Show clearly how all answers are obtained. When computing integrals, show all steps clearly.

For each of Exercises 1, 2, and 3, give

- (a) the principal root, in both exponential and rectangular form,
- (b) the n distinct roots in rectangular form,
- (c) all roots, in exponential form.

1.
$$(-16)^{1/4}$$
 2. $(-5i)^{1/3}$ 3. $\sqrt{\frac{1}{4}i}$

4. The *n*th roots of a complex number z all lie on a circle centered at the origin. In what situations is the radius of the circle greater than |z|?

Again we will denote by $C_r(z_0)$ be the circle of radius r centered at z_0 . You should know by now that such a circle is parameterized by

$$\gamma(\theta) = z_0 + re^{i\theta}, \quad 0 \le \theta \le 2\pi.$$

(Some of you did, or attempted, something far more complicated on your exam - make note of this method!)

- 5. Set up and simplify the integral $\frac{1}{2\pi i} \int_{C_r(z_0)} \frac{f(z)}{z-z_0} dz$. Remember that *i* is just a constant, so it can go in and out of the integral as you please, and your answer will contain the unknown function f.
- 6. Your answer to Exercise 5 should have been $\frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta$. Evaluate this integral when $z_0 = 1 + 2i$, r = 3 and $f(z) = z^2$, using Wolfram. If you would like an algebraic challenge, try it by hand as well.
- 7. Still letting $z_0 = 1 + 2i$ and $f(z) = z^2$, find $f(z_0)$.
- 8. Repeat Exercise 6 but for $g(z) = |z|^2$. (Recall again that $|z|^2 = z\overline{z}$.)
- 9. Repeat Exercise 7 but for $g(z) = |z|^2$.