Put all work and answers on additional paper.

1. (a) Find the eigenvalues and corresponding eigenvectors of the matrix $A=\left[\begin{array}{ll}1 & 3 \\ 4 & 2\end{array}\right]$.
(b) Let P be the 2×2 matrix whose columns are the two eigenvectors. Find the inverse matrix P^{-1} using the formula $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \quad \Longrightarrow \quad A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}d & -b \\ -c & a\end{array}\right]$. Leave the fraction $\frac{1}{a d-b c}$ out of the matrix.
(c) Compute $D=P^{-1} A P$, not multiplying the fraction in until the very end. What kind of a matrix is the result? (The letter used for it is a hint!) What do you notice about its entries?
2. Repeat the process you carried out in the previous exercise for $B=\left[\begin{array}{rr}1 & -2 \\ 1 & 4\end{array}\right]$ to find the matrices P and D. This time you should not need to do a multiplication to find D !

In the above two exercises you started with a matrix A and found matrices P and D based on the eigenvectors and eigenvalues of A. For the next exercise (on the back) you will do the opposite: You will determine two eigenvectors and their corresponding eigenvalues to come up with the matrices P and D, from which you will compute A,
3. The goal of this exercise is to use eigenvectors and eigenvalues to find a matrix B that reflects all vectors across the line l in \mathbb{R}^{2} through the origin and the point $(3,2)$.
(a) Sketch the coordinate axes and the line.
(b) Give a vector \mathbf{u} on the line l and find $B \mathbf{u}$. (No, you don't know B yet, but you should know what $B \mathbf{u}$ is, based on understanding how reflections behave.) This indicates that \mathbf{u} is an eigenvector of B. What is the corresponding eigenvalue?
(c) Give a vector \mathbf{v} perpendicular to the line l and find $B \mathbf{v}$. This indicates that \mathbf{v} is an eigenvector of B. What is the corresponding eigenvalue?
(d) Give the matrices P and D. Find P^{-1}, and the compute B by $B=P D P^{-1}$.
(e) Plot the vector $\mathbf{w}=\left[\begin{array}{l}4 \\ 1\end{array}\right]$ accurately on your graph. Test your B by finding $B \mathbf{w}$ and making sure it looks the way you expected it to, knowing that B is a reflection across l.

