Trigonometric Functions of Special Angles

α , degrees	α , radians	$\sin \alpha$	$\cos \alpha$	$\tan lpha$
0°	0	0	1	0
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90°	$\frac{\pi}{2}$	1	0	undefined

Trigonometric Functions of an Acute Angle of a Right Triangle

 $\sin \alpha = \frac{\text{opp}}{\text{hyp}}$, $\cos \alpha = \frac{\text{adj}}{\text{hyp}}$, $\tan \alpha = \frac{\text{opp}}{\text{adj}}$,

Pythagorean Identity

$$\sin^2\alpha + \cos^2\alpha = 1$$

Sum and Difference Identities

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta \qquad \qquad \cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$$

 $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \qquad \qquad \sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$

Double Angle Identities

$$\sin 2x = 2\sin x \cos x$$

$$\cos 2x = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - 2\sin^2 x$$

Complex Numbers

A complex number z is a number of the form z = x + iy, where x and y are real numbers and $i^2 = -1$. The numbers x and y are called the **real part** and **imaginary part** of z, denoted by $\operatorname{Re} z$ and $\operatorname{Im} z$.

Complex Conjugates

The **complex conjugate** (or just conjugate) of a number z = x + iy is the number $\overline{z} = x - iy$. The following hold:

$$\overline{z_1 \pm z_2} = \overline{z}_1 \pm \overline{z}_2$$
 $\overline{z_1 z_2} = \overline{z}_1 \overline{z}_2$ $\left(\frac{z_1}{z_2}\right) = \frac{\overline{z}_1}{\overline{z}_2}$ $\operatorname{Re} z = \frac{z + \overline{z}}{2}$ $\operatorname{Im} z = \frac{z - \overline{z}}{2i}$

Modulus of a Complex Number

The modulus (or absolute value) of a number z = x + iy is the *real* number $|z| = \sqrt{x^2 + y^2}$. The following hold:

$$|z|^{2} = z\overline{z} \quad |z_{1}z_{2}| = |z_{1}||z_{2}| \quad |\overline{z}| = |z| \quad |z_{1} + z_{2}| \le |z_{1}| + |z_{2}|$$

$$\pm z_{1} \pm z_{2}| \le |z_{1}| + |z_{2}| \quad |\pm z_{1} \pm z_{2}| \ge ||z_{1}| - |z_{2}|| \quad \left|\sum_{k=1}^{n} z_{k}\right| \le \sum_{k=1}^{n} |z_{k}|$$

Argument of a Complex Number

For any complex number z = x + iy, there exist real numbers $r \ge 0$ and phi such that

 $z = x + iy = r(\cos\phi + i\sin\phi).$

This is sometimes called the **polar form** of z. The radian value ϕ is an **argument** of z, denoted by $\phi = \arg z$. Note the following:

- If ϕ is an argument of z, then so is $\phi + 2\pi n$ for any integer n.
- The value of ϕ (there is only one) such that $-\pi < \phi \le \pi$ is called the **principal** argument of z, denoted by Arg z.
- r = |z|

Euler's Formula and Exponential Form

- For any real number ϕ we define $e^{i\phi} = \cos \phi + i \sin \phi$. This is called **Euler's** formula.
- \bullet Using Euler's formula, for any complex number z~ there exists a real number $\phi~$ such that

 $z = r(\cos\phi + i\sin\phi) = re^{i\phi}.$

 $re^{i\phi}$ is called the **exponential form** of z.

Topology of the Complex Plane

In all of the following and throughout our course, it is understood that a set S under discussion is a subset of the complex plane.

