Math 411 Assignment 18 Due at 3 PM Wednesday, February 19th

1. Consider the function $f(z)=\frac{3}{5-z}$. Show clearly how you do each of the following.
(a) Use Lemma 7.25 to find the power series representation of this function. Write out the first five terms followed by \cdots, then give the series in summation form.
(b) Find the radius of convergence of the power series.
(c) Assuming that we can find the derivative of a function by differentiating each term of its power series, find the derivative of f by differentiating the series you found in (a). Again, write out the first five terms of the series followed by \cdots, then try to write it in summation form, starting at $k=1$ for your index.
(d) Find the derivative of $f(z)$ as it was given at the beginning of this exercise. Use it to find $f^{\prime}(1)$.
(e) Use the first four terms of your your answer to (c) to approximate $f^{\prime}(1)$. If your answer isn't close to the exact value, then something is wrong somewhere!
(f) What is z_{0} for this series? Find the second, third and fourth derivatives of f from the first part of your answer to (d), using the notation $f^{(3)}$ and $f^{(4)}$ for the third and fourth derivatives. Then use $f^{(0)}=f$, $f^{(1)}=f^{\prime}, f^{(2)}=f^{\prime \prime}, f^{(3)}$ and $f^{(4)}$ to find $c_{0}, c_{1}, \ldots, c_{4}$ with the formula given in Corollary 8.5. They should, of course, agree with what you obtained in (a).
2. Consider the function $g(z)=z^{2}$, which is entire.
(a) Find a function $G(z)$ such that $G^{\prime}(z)=g(z)$. There are many such functions (do you see why?), but just give one specific one. This function G is called a primitive or antiderivative of g.
(b) Consider the curve $\gamma(\theta)=e^{i \theta}, 0 \leq \theta \leq \frac{\pi}{2}$. Use the corrected version of Theorem 5.13, which should have $F(\gamma(b))-F(\gamma(a))$ where it says $F(b)-F(a)$, to compute $\int_{\gamma} g(z) d z$, showing clearly how you do it. If you have your things well enough organized to do so, check your answer with what you got for Exercise 3 of Assignment 9, which was the same integral and contour.
3. In class we discussed the fact that the sequence $\left(f_{n}\right)$ of real-valued functions $f_{n}(x)=x^{n}, 0 \leq x \leq 1$, converges pointwise to the function

$$
f(x)=\left\{\begin{array}{lll}
0 & \text { if } & 0 \leq x<1 \\
1 & \text { if } & x=1
\end{array}\right.
$$

(a) Letting $\varepsilon=0.0001$ and $x=0.3$, find the minimum value of n for which $\left|f_{n}(x)-f(x)\right|<\varepsilon$.
(b) Letting $\varepsilon=0.0001$ and $x=0.8$, find the minimum value of n for which $\left|f_{n}(x)-f(x)\right|<\varepsilon$. How many times larger is this n than the one you obtained in part (a)?
(c) Letting $\varepsilon=0.001$ (note the change), find the minimum value of n for which $\left|f_{n}(x)-f(x)\right|<\varepsilon$ for all x in the interval $[0,0.95]$.

