the line y = −x.

(c)

[

−1 0
0 1

]

, which reflects vectors across the y-axis.

4. Follow a process like the last half of Example 5.7(c) to find the eigenspaces E2 and E3 of

A =





1 −1 0
−1 2 −1
0 −1 1





corresponding to the eigenvalues λ2 = 1 and λ3 = 0.

5. Consider the matrix A =





4 0 1
−2 1 0
−2 0 1



.

(a) Find characteristic polynomial by computing det(A− λI). As in Example 5.7(c), you will
initially have two terms that both have a factor of 1−λ in them. Do not expand (multiply
out) these terms - instead, factor the common factor of 1 − λ out of both, then combine
and simplify the rest, as done in that example.
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(b) Give the characteristic equation for matrix A, which is obtained by setting the characteristic
polynomial equal to zero. Remember that you are doing this because the equation A

⇀

x =
λ

⇀

x will only have solutions
⇀

x 6=⇀

0 if det(A− λI) = 0. Find the solutions (eigenvalues)
of the equation by factoring the part that is not already factored.

(c) One of your eigenvalues should be one; let’s refer to it as λ1. Find a basis for the eigenspace

E1 corresponding to λ = 1 by solving the equation (A− I)
⇀

x =
⇀

0. ((A− λI) becomes
(A− I) because λ1 = 1.) Conclude by giving the eigenspace E1 using correct notation.

(d) Give the eigenspaces corresponding to the other two eigenvalues. Make it clear which
eigenspace is associated with which eigenvalue.

(e) Check your answers by multiplying each eigenvector by the original matrix A to see if the
result is the same as multiplying the eigenvector by the corresponding eigenvalue. In other
words, if the eigenvector is

⇀

x, check to see that A
⇀

x = λ
⇀

x.

6. (a) For A =





1 2 1
6 −1 0

−1 −2 −1



, find characteristic polynomial. In this case you can’t

factor something out as in Example 5.7(c), so you must multiply everything out.

(b) Give the characteristic equation for matrix A, which is obtained by setting the characteristic
polynomial equal to zero. You should be able to solve it by first factoring −λ out, then
factoring the remaining quadratic. Do this and give the eigenvalues.

(c) Give the eigenspaces corresponding to the eigenvalues. Make it clear which eigenspace is
associated with which eigenvalue.

7. (a) Find characteristic polynomial for A =





−2 −4 2
−2 1 2
4 2 5



. You again can’t factor

something out, so just have multiply out (carefully!) and combine like terms.

(b) Use Wolfram Alpha or some other tool to factor the characteristic polynomial. (Just use
x instead of λ when doing this.) Set the result equal to zero (giving the characteristic
equation) and solve to get the eigenvalues.

(c) Give the eigenspaces corresponding to the eigenvalues, again making it clear which eigenspace
is associated with which eigenvalue.

8. (a) Computing det(A− λI) for A =





0 0 2
−3 1 6
0 0 −1



 will directly result in a factored

form of the characteristic polynomial of A. Give it.

(b) Give the eigenvalues.

(c) Find the eigenspaces corresponding to the eigenvalues by solving (A− λI)
⇀

x =
⇀

0 for each
eigenvalue. For one eigenvalue you will have two free variables, resulting in an eigenspace of
dimension two (with two independent basis eigenvectors).
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9. Find the eigenvalues and eigenspaces for A =





7 0 −3
−9 −2 3
18 0 −8



, using a tool if necessary

for factoring the characteristic polynomial. As with Exercise 7, there are only two eigenspaces,
and one of them has dimension two.

10. So far, every n × n matrix we have worked with has had n linearly independent eigenvectors,
perhaps with fewer eigenvalues (Exercises 7 and 8). The matrix

A =





1 1 0
0 2 0
0 −1 2





has only two eigenvalues and only two independent eigenvectors. Find the eigenvalues and eigen-
vectors.

11. For each of the following a stress element is given, along with its normal and shear stresses.
Determine the principal stresses and their eigenvectors. Then determine the angle between the
principal xp-axis and the original x-axis, and whether the angle is positive or negative, following
the standard convention that counterclockwise is positive and clockwise is negative. Sketch
the rotated stress element, showing the angle of rotation of the axes and the principal stresses,
indicating whether each is tension or compression by the direction of its arrow, as done in Example
5.7(d).

