1. The shaded area below is the feasible region for Exercise 2 of Assignment 3. We will consider the region, along with the objective function $z=140 x+150 y$.
(a) Substitute the value $z=2100$ into the objective function and plot the resulting line by finding its intercepts using a straightedge to draw the line. Then write $z=2100$ along the line, which is called a level curve of the objective function.
(b) Draw and label the level curves for $z=4200$ and $z=6300$. (They are both lines as well.)
(c) How do the three lines you've drawn relate to each other?

2. Now consider the objective function $z=140 x+100 y$. Draw in the level curve lines for $z=1400, z=2800$ and $z=4200$ on the grid below.

3. Finally, for the objective function $z=120 x+150 y$. Draw in the level curve lines for $z=1800, z=3600$ and $z=5400$ on the grid below.

4. On another sheet of paper, solve each of the following systems of equations by row reduction, as we did in class on Thursday. Show all steps clearly. Any time that a row has a common factor, you will make things easier if you divide that row by the common factor.
$x-3 y+2 z=9$
$x-5 y+5 z=3$
(a) $-5 x+y+4 z=-17$
$2 x+2 y-3 z=3$
(b) $\quad 2 x-3 y+z=2$
$3 x+y-3 z=5$
5. Determine where the lines $x+y=100$ and $5 x+3 y=300$ cross by finding the $x$ and $y$ values that make both equations true. Do this by
(a) the substitution method
(b) the addition method
