- 1. Use the graph to the right for the following.
 - (a) Give the incidence matrix for the graph; call it A. Find and give A^3 also.
 - (b) How many 3-paths from v_1 to v_4 do you expect? Give all of them by listing the vertices the path goes through, *in order and including* v_2 and v_4 , as done in class. (For example, then, a path from v_4 to v_3 , through v_2 would be denoted $v_4v_2v_3$.)

- (c) How many 3-paths are there from v_4 to v_1 ? What characteristic of the matrix A^3 relates your answer to the number of 3-paths from v_1 to v_4 ?
- 2. Use the directed graph to the right for the following.
 - (a) Give the incidence matrix; again, call it A.
 - (b) The number of n-paths from vertex i to vertex j is given by the (i, j) entry of A^n . How many 4-paths are there from v_1 to v_3 ? Show how you get your answer.
 - (c) Give all 4-paths from v_2 to v_3 .
 - (d) Give all 3-paths from v_3 to v_2 . Is it the same as the number from v_2 to v_3 ?

Some Trig Identities

You will find the following useful in understanding/answering the following exercise.

 $\sin^2 \theta + \cos^2 \theta = 1 \qquad \cos(-\theta) = \cos \theta \qquad \sin(-\theta) = -\sin \theta$ $\sin(2\theta) = 2\sin \theta \cos \theta \qquad \cos(2\theta) = \cos^2 \theta - \sin^2 \theta$

- 3. Consider the general rotation matrix $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$.
 - (a) Suppose that we were to apply A to a vector \mathbf{x} , then apply A again, to the result. Thinking only geometrically (don't do any calculations), give a single matrix B that should have the same effect.
 - (b) Find the matrix A^2 algebraically, by multiplying A by itself.
 - (c) Use some of the trigonometric facts above to continue your calculations from part (b) until you arrive at matrix B. This of course shows that that $B = A^2$.

There is another exercise on the back!

- 4. The point of this is to determine a reflection matrix $C = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ that reflects all vectors across the line with equation $y = \frac{3}{4}x$.
 - (a) Sketch the line accurately and then give a vector \mathbf{u} (label it as such on your paper!) that is on the line, and a vector \mathbf{v} that is perpendicular to the line.
 - (b) Tell what $C\mathbf{u}$ and $C\mathbf{v}$ should be, labeling each as such.
 - (c) Multiply $C = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ by your **u** and set the result equal to what you said C**u** should be. This gives you two linear equations, one in a and b, the other in c and d. Give them both clearly.
 - (d) Repeat (b) for the vector **v**.
 - (e) Give the system of two equations for a and b, and solve for a and b with your calculator or an online tool that will give exact answers. Give a and b in exact (fraction) form.
 - (f) Give the system of equations in c and d and its exact solution, again using technology to find it.
 - (g) Give the matrix C and test it by letting it act on a few vectors, using the UCSMP Polygon Plotter. If it doesn't work as advertised, find and correct your error!
 - (h) **Challenge:** Note that the line $y = -\frac{3}{2}x$ goes through the origin and the point (-2,3). Look for patterns in your matrix C involving those two numbers, and then try giving a matrix C that will reflect vectors across a line through the origin and an arbitrary point (a, b).