(a)

y

x
30
MPa

30
MPa

50 MPa

50 MPa

10
MPa

(b)

y

x
60
MPa

60
MPa

25 MPa

25 MPa

45
MPa

(c)

y

x
80
MPa

80
MPa

50 MPa

50 MPa

20
MPa

(d)

y

x
40
MPa

40
MPa

100 MPa

100 MPa

35
MPa
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5.8 Diagonalization of Matrices

Performance Criterion:

5. (m) Diagonalize a matrix; know the forms of the matrices P and D from
P−1AP = D.

We begin with an example involving the matrix A from Examples 5.5(a) and (b).

⋄ Example 5.8(a): For A =

[

−4 −6
3 5

]

and P =

[

−1 −2
1 1

]

, find the product P−1AP .

Solution: First we obtain P−1 =
1

(−1)(1) − (1)(−2)

[

1 2
−1 −1

]

=

[

1 2
−1 −1

]

. Then

P−1AP =

[

1 2
−1 −1

] [

−4 −6
3 5

] [

−1 −2
1 1

]

=

[

2 0
0 −1

]

We want to make note of a few things here:

• The columns of the matrix P are eigenvectors for A.

• The matrix D = P−1AP is a diagonal matrix.

• The diagonal entries of D are the eigenvalues of A, in the order of the corresponding eigenvectors
in P .

For a square matrix A, the process of creating such a matrix D in this manner is called diagonalization
of A. This cannot always be done, but often it can. (We will fret about exactly when it can be done
later.) The point of the rest of this section is to see a use or two of this idea.

Before getting to the key application of this section we will consider the following. Suppose that
we wish to find the kth power of a 2 × 2 matrix A with eigenvalues λ1 and λ2 and having
corresponding eigenvectors that are the columns of P . Then solving P−1AP = D for A gives
A = PDP−1 and

Ak = (PDP−1)k = (PDP−1)(PDP−1) · · · (PDP−1)

= PD(P−1P )D(P−1P ) · · · (P−1P )DP−1

= PDDD · · ·DP−1

= PDkP−1

= P

[

λ1 0
0 λ2

]k

P−1

= P

[

λk
1 0
0 λk

2

]

P−1

Therefore, once we have determined the eigenvalues and eigenvectors of A we can simply take each
eigenvector to the kth power, then put the results in a diagonal matrix and multiply once by P on the
left and P−1 on the right.
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⋄ Example 5.8(b): Diagonalize the matrix A =





3 12 −21
−1 −6 13
0 −2 6



.

Solution: First we find the eigenvalues by solving det(A− λI) = 0:

det





3− λ 12 −21
−1 −6− λ 13
0 −2 6− λ



 = (3− λ)(−6− λ)(6 − λ)− 42 + 26(3 − λ) + 12(6− λ)

= (−18 + 3λ+ λ2)(6− λ)− 42 + 78 − 26λ + 72 − 12λ

= −108 + 18λ+ 18λ− 3λ2 + 6λ2 − λ3 + 108 − 38λ

= −λ3 + 3λ2 − 2λ

= −λ(λ2 − 3λ+ 2)

= −λ(λ− 2)(λ− 1)

The eigenvalues of A are then λ = 0, 1, 2. We now find an eigenvector corresponding to
λ = 0 by solving the system (A− λI)

⇀

x= 0. The augmented matrix and its row-reduced form
are shown below:





3 12 −21 0
−1 −6 13 0
0 −2 6 0



 =⇒





1 0 5 0
0 1 −3 0
0 0 0 0



 =⇒
Let x3 = 1.
Then x2 = 3
and x1 = −5

The eigenspace corresponding to the eigenvalue λ = 0 is then the span of the vector
⇀

v1=
[−5, 3, 1]. For λ = 1 we have





2 12 −21 0
−1 −7 13 0
0 −2 5 0



 =⇒





1 0 9
2 0

0 1 −5
2 0

0 0 0 0



 =⇒
Let x3 = 2.
Then x2 = 5
and x1 = −9

The eigenspace corresponding to the eigenvalue λ = 1 is then the span of the vector
⇀

v2=
[−9, 5, 2] (obtained by multiplying the solution vector by two in order to get a vector with integer
components). Finally, for λ = 2 we have





1 12 −21 0
−1 −8 13 0
0 −2 4 0



 =⇒





1 0 3 0
0 1 −2 0
0 0 0 0



 =⇒
Let x3 = 1.
Then x2 = 2
and x1 = −3

so the eigenspace corresponding to the eigenvalue λ = 2 is then the span of the vector
⇀

v3=
[−3, 2, 1]. The diagonalization of A is then D = P−1AP , where

D =





0 0 0
0 1 0
0 0 2



 and P =





−5 −9 −3
3 5 2
1 2 1
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Section 5.8 Exercises To Solutions

1. Consider matrix again the matrix A =





4 0 1
−2 1 0
−2 0 1



 from Exercise 2 of Section 11.2.

