For this assignment you will be considering the sets

$$
S_{1}=\left\{\left[\begin{array}{r}
1 \\
-1 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right],\left[\begin{array}{r}
2 \\
-2 \\
1
\end{array}\right]\right\} \quad \text { and } \quad S_{2}=\left\{\left[\begin{array}{r}
1 \\
-1 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right],\left[\begin{array}{l}
3 \\
1 \\
5
\end{array}\right]\right\}
$$

For every question you will be asked if a vector \mathbf{v} (or of some other name) is in the span of \mathcal{S}_{1} or \mathcal{S}_{2}. In each case, answer either

- No, $\mathbf{v} \notin \operatorname{span}\left(\mathcal{S}_{k}\right)$ (where k is of course one or two) or
- Yes, $\mathbf{v} \in \operatorname{span}\left(\mathcal{S}_{k}\right)$, followed by a specific linear combination equalling \mathbf{v}.

For most of these you will need to solve a system of equations, but you should be able to do one of them without doing that. Make sure you see which one it is.

1. (a) Is $\mathbf{v}_{1}=\left[\begin{array}{r}6 \\ -10 \\ 7\end{array}\right] \quad$ in the span of $\mathcal{S}_{1} ? \quad$ (b) Is $\mathbf{v}_{2}=\left[\begin{array}{r}2 \\ -2 \\ 1\end{array}\right]$ in the span of \mathcal{S}_{1} ?
2. (a) Is $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ in the span of \mathcal{S}_{2} ?
(b) Is $\mathbf{u}_{2}=\left[\begin{array}{r}0 \\ 4 \\ -1\end{array}\right] \quad$ in the span of \mathcal{S}_{2} ?

Math 341 Assignment 7, Winter 2017 Due at the start of class on Friday, February 17th
For this assignment you will be considering the sets

$$
S_{1}=\left\{\left[\begin{array}{r}
1 \\
-1 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right],\left[\begin{array}{r}
2 \\
-2 \\
1
\end{array}\right]\right\} \quad \text { and } \quad S_{2}=\left\{\left[\begin{array}{r}
1 \\
-1 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right],\left[\begin{array}{l}
3 \\
1 \\
5
\end{array}\right]\right\}
$$

For every question you will be asked if a vector \mathbf{v} (or of some other name) is in the span of \mathcal{S}_{1} or \mathcal{S}_{2}. In each case, answer either

- No, $\mathbf{v} \notin \operatorname{span}\left(\mathcal{S}_{k}\right)$ (where k is of course one or two) or
- Yes, $\mathbf{v} \in \operatorname{span}\left(\mathcal{S}_{k}\right)$, followed by a specific linear combination equalling \mathbf{v}.

For most of these you will need to solve a system of equations, but you should be able to do one of them without doing that. Make sure you see which one it is.

1. (a) Is $\mathbf{v}_{1}=\left[\begin{array}{r}6 \\ -10 \\ 7\end{array}\right] \quad$ in the span of $\mathcal{S}_{1} ? \quad$ (b) Is $\mathbf{v}_{2}=\left[\begin{array}{r}2 \\ -2 \\ 1\end{array}\right] \quad$ in the span of \mathcal{S}_{1} ?
2. (a) Is $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ in the span of \mathcal{S}_{2} ?
(b) Is $\mathbf{u}_{2}=\left[\begin{array}{r}0 \\ 4 \\ -1\end{array}\right] \quad$ in the span of \mathcal{S}_{2} ?
