Math 411 Assignment 15 Due at 3 PM Wednesday, February 12th

The triangle inequality is $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$.

1. (a) Apply properties of the modulus, and the triangle inequality, to obtain a bound for $\cos z=\frac{\exp (i z)+\exp (-i z)}{2}$.
(b) Repeat for $\sin z=\frac{\exp (i z)-\exp (-i z)}{2 i}$.
(c) Do your results surprise you? Comment on them.
2. For this exercise, $\gamma=\gamma(\theta)=2 i+3 e^{i \theta}, 0 \leq \theta \leq 2 \pi$.
(a) Apply the triangle inequality to obtain a bound for $z^{2}+5 z-2$ on γ.
(b) Using your answer to (a), obtain a bound for $\frac{z^{2}+5 z-2}{z-2 i}$ on γ.
(c) Apply Proposition 4.7(d) to obtain a bound for $\int_{\gamma} \frac{z^{2}+5 z-2}{z-2 i} d z$.
(d) Use Cauchy's Integral Formula to evaluate $\int_{\gamma} \frac{z^{2}+5 z-2}{z-2 i} d z$.
(e) Find the modulus of your answer to (d). Is it less than the bound you obtained in (c)?
3. The object of this exercise is to find a value $R_{0}>0$ for which $\quad\left|\frac{1}{3 z^{2}-5 z}\right| \leq \frac{1}{100}$ for all points z on the curve $\gamma(\theta)=R_{0} e^{i \theta}, 0 \leq \theta \leq \pi$.
(a) In order for (1) to be true, what has to be true about $\left|3 z^{2}-5 z\right|$?
(b) Apply Lemma 5.6 to obtain the desired value of R_{0}.
(c) Find, in terms of ε, the value of R_{0} such that $\left|\frac{1}{3 z^{2}-5 z}\right| \leq \varepsilon$ for z on $\gamma(\theta)=R_{0} e^{i \theta}, 0 \leq \theta \leq \pi$.
4. (a) Give three branches of the cube root using set builder notation, with the first branch starting at $\operatorname{Arg} z=0$ (assuming the argument is increasing within each branch) and including that value of the argument.
(b) Using the third branch you gave in part (a), find $(-8 i)^{\frac{1}{3}}$. Give your answer in rectangular form.
(c) Indicate the three branches from (a) graphically, and put a dot at the root you found in (b).
(d) Give three different branches of the cube root, this time with the first branch starting at $\operatorname{Arg} z=-\pi$ but not including that value of the argument.
(e) Using the first branch you gave in part(d), find $(-8 i)^{\frac{1}{3}}$. Give your answer in rectangular form.
(f) Give the three branches of the cube root, with the first starting at and including $\operatorname{Arg} z=\theta$.
5. Evaluate $\int_{C_{3}(0)} \frac{z^{2}+1}{z^{4}+4 z^{2}} d z$.