(a) Let P be a matrix whose columns are eigenvectors for the matrix A. (The basis vectors
for each of the three eigenspaces will do.) Give P and P−1, using your calculator to find
P−1.

(b) Find P−1AP , using your calculator if you wish. The result should be a diagonal matrix
with the eigenvalues on its diagonal. If it isn’t, check your work from Exercise 4.

2. Now let B =





0 0 −2
1 2 1
1 0 3



.

(a) Find characteristic polynomial by computing det(B − λI). If you expand along the second
column you will obtain a characteristic polynomial that already has a factor of 2− λ.

(b) Give the characteristic equation (make sure it has an equal sign!) for matrix B. Find the
roots (eigenvalues) by factoring. Note that in this case one of the eigenvalues is repeated.
This is not a problem.

(c) Find and describe (as in Exercise 1(c)) the eigenspace corresponding to each eigenvalue. The
repeated eigenvalue will have TWO eigenvectors, so that particular eigenspace has dimension
two. State your results as sentences, and use set notation for the bases.

3. Repeat the process from Exercise 1 for the matrix B from Exercise 2.
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5.9 Solving Systems of Differential Equations

Performance Criteria:

5. (n) Write a system of linear differential equations in matrix-vector form.
Write the initial conditions in vector form.

(0) Solve a system of two linear differential equations; solve an initial value
problem for a system of two linear differential equations.

We now get to the centerpiece of this section. Recall that the solution to the initial value problem
x′(t) = kx(t), x(0) = C is x(t) = Cekt. Now let’s consider the system of two differential
equations

x′1 = x1 + 2x2

x′2 = 3x1 + 2x2,

where x1 and x2 are functions of t. Note that the two equations are coupled; the equation
containing the derivative x′1 contains the function x1 itself, but also contains x2. The same sort
of situation occurs with x′2. The key to solving this system is to uncouple the two equations, and
eigenvalues and eigenvectors will allow us to do that!

We will also add in the initial conditions x1(0) = 10, x2(0) = 5. If we let
⇀

x=

[

x1
x2

]

we can

rewrite the system of equations and initial conditions as follows:

[

x′1
x′2

]

=

[

1 2

3 2

] [

x1
x2

]

,

[

x1(0)
x2(0)

]

=

[

10
5

]

which can be condensed to
⇀

x
′
= A

⇀

x,
⇀

x (0) =

[

10
5

]

(1)

This is the matrix initial value problem that is completely analogous to x′(t) = kx(t), x(0) = C.

Before proceeding farther we note that the matrix A has eigenvectors

[

2
3

]

and

[

−1
1

]

with

corresponding eigenvalues λ = 4 and λ = −1. Thus, if P =

[

2 −1

3 1

]

we then have P−1AP =

D =

[

4 0

0 −1

]

and A = PDP−1.

We can substitute this last expression for A into the vector differential equation in (1) to get
⇀

x
′
= PDP−1 ⇀

x. If we now multiply both sides on the left by P−1 we get P−1 ⇀

x
′
= DP−1 ⇀

x. We now

let
⇀

y= P−1 ⇀

x; Since P−1 is simply a matrix of constants, we then have
⇀

y
′
= (P−1 ⇀

x)′ = P−1 ⇀

x
′
also.

