Give all answers in exact form. Recall that we use the notation $C_r(z_0)$ for the circle of radius r centered at z_0 and traveled in the counterclockwise direction.

- 1. Calculate $\int_{C_2(0)} \frac{ze^z}{(2z-3)} dz$. Begin by factoring 2 out of the denominator and putting it into the numerator.
- 2. Use Cauchy's Integral Formula for the second derivative to calculate $\int_{C_2(0)} \frac{z^3 + 5z + 1}{(z-i)^3} dz$.
- 3. Consider the integral $\int_{C_3(0)} \frac{\sin z}{z^2(z-2i)} dz.$
 - (a) Sketch a graph of the contour around which we are integrating and indicate the locations of any "bad spots" of the integrand. Sketch in two new contours γ_1 and γ_2 such that the sum of the integrals around them is equal to the integral around the circle.
 - (b) Find the integral around each of the new contours γ_1 and γ_2 . For one of them you will need to use the Cauchy Integral Formula for the derivative, and you'll need the quotient rule.

(c) Give the value of
$$\int_{C_3(0)} \frac{\sin z}{z^2(z-2i)} dz$$
.

- 4. Consider the integral $\int_{C_3(2i)} \frac{\cos z}{z^3 + 9z} dz$.
 - (a) Factor the denominator of the integrand it factors into **three** parts. Don't forget that we are working in the complex numbers! That means that something like $x^2 + 4$ can be a difference of squares: $x^2 + 4 = x^2 (-4)$.
 - (b) Sketch a graph of the contour around which we are integrating and indicate the locations of any "bad spots" of the integrand. Sketch in two new contours γ_1 and γ_2 such that the sum of the integrals around them is equal to the integral around the circle.
 - (c) Find the integral around each of the new contours γ_1 and γ_2 . If you end up with *i* in a denominator, "rationalize the denominator" by multiplying numerator and denominator both by *i*.
 - (d) Give the value of $\int_{C_3(2i)} \frac{\cos z}{z^3 + 9z} dz$.
- 5. Look up the definitions of the hyperbolic sine and cosine somewhere. (You can find them on page 72 of Churchill and Brown or page 39 of the other book.)
 - (a) Give your answer to 4(d) in terms of the hyperbolic cosine.
 - (b) Give your answer to 3(c) in terms of the hyperbolic sine.