9 February 2017

1. To the right we see the vectors $\mathbf{u}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $R_{\theta} \mathbf{u}$, the result when a rotation of θ is applied to \mathbf{u}.
(a) What is $\left\|R_{\theta} \mathbf{u}\right\|$, the magnitude (length) of $R_{\theta} \mathbf{u}$?
(b) Determine the components
 of $R_{\theta} \mathbf{u}$.
(c) Suppose that R_{θ} is accomplished by the matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Apply the matrix to \mathbf{u} and set the result equal to your answer to (b) in order to determine some of the entries in the matrix.
(d) Apply the same process to the vector $\mathbf{v}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ to obtain the other entries in the matrix. Give the final matrix for R_{θ}.
2. The Graph A below has incidence matrix A. What do you think the incidence matrix B of Graph B is?

$$
A=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right]
$$

Graph B
3. Give Graph C represented by the matrix C below for the vertices shown to the right below.
$C=\left[\begin{array}{lllll}1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0\end{array}\right]$

Graph C
4. Give a 3×3 matrix of ones and zeros that could $N O T$ be an incidence matrix.
5. The darkened edges on the graph to the right are what we call a $\mathbf{3}$-path from v_{1} to v_{3}, because three edges are travelled in getting from v_{1} to v_{3}. That particular path is denoted by $v_{1} v_{4} v_{2} v_{3}$. Find all the 3 -paths you can from v_{1} to v_{3}. We are allowed to travel the same edge more than once.

Graph B
6. Find the number of 2-paths from v_{1} to v_{2}, and the number of 2-paths from v_{3} to itself.
7. For the incidence matrix B for Graph B , calculate B^{2} and look at the $(1,2)$ and $(3,3)$ entries. What do you notice?
8. How do you think we can determine the number of 3 -paths from v_{1} to v_{3}. Do that and see if it agrees with the number you found.
9. The graph to the right is called a directed graph or, by people "in the know" (like you), a digraph. What do you think its incidence matrix is? What characteristic of matrices for "regular" graphs is this matrix lacking?