Making these two substitutions into P−1 ⇀

x
′
= DP−1 ⇀

x gives us
⇀

y
′
= D

⇀

y. By the same substitution
we also have

⇀

y (0) = P−1 ⇀

x (0). We now have the new initial value problem

⇀

y
′
= D

⇀

y,
⇀

y (0) = P−1 ⇀

x (0). (3)

Here the vector
⇀

y is simply the unknown vector
⇀

y=

[

y1
y2

]

and
⇀

y (0) =

[

y1(0)
y2(0)

]

which can be

determined by
⇀

y (0) = P−1 ⇀

x (0). Because the coefficient matrix of the system in (3) is diagonal,
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the two differential equations can be uncoupled and solved to find
⇀

y. Now since
⇀

y= P−1 ⇀

x we also
have

⇀

x= P
⇀

y, so after we find
⇀

y we can find
⇀

x by simply multiplying
⇀

y by P .

So now it is time for you to make all of this happen!

Section 5.9 Exercises To Solutions

1. Write the system
⇀

y
′
= D

⇀

y in that form, then as two differential equations. Solve the differential
equations. There will be two arbitrary constants; distinguish them by letting one be C1 and the
other C2. solve the two equations to find y1(t) and y2(t).

2. Find P−1 and use it to find
⇀

y (0). Use y1(0) and y2(0) to find the constants in your two
differential equations.

3. Use
⇀

x= P
⇀

y to find x. Finish by giving the functions x1(t) and x2(t).

4. Check your final answer by doing the following. If your answer doesn’t check, go back and find
your error. I had to do that, so you might as well also!

(a) Make sure that x1(0) = 10 and x2(0) = 5.

(b) Put x1 and x2 into the equations (1) and make sure you get true statements.
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B Solutions to Exercises

B.5 Chapter 5 Solutions

Section 5.1 Solutions Back to 5.1 Exercises

1. (a) T (
⇀

u) =

[

−1
1

]

, T (
⇀

v) =

[

−6
9

]

(b) T (
⇀

u) =





0
3
1



 , T (
⇀

v) =





−1
−9
−2





(c) T (
⇀

v) =





0
2
0



 , T (
⇀

w) =





−1
2
7



 (d) T (
⇀

u) =









3
4
1
2









(e) T (
⇀

u) =





4
−1
2



 , T (
⇀

w) =





7
−5
6



 (f) T (
⇀

v) =













−9
12
−1
−5
1













2. (a) no matrix (b) A =





1 1
0 3

−1 0



 (c) A =





1 1 0
0 1 1
1 0 1





(d) A =









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0









(e) no matrix (f) A =













−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1
0 0 0 0 −1













3. (a) T : R2 → R
2, T

[

x1
x2

]

=

[

x1
−x2

]

(b) T : R2 → R
2, T

[

x1
x2

]

=

[

x2
−x1

]

(c) T : R2 → R
2, T

[

x1
x2

]

=

[

x1 + 3
x2 + 1

]

(d) T : R2 → R
2, T

[

x1
x2

]

=

[

−x2
−x1

]

(e) T : R2 → R
2, T

[

x1
x2

]

=

[

x1
0

]

(f) T : R3 → R
3, T





x1
x2
x3



 =





x1
−x2
x3





(g) T : R3 → R
3, T





x1
x2
x3



 =





−x2
x1
x3



 (h) T : R3 → R
3, T





x1
x2
x3



 =





−x3
x2
x1





(i) T : R3 → R
3, T





x1
x2
x3



 =





x1
0
x3



 (j) T : R3 → R
3, T





x1
x2
x3



 =





0
x2
0
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(k) T : R2 → R
3, T

[

x1
x2

]

=





x1
x2
2



 (l) T : R3 → R
3, T





x1
x2
x3



 =





x1
x2 − 1
x3 + 4





4. T

[

x1
x2

]

=





x1
x2
x2



 5. T : R3 → R
3, T





x1
x2
x3



 =





0
x2
0





Section 5.2 Solutions Back to 5.2 Exercises

1. (a) The transformation is linear.

(b) T

(

2

[

3
5

])

= T

[

6
10

]

=

[

16
60

]

and 2T

[

3
5

]

= 2

[

8
15

]

=

[

16
30

]

,

so T

(

2

[

3
5

])

6= 2T

[

3
5

]

and T is not linear

(c) T

(

−2

[

3
−5

])

= T

[

−6
10

]

=

[

6
10

]

and −2T

[

3
−5

]

= −2

[

3
5

]

=

[

−6
−10

]

so T

(

−2

[

3
−5

])

6= −2T

[

3
−5

]

and T is not linear.

(d) The transformation is linear.

