1. The point of this is to determine a projection matrix $P=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ that projects all vectors onto the line with equation $y=-\frac{3}{2} x$.
(a) Sketch the line accurately and then give a vector \mathbf{u} (label it as such on your paper!) that is on the line, and a vector \mathbf{v} that is perpendicular to the line.
(b) Tell what $P \mathbf{u}$ and $P \mathbf{v}$ should be, labeling each as such.
(c) Multiply $P=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ by your \mathbf{u} and set the result equal to what you said $P \mathbf{u}$ should be. This gives you two linear equations, one in a and b, the other in c and d. Give them both clearly.
(d) Repeat (b) for the vector \mathbf{v}.
(e) Give the system of two equations for a and b, and solve for b by hand, using the addition method and giving your answer in exact (fraction) form. This is just to convince me that you can do this!
(f) Solve the system of two equations for a and b with your calculator or an online tool that will give exact answers. (You can just go to Wolfram Alpha and type in the two equations, separated by a comma.)
(g) Give the system of equations in c and d and its exact solution, again using technology to find it.
(h) Give the matrix P and test it by letting it act on a few vectors, using the UCSMP Polygon Plotter that you used in class on Monday. If it doesn't work as advertised, find and correct your error!
(i) Challenge: Note that the line $y=-\frac{3}{2} x$ goes through the origin and the point $(-2,3)$. Look for patterns in your matrix P involving those two numbers, and then try giving a matrix P that will project vectors onto a line through the origin and an arbitrary point (a, b).

Math 341

Due at the start of class on Friday, February 3rd

1. The point of this is to determine a projection matrix $P=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ that projects all vectors onto the line with equation $y=-\frac{3}{2} x$.
(a) Sketch the line accurately and then give a vector \mathbf{u} (label it as such on your paper!) that is on the line, and a vector \mathbf{v} that is perpendicular to the line.
(b) Tell what $P \mathbf{u}$ and $P \mathbf{v}$ should be, labeling each as such.
(c) Multiply $P=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ by your \mathbf{u} and set the result equal to what you said $P \mathbf{u}$ should be. This gives you two linear equations, one in a and b, the other in c and d. Give them both clearly.
(d) Repeat (b) for the vector \mathbf{v}.
(e) Give the system of two equations for a and b, and solve for b by hand, using the addition method and giving your answer in exact (fraction) form. This is just to convince me that you can do this!
(f) Solve the system of two equations for a and b with your calculator or an online tool that will give exact answers. (You can just go to Wolfram Alpha and type in the two equations, separated by a comma.)
(g) Give the system of equations in c and d and its exact solution, again using technology to find it.
(h) Give the matrix P and test it by letting it act on a few vectors, using the UCSMP Polygon Plotter that you used in class on Monday. If it doesn't work as advertised, find and correct your error!
(i) Challenge: Note that the line $y=-\frac{3}{2} x$ goes through the origin and the point $(-2,3)$. Look for patterns in your matrix P involving those two numbers, and then try giving a matrix P that will project vectors onto a line through the origin and an arbitrary point (a, b).