- For $z_0 \in \mathbb{C}$ and $\varepsilon > 0$ the set $D_{\varepsilon}(z_0) = \{z \in \mathbb{C} : |z z_0| < \varepsilon$ is called an ε neighborhood of z_0 .
- A point z_0 is an **interior point** of S if there is an ε neighborhood of z_0 that contains only points of S.
- A point z_0 is an **exterior point** of S if there is an ε neighborhood of z_0 that contains no points of S.
- A point z_0 is a **boundary point** of S if every ε neighborhood of z_0 contains points of S and points not in S.
- A set S is **open** if every point of S is an interior point.
- A set S is **closed** if S contains all of its boundary points.
- The set of all boundary points of S is called the **boundary** of S, denoted by ∂S .
- The closure of a set S is the union of S with all its boundary. The closure of S is denoted \overline{S} or ∂S .
- An open set S is **connected** if any two points of S can be joined by a polygonal line segment.
- A point z_0 is called an **accumulation point** of a set S if every ε neighborhood of z_0 contains some point in S other than z_0 .
- A point $z_0 \in S$ is called an **isolated point** if there exists an ε neighborhood of z_0 containing no points of S other than z_0 .

Deleted Neighborhood

A deleted neighborhood of a point z_0 is a set of the form

$$\{z \in \mathbb{C} : 0 < |z - z_0| < \varepsilon\}$$

for some $\varepsilon > 0$. Given this, an accumulation point z_0 of a set S is a point such that every deleted neighborhood of z_0 contains at least one point in S.

Function

A function f is a rule that assigns to each $z \in G$, where G is some subset of \mathbb{C} , a unique complex number w. We indicate this by writing w = f(z).

- We sometimes say that z is **mapped to** w by f, and that f is a **mapping** from the complex numbers to the complex numbers.
- The number w is called the **image** of z.
- The set G is called the **domain** of f, and the **range** of f is the set

 $\{w \in \mathbb{C} : w = f(z) \text{ for some } z \in G\}.$

DEFINITION 2.1: Limit of a Function (Churchill and Brown)

Suppose a function f is defined at all points in a deleted neighborhood of a point z_0 . We say that the limit of f as z approaches z_0 is a number w_0 if, for every $\varepsilon > 0$, there exists a $\delta > 0$ such that

$$|f(z) - w_0| < \varepsilon$$
 whenever $0 < |z - z_0| < \delta$

We write $\lim_{z \to z_0} f(z) = w_0$.

DEFINITION 2.1: Limit of a Function (Beck, Marchesi, Pixton, Sabalka)

Suppose f is a complex function with domain G and z_0 is an accumulation point of G. Suppose there is a complex number w_0 such that for every $\varepsilon > 0$, we can find a $\delta > 0$ so that for all $z \in G$ satisfying $0 < |z - z_0| < \delta$ we have $|f(z) - w_0| < \varepsilon$. Then w_0 is **the limit of** f **as** z **approaches** z_0 , and we write $\lim_{t \to 0} f(z) = w_0$.

LEMMA 2.4: Limit Rules

Let f and g be complex functions and let c and z_0 be complex numbers. If $\lim_{z \to z_0} f(z) \text{ and } \lim_{z \to z_0} g(z) \text{ exist, then}$ (a) $\lim_{z \to z_0} [f(z) + g(z)] = \lim_{z \to z_0} f(z) + \lim_{z \to z_0} g(z)$ (a) $\lim_{z \to z_0} [c g(z)] = c \lim_{z \to z_0} g(z)$ (b) $\lim_{z \to z_0} [f(z) \cdot g(z)] = \left[\lim_{z \to z_0} f(z)\right] \cdot \left[\lim_{z \to z_0} g(z)\right]$ (c) If $\lim_{z \to z_0} g(z) \neq 0$, then $\lim_{z \to z_0} \left[\frac{f(z)}{g(z)}\right] = \frac{\lim_{z \to z_0} f(z)}{\lim_{z \to z_0} g(z)}$

DEFINITION 2.7: Derivative of a Function

Suppose $f: G \to \mathbb{C}$ is a complex function and z_0 is an interior point of G. The **derivative of** f **at** z_0 is defined as

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

when the limit exists. In this case we say that f is differentiable at z_0 .

Holomorphic and Entire Functions

We say that f is **holomorphic at** z_0 if it is differentiable at all points in some open disk centered at z_0 , and f is holomorphic on an open set G if it is differentiable at all points in G. A function that is differentiable at all points in \mathbb{C} is called **entire**.