2. (a) T (
⇀

u +
⇀

v) = T

([

u1
u2

]

+

[

v1
v2

])

= T

[

u1 + v1
u2 + v2

]

=





u1 + v1 + 2(u2 + v2)
3(u2 + v2)− 5(u1 + v1)

u1 + v1



 =





u1 + 2u2
3u2 − 5u1

u1



+





v1 + 2v2
3v2 − 5v1

v1



 = T

[

u1
u2

]

+ T

[

v1
v2

]

= T (
⇀

u) + T (
⇀

v)

(b) T (c
⇀

u) = T

(

c

[

u1
u2

])

= T

[

cu1
cu2

]

=





cu1 + 2(cu2)
3(cu2)− 5(cu1)

cu1



 =





c(u1 + 2u2)
c(3u2 − 5u1)

c(u1)



 = c





u1 + 2u2
3u2 − 5u1

u1



 = c T

[

u1
u2

]

= c T (
⇀

u)

3. (a) The transformation is linear:

(b) Not linear: T









1
2
3



+





4
5
6







 = T





5
7
9



 =

[

44
5

]

and T





1
2
3



+ T





4
5
6



 =

[

5
1

]

+

[

26
4

]

=

[

31
5

]

, so T









1
2
3



+





4
5
6







 6= T





1
2
3



+ T





4
5
6
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4. (a) The transformation is linear:

(b) Not linear. Note that T

([

0
0

])

=

[

1
−1

]

, which violates Theorem 5.2.2.

5. (a) T

[

−5
−2

]

=

[

−21
5

]

(b) T

[

−6
3

]

=

[

16
−19

]

(c) T





2
7

−1



 =

[

24
−14

]

(d) T





11
3

−5



 =





11
14
17





Section 5.3 Solutions Back to 5.3 Exercises

1. (a) [T ] =

[

2 0 −1
1 1 1

]

(b) [T ] =





1 0 1
0 1 1
1 1 0



 (c) [T ] =





1 2
−5 3
1 0





(d) [T ] =

[

0 1
1 1

]

(e) [T ] =

[

3 0
1 −1

]

Section 5.4 Solutions Back to 5.4 Exercises

1. (a) S ◦R : R2 → R
3, (S ◦R)

[

x1
x2

]

=





2x1x2 + x1 − x2
x1 − x2

x1 − x2 − 3x1x2





(b) T ◦ S : R2 → R
2, (T ◦ S)

[

x1
x2

]

=

[

x2 − 5
−x1 + 2x2 + 2

]

(c) R ◦ T : R3 → R
2, (R ◦ T )





x1
x2
x3



 =

[

x1x2 + x2x3 − 5x1 + 2x2 − 5x3 − 10
−x1 + x2 − x3 − 7

]

(d) S ◦ T : R3 → R
3, (S ◦ T )





x1
x2
x3



 =





x1 + 2x2 + x3 − 8
x1 + x3 + 2

x1 − 3x2 + x3 + 17





2. (a) (S ◦ T )
[

x1
x2

]

=

[

x1 − x2 + 2

2x1 + 2x2

]

, (T ◦ S)





x1
x2
x3



 =







2x1 − x3 + 1

x1 + x2 + x3 − 1

3x1 + x2







3. (S ◦ T )
[

x1
x2

]

=





x2 − 1
x1 + x2
x1 + 1



 , S ◦ T : R2 → R
3

4. (a) [S] =





1 1
2 0
0 −3



, [T ] =

[

5 −1
1 4

]
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(b) (S ◦ T )
[

x1
x2

]

= S

[

5x1 − x2

x1 + 4x2

]

=







6x1 + 3x2

10x1 − 2x2

−3x1 − 12x2







(c) [S ◦ T ] =





6 3
10 −2
−3 −12



 (d) [S][T ] =





6 3
10 −2
−3 −12





(e) [S ◦ T ] = [S][T ]

5. (a) R ◦ T , S ◦R, S ◦ T , T ◦R, T ◦ S

(b) (R◦T )





x1
x2
x3



 =

[

x1 − x2 + 2x3

2x1 + 2x2 + 2x3

]

, (S◦T )





x1
x2
x3



 =

[

x1x2 + x1x3 + x2x3 + x23 + x1 + x2

x1 + x3

]

(c) [R] =

[

2 0 −1

1 1 1

]

, [T ] =







1 0 1

0 1 1

1 1 0






, [R ◦ T ] =

[

1 −1 2

2 2 2

]

