- 1. Consider the function $f(z) = \frac{3}{5-z}$. Show clearly how you do each of the following.
 - (a) Use Lemma 7.25 to find the power series representation of this function. Write out the first five terms followed by \cdots , then give the series in summation form.
 - (b) Find the radius of convergence of the power series.
 - (c) Assuming that we can find the derivative of a function by differentiating each term of its power series, find the derivative of f by differentiating the series you found in (a). Again, write out the first five terms of the series followed by \cdots , then try to write it in summation form, starting at k = 1 for your index.
 - (d) Find the derivative of f(z) as it was given at the beginning of this exercise. Use it to find f'(1).
 - (e) Use the first four terms of your your answer to (c) to approximate f'(1). If your answer isn't close to the exact value, then something is wrong somewhere!
 - (f) What is z_0 for this series? Find the second, third and fourth derivatives of f from the first part of your answer to (d), using the notation $f^{(3)}$ and $f^{(4)}$ for the third and fourth derivatives. Then use $f^{(0)} = f$, $f^{(1)} = f'$, $f^{(2)} = f''$, $f^{(3)}$ and $f^{(4)}$ to find $c_0, c_1, ..., c_4$ with the formula given in Corollary 8.5. They should, of course, agree with what you obtained in (a).
- 2. Consider the function $g(z) = z^2$, which is entire.
 - (a) Find a function G(z) such that G'(z) = g(z). There are many such functions (do you see why?), but just give one *specific* one. This function G is called a **primitive** or **antiderivative** of g.
 - (b) Consider the curve γ(θ) = e^{iθ}, 0 ≤ θ ≤ π/2. Use the corrected version of Theorem 5.13, which should have F(γ(b)) F(γ(a)) where it says F(b) F(a), to compute ∫_γ g(z) dz, showing clearly how you do it. If you have your things well enough organized to do so, check your answer with what you got for Exercise 3 of Assignment 9, which was the same integral and contour.
- 3. In class we discussed the fact that the sequence (f_n) of real-valued functions $f_n(x) = x^n$, $0 \le x \le 1$, converges pointwise to the function

$$f(x) = \begin{cases} 0 & \text{if } 0 \le x < 1, \\ 1 & \text{if } x = 1 \end{cases}$$

- (a) Letting $\varepsilon = 0.0001$ and x = 0.3, find the minimum value of n for which $|f_n(x) f(x)| < \varepsilon$.
- (b) Letting $\varepsilon = 0.0001$ and x = 0.8, find the minimum value of n for which $|f_n(x) f(x)| < \varepsilon$. How many times larger is this n than the one you obtained in part (a)?
- (c) Letting $\varepsilon = 0.001$ (note the change), find the minimum value of n for which $|f_n(x) f(x)| < \varepsilon$ for all x in the interval [0, 0.95].