Math 411

- Find and classify the singularities of each function.
- Show work indicating how you get your answer for each, and indicate what definition or part of a theorem you are using.
- If a singularity is a pole, give the order.
- Hint for Exercise 1: $x^{3}+1=(x+1)\left(x^{2}-x+1\right)$
- Hint for Exercise 5: $e^{z}=1$ for infinitely many values of $z=x+i y$ (that's more hint).

1. $f(z)=\frac{z^{3}+1}{z^{2}(z+1)}$
2. $g(z)=\frac{e^{z}}{z^{3}}$
3. $h(z)=\frac{\cos z}{z^{2}+1}+4 z$
4. $f(z)=z^{3} e^{\frac{1}{z}}$
5. $g(z)=\frac{1}{e^{z}-1}$
6. $h(z)=\tan z$

Math 411 Assignment $20 \quad$ Due at 3 PM Friday, February 28th

- Find and classify the singularities of each function.
- Show work indicating how you get your answer for each, and indicate what definition or part of a theorem you are using.
- If a singularity is a pole, give the order.
- Hint for Exercise 1: $x^{3}+1=(x+1)\left(x^{2}-x+1\right)$
- Hint for Exercise 5: $e^{z}=1$ for infinitely many values of $z=x+i y$ (that's more hint).

1. $f(z)=\frac{z^{3}+1}{z^{2}(z+1)}$
2. $g(z)=\frac{e^{z}}{z^{3}}$
3. $h(z)=\frac{\cos z}{z^{2}+1}+4 z$
4. $f(z)=z^{3} e^{\frac{1}{z}}$
5. $g(z)=\frac{1}{e^{z}-1}$
6. $h(z)=\tan z$