[R][T ] =

[

2 0 −1

1 1 1

]







1 0 1

0 1 1

1 1 0






=

[

1 −1 2

2 2 2

]

= [R ◦ T ]

Section 5.5 Solutions Back to 5.5 Exercises

1. (a) [R−90◦ ] =





0 1 0
−1 0 0
0 0 1



 (b) [T(3,−5)] =





1 0 3
0 1 −5
0 0 1





(c) [R(1,0)] =





1 0 0
0 −1 0
0 0 1



 (d) [T(1,2)] =





1 0 1
0 1 2
0 0 1





(e) [R(1,−1)] =





0 1 0
1 0 0
0 0 1



 (f) [Rπ/3] =







1
2 −

√
3
2 0

√
3
2

1
2 0

0 0 1







2. (a) R50◦ ◦R(2,3) (b) R(2,3) ◦R50◦

(c) T(6,−2) ◦R−25◦ ◦ T(−6,2) (d) T(0,−3) ◦R(1,1) ◦ T(0,3)

Section 5.6 Solutions Back to 5.6 Exercises

1. (a) A
⇀

x1 =

[

9
18

]

, A
⇀

x2 =

[

1
−8

]

, A
⇀

x3 =

[

6
18

]

, A
⇀

x4 =

[

−6
−6

]

, A
⇀

x5 =

[

4
4

]

(b)
⇀

x1 is an eigenvector with eigenvalue λ = 3,
⇀

x4 and
⇀

x5 are eigenvectors with eigenvalue
λ = 2.

(c) Every eigenvector corresponding to λ = 3 has the form t

[

1
2

]

.

(d) Every eigenvector corresponding to λ = 2 has the form t

[

1
1

]

.
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2. (a)
⇀

u2 is an eigenvector with eigenvalue λ = −5,
⇀

u3 is an eigenvector with eigenvalue λ = 1

(b)
⇀

v1 is an eigenvector with eigenvalue λ = 5,
⇀

v4 is an eigenvector with eigenvalue λ = 0

(c)
⇀

w1 is an eigenvector with eigenvalue λ = 1,
⇀

w2 is an eigenvector with eigenvalue λ = 4,
⇀

w4 is an eigenvector with eigenvalue λ = 2

(d)
⇀

u1 is an eigenvector with eigenvalue λ = 1,
⇀

u3 is an eigenvector with eigenvalue λ = 0,
⇀

u4 is an eigenvector with eigenvalue λ = 3

3.
⇀

v1 and
⇀

v5 are eigenvectors with eigenvalue λ = −1,
⇀

v3 and
⇀

v4 are eigenvectors with
eigenvalue λ = 2

4.
⇀

u2 and
⇀

u4 are independent eigenvectors with eigenvalue λ = −1,
⇀

u5 is an eigenvector with
eigenvalue λ = 8.

5. For each of the following, any scalar multiples of the given vectors are also eigenvectors with the
same respective eigenvalues.

(a)

[

1
0

]

is an eigenvector with eigenvalue λ = −1,

[

0
1

]

is an eigenvector with

eigenvalue λ = 1.

(b)

[

1
0

]

is an eigenvector with eigenvalue λ = 0,

[

0
1

]

is an eigenvector with

eigenvalue λ = 1.

(c)

[

3
−1

]

is an eigenvector with eigenvalue λ = 0,

[

1
3

]

is an eigenvector with

eigenvalue λ = 1.

(d)





1
0
0



 is an eigenvector with eigenvalue λ = −1, any vector in the yz-plane is an

eigenvector with with eigenvalue λ = 1. In particular,





0
1
0



 and





0
0
1



 are

independent eigenvectors with eigenvalues λ = 1.

(e)





0
0
1



 or any scalar multiple of it is an eigenvector with eigenvalue λ = 1. There

are no other eigenvectors independent of that one.

(f)





0
1
0



 is an eigenvector with eigenvalue λ = 0, any vector in the xz-plane is an

eigenvector with with eigenvalue λ = 1. In particular,





1
0
0



 and





0
0
1



 are

independent eigenvectors with eigenvalues λ = 1.

