Math 411 Assignment 6 Due at 3 PM Wednesday, January 22nd

For part of this assignment you will be considering the following sets:

$$
S_{1}=\{z \in \mathbb{C}: 1<|z|<2\} \quad S_{2}=\{z \in \mathbb{C}: 0<|z|<2\} \quad S_{3}=\{z \in \mathbb{C}:|z|<2\}
$$

Here is some terminology that is commonly used for sets like these:

- A set of the form $\{z \in \mathbb{C}:|z|<R\}$ for some $R>0$ is called an open disk.
- A set of the form $\{z \in \mathbb{C}: r<|z|<R\}$, where r and R are non-negative real numbers, is called an annular region.
- When $r=0$, such a region is also called a punctured disk.

1. Let's use the notation $\operatorname{int} S$ for the interior of a set S. For which of the sets above is $\operatorname{int} \bar{S}=\operatorname{int} S$?
2. For which of the sets is $\overline{\operatorname{int} S}=\bar{S}$?
3. The sets S_{1}, S_{2} and S_{3} are all open sets, and they are all connected. For this exercise you might wish to consider sets that are not open, not connected, or both. Give a set S for which $\overline{\operatorname{int} S}=\bar{S}$.
4. I'm not sure whether there are any sets for which $\operatorname{int} \bar{S}=\operatorname{int} S$, but I haven't thought about it too hard or researched it. See if you can find such a set.
Here is some terminology you will now need:

- A continuous path from one point to another in the complex plane is called a contour.
- A contour that starts and ends in the same place is called a closed contour.
- A closed contour that only intersects itself at the starting and ending points is called a simple closed contour.
- A connected open set S is simply connected if every simple closed contour within S encloses only points of S. (A connected open set that is not simply connected is called multiply connected.)

5. Which of the sets S_{1}, S_{2} and S_{3} above are simply connected?
6. For which of the sets S_{1}, S_{2} and S_{3} is int \bar{S} simply connected?
7. One might be inclined to think that an accumulation point of a set is also a boundary point of the set.
(a) Give, with BOTH a picture and set builder notation, a set and a point z where the point is a boundary point but not an accumulation point.
(b) Give, with BOTH a picture and set builder notation, a set and a point z where the point is an accumulation point but not a boundary point. This exercise might be harder than (a) because the answer is simpler!
8. We will soon have need to generated specific contours. This is done by mapping a closed interval of the real line into the complex plane via a function. Several such functions are shown below. Sketch the contour described by each, indicating clearly the starting point and ending point.
(a) $z(t)=(2+t)+(1+3 t) i, \quad 0 \leq t \leq 1$
(b) $z(t)=(-4-2 t)+(3-7 t) i, \quad 0 \leq t \leq 1$
(c) $z(\theta)=3 e^{i \theta}, \quad 0 \leq \theta \leq \frac{\pi}{2}$
(d) $z(\theta)=(3+i)+2 e^{i \theta}, \quad 0 \leq \theta \leq 2 \pi$
9. We call something like $z(t)=(2+t)+(1+3 t) i, 0 \leq t \leq 1$ a parametrization of a contour. Observe your results from Exercises $8(\mathrm{a})$ and (b) carefully, then give a parametrization for a line segment from $z=3-i$ to $z=-2+5 i$.
10. Now, using your answers to $8(\mathrm{c})$ and (d) as a guide, give a parametrization for an upper half circle with center $z=4+3 i$ and radius five units, traveled counterclockwise.
11. (a) Using long division, divide 1 by $1-x$, continuing until you have six terms.
(b) Evaluate both $\frac{1}{1-x}$ and the first four terms of your answer to (a) for $x=-2,0, \frac{1}{2}, 1$. Organize your work and results in some way that is easy for "the reader" (me!) to understand. For which values of x does it appear that both things would give the same result if you used the "entire answer" to (a)?
