1. Find the eigenvalues and eigenvectors of the matrix $A=\left[\begin{array}{ll}3 & -1 \\ 4 & -2\end{array}\right]$.
2. Let P be the 2×2 matrix whose columns are the two eigenvectors. Find the inverse matrix P^{-1} using

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \Longrightarrow \quad A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]
$$

Leave the fraction $\frac{1}{a d-b c}$ out of the matrix.
3. Compute $D=P^{-1} A P$, not multiplying the fraction in until the very end. What kind of a matrix is the result? (The letter used for it is a hint!) What do you notice about its entries?
4. Now compute $P D P^{-1}$. Does the result surprise you?

