Show your work for each of the following in a neat, organized manner that fully justifies your results/conclusions.

1. Apply Theorem A. $6(3)$ to show that $f(z)=\frac{z^{3}+1}{z^{2}(z+1)}$ has a removable singularity at -1 .
2. Apply Theorem A. $7(3)$ to show that $h(z)=\frac{\cos z}{z^{2}+1}$ has a pole of order one at $-i$.
3. Show that $u(x, y)=\ln \left(x^{2}+y^{2}\right)$ is harmonic everywhere.
4. Determine the conditions that must hold on the constants a, b, c and d so that $u(x, y)=a x^{3}+b x^{2} y+c x y^{2}+d y^{3}$ is harmonic everywhere.
5. (Fun!) Give two functions f and g that have simple poles at $z=1$ and such that $f+g$ does not have a pole at $z=1$. In this case, what is going on with f and g at $z=1$?

Math 411 Assignment $22 \quad$ Due at 3 PM Thursday, March 6th

Show your work for each of the following in a neat, organized manner that fully justifies your results/conclusions.

1. Apply Theorem A. $6(3)$ to show that $f(z)=\frac{z^{3}+1}{z^{2}(z+1)}$ has a removable singularity at -1 .
2. Apply Theorem A. $7(3)$ to show that $h(z)=\frac{\cos z}{z^{2}+1}$ has a pole of order one at $-i$.
3. Show that $u(x, y)=\ln \left(x^{2}+y^{2}\right)$ is harmonic everywhere.
4. Determine the conditions that must hold on the constants a, b, c and d so that $u(x, y)=a x^{3}+b x^{2} y+c x y^{2}+d y^{3}$ is harmonic everywhere.
5. (Fun!) Give two functions f and g that have simple poles at $z=1$ and such that $f+g$ does not have a pole at $z=1$. In this case, what is going on with f and g at $z=1$?