(g)





0
1
1



 is an eigenvector with eigenvalue λ = −1, any vector in the plane z = −y is

an eigenvector with with eigenvalue λ = 1. In particular,





1
0
0



 and





0
1

−1



 are

independent eigenvectors with eigenvalues λ = 1.
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Section 5.7 Solutions Back to 5.7 Exercises

1. E2 =

{

t

[

−2
1

]}

2. The basis eigenvector for any given eigenspace can be any scalar multiple of the vector given.

(a) λ1 = 1, E1 =

{

t

[

3
2

]}

, λ2 = 5, E2 =

{

t

[

1
−1

]}

(b) λ1 = 1, E1 =

{

t

[

1
1

]}

, λ2 = 3, E2 =

{

t

[

1
−1

]}

(c) λ1 = 3, E1 =

{

t

[

−4
1

]}

, λ2 = −2, E2 =

{

t

[

1
1

]}

3. The basis eigenvector for any given eigenspace can be any scalar multiple of the vector given.

(a) λ1 = 1, E1 =

{

t

[

1
1

]}

, λ2 = −1, E2 =

{

t

[

1
−1

]}

(b) λ1 = 1, E1 =

{

t

[

1
−1

]}

, λ2 = 0, E2 =

{

t

[

1
1

]}

(c) λ1 = 1, E1 =

{

t

[

0
1

]}

, λ2 = −1, E2 =

{

t

[

1
0

]}

4. E2 =







t





1
0

−1











and E3 =







t





1
1
1











5. (a) The characteristic polynomial is (1− λ)(λ2 − 5λ+ 6) or (1− λ)(λ− 2)(λ− 3)

(b) λ1 = 1, λ2 = 2, λ3 = 3

(c), (d) E1 =







t





0
1
0











, E2 =







t





−1
2
2











, E3 =







t





−1
1
1











6. (a) The characteristic polynomial is −λ3 − λ2 + 12λ

(b) The characteristic equation is −λ3−λ2 +12λ = 0, which can be factored to get −λ(λ+
4)(λ − 3) = 0, giving the eigenvalues λ1 = 0, λ2 = −4, λ3 = 3

(c) E1 =







t





1
6

−13











, E2 =







t





−1
2
1











, E3 =







t





2
3

−2











7. (a) The characteristic polynomial is −λ3 + 4λ2 + 27λ− 90

(b) The factored characteristic equation is −(λ− 3)(λ+5)(λ+6) = 0, giving the eigenvalues
λ1 = 3, λ2 = −5, λ3 = −6

(c) E1 =







t





2
−3
−1











, E2 =







t





2
−1
1











, E3 =







t





1
6

16
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8. (a) The characteristic polynomial is −λ(1− λ)2

(b) λ1 = 0, λ2 = 1

(c) E1 =







t





1
3
0











, E2 =







s





0
1
0



+ t





2
0
1











9. λ1 = 1, E1 =







t





1
−1
2











, λ2 = −2, E2 =







s





1
0
3



+ t





1
1
3











10. λ1 = 1, E1 =







t





1
1
0











, λ2 = 2, E2 =







t





0
0
1











11. See all rotated stress elements below the other answers.

(a) λ1 = 54.1,
⇀

x1=

[

40
24.1

]

, λ2 = 25.9,
⇀

x2=

[

−40
4.1

]

, θ = tan−1 24.1

40
= 31.1◦

(b) λ1 = −79.4,
⇀

x1=

[

45
−19.4

]

, λ2 = 44.4,
⇀

x2=

[

45
104.4

]

,

θ = tan−1 −19.4

45
= −23.3◦

(c) λ1 = 83.0,
⇀

x1=

[

20
−3.0

]

, λ2 = −53.0,
⇀

x2=

[

20
133.0

]

, θ = tan−1 −3.0

20
= −8.5◦

(d) λ1 = −116.1,
⇀

x1=

[

35
76.1

]

, λ2 = −23.9,
⇀

x2=

[

−35
16.1

]

, θ = tan−1 76.1

35
= 65.3◦

yp
xp

54.1 MPa

54.1 MPa

25.9
MPa

25.9
MPa

31.1◦

(a)

yp

xp

79.4 MPa

79.4 MPa

44.4
MPa

44.4
MPa

23.3◦

(b)

yp

xp

83.0 MPa

83.0 MPa

53.0
MPa

53.0
MPa

8.5◦

(c)

yp

xp

116.1
MPa

116.1
MPa

23.9 MPa

23.9 MPa

65.3◦

(d)
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