1. Use the graph to the right for the following.
(a) Give the incidence matrix for the graph; call it A. Find and give A^{3} also.
(b) How many 3-paths from v_{1} to v_{4} do you expect? Give all of them by listing the vertices the path goes through, in order and including v_{2} and v_{4}, as done in class. (For example, then, a path from v_{4} to v_{3}, through v_{2} would be denoted $v_{4} v_{2} v_{3}$.)

(c) How many 3-paths are there from v_{4} to v_{1} ? What characteristic of the matrix A^{3} relates your answer to the number of 3 -paths from v_{1} to v_{4} ?
2. Use the directed graph to the right for the following.
(a) Give the incidence matrix; again, call it A.
(b) The number of n-paths from vertex i to vertex j is given by the (i, j) entry of A^{n}. How many 4-paths are there from v_{1} to v_{3} ? Show how you get your answer.
(c) Give all 4-paths from v_{2} to v_{3}.
(d) Give all 3-paths from v_{3} to v_{2}. Is it the same as the number from v_{2} to
 v_{3} ?

Some Trig Identities

You will find the following useful in understanding/answering the following exercise.

$$
\begin{aligned}
& \sin ^{2} \theta+\cos ^{2} \theta=1 \quad \cos (-\theta)=\cos \theta \quad \sin (-\theta)=-\sin \theta \\
& \sin (2 \theta)=2 \sin \theta \cos \theta \quad \cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta
\end{aligned}
$$

3. Consider the general rotation matrix $A=\left[\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$.
(a) Suppose that we were to apply A to a vector \mathbf{x}, then apply A again, to the result. Thinking only geometrically (don't do any calculations), give a single matrix B that should have the same effect.
(b) Find the matrix A^{2} algebraically, by multiplying A by itself.
(c) Use some of the trigonometric facts above to continue your calculations from part (b) until you arrive at matrix B. This of course shows that that $B=A^{2}$.

There is another exercise on the back!
4. The point of this is to determine a reflection matrix $C=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ that reflects all vectors across the line with equation $y=\frac{3}{4} x$.
(a) Sketch the line accurately and then give a vector \mathbf{u} (label it as such on your paper!) that is on the line, and a vector \mathbf{v} that is perpendicular to the line.
(b) Tell what $C \mathbf{u}$ and $C \mathbf{v}$ should be, labeling each as such.
(c) Multiply $C=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ by your \mathbf{u} and set the result equal to what you said $C \mathbf{u}$ should be. This gives you two linear equations, one in a and b, the other in c and d. Give them both clearly.
(d) Repeat (b) for the vector \mathbf{v}.
(e) Give the system of two equations for a and b, and solve for a and b with your calculator or an online tool that will give exact answers. Give a and b in exact (fraction) form.
(f) Give the system of equations in c and d and its exact solution, again using technology to find it.
(g) Give the matrix C and test it by letting it act on a few vectors, using the UCSMP Polygon Plotter. If it doesn't work as advertised, find and correct your error!
(h) Challenge: Note that the line $y=-\frac{3}{2} x$ goes through the origin and the point $(-2,3)$. Look for patterns in your matrix C involving those two numbers, and then try giving a matrix C that will reflect vectors across a line through the origin and an arbitrary point (a, b).

