Math 411 ASSIGNMENT 17 Due at 3 PM Monday, February 17th

Geometric Series: $1 + z + z^2 + z^3 + z^4 + \dots = \frac{1}{1-z}$ if |z| < 1 and diverges otherwise.

Convergence of Power Series: For the power series $\sum_{k=0}^{\infty} c_k (z-z_0)^k$, compute

$$R = \lim_{k \to \infty} \left| \frac{c_k}{c_{k+1}} \right| \qquad \text{or} \qquad R = \frac{1}{\lim_{k \to \infty} |c_k|^{1/k}}$$

If R = 0 the series converges only at z_0 , and if $R = \infty$, the series converges for all complex numbers. If $0 < R < \infty$,

- the series converges for all z with $|z z_0| < R$ and diverges for all z with $|z z_0| > R$
- the series may or converge or diverge for each z with $|z z_0| = R$.

Some Common Power Series:

$$e^{z} = 1 + z + \frac{z^{2}}{2!} + \frac{z^{3}}{3!} + \cdots, \qquad \sin z = z - \frac{z^{3}}{3!} + \frac{z^{5}}{5!} - \cdots, \qquad \cos z = 1 - \frac{z^{2}}{2!} + \frac{z^{4}}{4!} - \cdots.$$

Exercises:

- 1. Do Exercises 24 (a) and (b) on page 87 of 4G. You've done this kind of thing already in this class...
- 2. Do Exercises 25 (b) and (c) on page 87 of 4G, using the power series given above.
- 3. Use whichever if the two methods above for determining radius of convergence that is most appropriate to do each of Exercises 30(a),(b),(g) and (e) on page 88 of 4G.
- 4. For each of Exercise 28(a) and (b) on page 88 of 4G,
 - (a) identify the functions f_k of Proposition 7.22
 - (b) find a sequence M_k of real numbers such that both $|f_k(z)| \le M_k$ for all z in the region given AND $\sum_{k=1}^{\infty} M_k < \infty$

(c) justify that
$$\sum_{k=1}^{\infty} M_k < \infty$$

5. In this exercise you will be working with the integral of $f(z) = \frac{e^{iz}}{z^2 + 1}$ over the closed contour shown to the right.

- (a) Find the value of the integral when R > 1.
- (b) Find a *number* bound for e^{iz} for z in the upper half plane $\operatorname{Im} z \ge 0$.
- (c) Find a bound (involving R) for $\frac{e^{iz}}{z^2+1}$ on the semi-circle portion of the contour.
- (d) Find a bound on $\int_{\gamma} \frac{e^{iz}}{z^2+1} dz$, where γ is the semi-circle portion of the contour.
- (e) Based on your answer to (d), what happens to the integral over the semi-circle as $R \to \infty$?
- (f) Because of your answer to (e), we can now conclude that $\lim_{R\to\infty} \int_{-R}^{R} \frac{e^{it}}{t^2+1} dt$ has the value you found in part (a). Apply Euler's formula to break this integral into a sum of two other integrals. Pull the *i* out of the second one.
- (g) What is the value of the integral of an odd real-valued function from -a to a? Is $\sin t$ even or odd? How about $\frac{1}{t^2+1}$? How about $\frac{\sin t}{t^2+1}$? Conclusion from all this?

(h) We now know that
$$\int_{-\infty}^{\infty} \frac{\cos t}{t^2 + 1} dt = \cdots$$

