For each of the following,

- rewrite the given function in the form $f(x)=A x^{a}+B x^{b}+C x^{c}+\cdots$
- determine the derivative
- re-write your final answer without negative or fractional exponents
- give your answer using correct notation that agrees with the name given to the original function

1. $y=5 x^{3}-7 x^{2}+x-3$
2. $f(x)=\frac{3}{2 x^{4}}$
3. $g(x)=\frac{3 x^{2}}{2}$
4. $f(x)=5 x^{2}+x-\frac{6}{x^{2}}$
5. $y=3 \sqrt{x}$
6. $h(x)=\frac{4}{\sqrt{x}}$
7. $y=\frac{4}{x}-3 \sqrt{x^{5}}$
8. $g(x)=7 \sqrt[3]{x}$
9. (a) Use your calculator or Desmos to graph $f(x)=\sqrt{x}$. Sketch the graph neatly for $0 \leq x \leq 10$.
(b) Draw in tangent lines at $x=1, x=4$ and $x=9$.
(c) As $x \rightarrow \infty$, what do the slopes of the tangent lines appear to do? Answer with a question and answer sentence.
(d) Give the derivative function $f^{\prime}(x)$ without negative or fractional exponents. Then make a table of values for x and $f^{\prime}(x)$ for $x=1,4,9,49,100$. Do your results appear to support your answer to part (c)?

Math 371
Assignment 17, Winter 2016
Due at the start of class $3 / 7$
For each of the following,

- rewrite the given function in the form $f(x)=A x^{a}+B x^{b}+C x^{c}+\cdots$
- determine the derivative
- re-write your final answer without negative or fractional exponents
- give your answer using correct notation that agrees with the name given to the original function

1. $y=5 x^{3}-7 x^{2}+x-3$
2. $f(x)=\frac{3}{2 x^{4}}$
3. $g(x)=\frac{3 x^{2}}{2}$
4. $f(x)=5 x^{2}+x-\frac{6}{x^{2}}$
5. $y=3 \sqrt{x}$
6. $h(x)=\frac{4}{\sqrt{x}}$
7. $y=\frac{4}{x}-3 \sqrt{x^{5}}$
8. $g(x)=7 \sqrt[3]{x}$
9. (a) Use your calculator or Desmos to graph $f(x)=\sqrt{x}$. Sketch the graph neatly for $0 \leq x \leq 10$.
(b) Draw in tangent lines at $x=1, x=4$ and $x=9$.
(c) As $x \rightarrow \infty$, what do the slopes of the tangent lines appear to do? Answer with a question and answer sentence.
(d) Give the derivative function $f^{\prime}(x)$ without negative or fractional exponents. Then make a table of values for x and $f^{\prime}(x)$ for $x=1,4,9,49,100$. Do your results appear to support your answer to part (c)?
