1. In the blank next to each set \mathcal{S}, tell whether the span of the set is
(a) a point
(b) a line
(c) a plane
(d) all of \mathbb{R}^{3}

$$
\begin{gathered}
\mathcal{S}_{1}=\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\} \\
\mathcal{S}_{3}=\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right\}
\end{gathered}
$$

$$
\mathcal{S}_{2}=\left\{\left[\begin{array}{r}
3 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{r}
-9 \\
3 \\
0
\end{array}\right]\right\}
$$

$$
\mathcal{S}_{4}=\left\{\left[\begin{array}{r}
-1 \\
3 \\
1
\end{array}\right],\left[\begin{array}{r}
5 \\
3 \\
13
\end{array}\right],\left[\begin{array}{r}
4 \\
-3 \\
5
\end{array}\right]\right\}
$$

2. Refer to the sets from the previous exercise. Give a vector meeting each of the following conditions in the appropriate space below. Write $D N E$ if no such vector exists.
(a) A vector in \mathbb{R}^{2} that $I S N O T$ in the span of \mathcal{S}_{1}.
(b) A vector in \mathbb{R}^{3} that $I S N O T$ in the span of \mathcal{S}_{2}.
(c) A non-zero vector in \mathbb{R}^{3} other than the one given that $I S$ in the span of \mathcal{S}_{3}.
(a)
(b)
(c)
3. Again referring to the sets from Exercise 1, list all that are linearly independent: \qquad
4. For the following, give some indication of how you get your answers.
(a) $\mathbf{u}=\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right], \mathbf{v}=\left[\begin{array}{r}-2 \\ 4 \\ 0\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{l}4 \\ 9 \\ 7\end{array}\right]$ are linearly (circle one) independent dependent If dependent, give \mathbf{v} as a linear combination of \mathbf{u} and $\mathbf{w}: \quad \mathbf{v}=$ \qquad u + \qquad w
(b) $\mathbf{u}=\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right], \mathbf{v}=\left[\begin{array}{l}3 \\ 3 \\ 4\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{l}4 \\ 9 \\ 7\end{array}\right]$ are linearly independent dependent

If dependent, give \mathbf{v} as a linear combination of \mathbf{u} and $\mathbf{w}: \quad \mathbf{v}=$ \qquad $\mathbf{u}+$ \qquad w
5. Let $A=\left[\begin{array}{rr}3 & -6 \\ -2 & 4\end{array}\right], \quad \mathbf{u}=\left[\begin{array}{l}2 \\ 1\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{r}-1 \\ 2\end{array}\right], \quad \mathbf{w}=\left[\begin{array}{r}15 \\ -10\end{array}\right]$.
(a) Circle all that are in the null space of A : $\mathbf{u} \quad \mathbf{v} \quad \mathbf{w}$
(b) For any that $A R E$ in $\operatorname{null}(A)$, give a computation that verifies that.
6. Let $A=\left[\begin{array}{rr}3 & -6 \\ -2 & 4\end{array}\right], \quad \mathbf{u}=\left[\begin{array}{l}2 \\ 1\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{r}-1 \\ 2\end{array}\right], \quad \mathbf{w}=\left[\begin{array}{r}15 \\ -10\end{array}\right]$.
(a) Circle all that are in the column space of A : $\mathbf{u} \quad \mathbf{v} \quad \mathbf{w}$
(b) For any that $A R E$ in $\operatorname{col}(A)$, give an equation that verifies that.
7. Consider the matrix $A=\left[\begin{array}{rrr}1 & 2 & 0 \\ -1 & -1 & 1 \\ 0 & 1 & 1\end{array}\right]$.
(a) Give a basis for the null space of A (b) Give a basis for the column space of A.
8. In the blank next to each set \mathcal{S}, give the appropriate Roman numeral (one per set), selected from the following.
I. The set $I S$ a basis for \mathbb{R}^{3}.
II. The set is not a basis for \mathbb{R}^{3} because it does not span \mathbb{R}^{3}.
III. The set is not a basis for \mathbb{R}^{3} because the vectors are not linearly independent.
IV. The set is not a basis for \mathbb{R}^{3} because it does not span $\mathbb{R}^{3} A N D$ the vectors are not linearly independent.

$$
\begin{gathered}
\mathcal{S}_{1}=\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right],\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right]\right\} \quad \mathcal{S}_{2}=\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]\right\}- \\
\mathcal{S}_{3}=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}-\quad \mathcal{S}_{4}=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\}-
\end{gathered}
$$