LEMMA 2.11: Derivative Rules

Suppose that f and g are differentiable at $z \in \mathbb{C}$, $c \in \mathbb{C}$ and $n \in \mathbb{Z}$ and h is differentiable at g(z). Then (a) [cf(z)]' = c f'(z) and [f(z) + g(z)]' = f'(z) + g'(z) (linearity) (b) $[f(z) \cdot g(z)]' = f(z)g'(z) + g(z)f'(z)$ (product rule) (c) $\left[\frac{f(z)}{g(z)}\right]' = \frac{g(z)f'(z) - f(z)g'(z)}{[g(z)]^2}$ (quotient rule) (d) (c)' = 0, (z)' = 1 and $(z^n)' = nz^{n-1}$ (power rule) (e) $[h(g(z)]' = h'(g(z)) \cdot g'(z)$ (chain rule)

THEOREM 2.15: Cauchy-Riemann Equations

(a) Suppose that f(z) = f(x+iy) = u(x,y)+iv(x,y) is differentiable at $z_0 = x_0+iy_0$. Then

$$u_x(x_0, y_0) = v_y(x_0, y_0)$$
 and $u_y(x_0, y_0) = -v_x(u_0, y_0)$ (1)

(b) Suppose that f(z) = f(x + iy) = u(x, y) + iv(x, y) is a complex valued function such that the first partial derivatives of u and v with respect to both x and y exist in an open disk centered at z_0 and are continuous at z_0 . If (1) holds at z_0 , then f is differentiable at z_0 .

In both cases the derivative is given by $f'(z_0) = u_x(x_0, y_0) + iv_x(x_0, y_0)$

DEFINITION 3.15: The Complex Exponential Function The complex exponential function e^z or $\exp(z)$ is defined for z = x + iy by $\exp(z) = e^x(\cos y + i \sin y) = e^x e^{iy}$

LEMMA 3.16: Properties of the Complex Exponential Function For all $z, z_1, z_2 \in \mathbb{C}$, (a) $\exp(z_1) \exp(z_2) = \exp(z_1 + z_2)$ (b) $\exp(-z) = \frac{1}{\exp(z)}$ (c) $\exp(z + 2\pi i) = \exp(z)$ (d) $|\exp(z)| = \exp(\operatorname{Re} z)$ (e) $\exp(z) \neq 0$ (f) $\frac{d}{dz} \exp(z) = \exp(z)$

DEFINITION 3.17: The Complex Sine and Cosine Functions

The complex sine and cosine functions are defined for all $z \in \mathbb{C}$ by

$$\sin z = \frac{\exp(iz) - \exp(-iz)}{2i} \qquad \text{and} \qquad \cos z = \frac{\exp(iz) + \exp(-iz)}{2}$$

DEFINITION 3.20(A): The Multiple-Valued Complex Logarithm Function For the complex number $z \neq 0$ with any particular argument θ we define

 $\log z = \ln |z| + i(\theta + 2n\pi), \qquad n \in \mathbb{Z}.$

It is then the case that $e^{\log z} = z$ and $\log e^z = z + 2n\pi i$, $n \in \mathbb{Z}$.

DEFINITION 3.20(B): The Principal Value Complex Logarithm Function

For any complex number $z \in D^* = \{z \, : \, z \neq r e^{i\pi}, \ r \ge 0\}$ we define

$$\log z = \ln |z| + i \operatorname{Arg} z.$$

Then $e^{\log z} = z$, $\operatorname{Log} e^z = z$ and $\frac{d}{dz}\operatorname{Log} z = \frac{1}{z}$ for all $z \in D^*$.

DEFINITION 1.14: Paths, Arcs, Contours

A **path** (or curve, or arc) in \mathbb{C} is the image of a continuous function $\gamma : [a, b] \to \mathbb{C}$, where [a, b] is a closed interval in \mathbb{R} . The function γ is the **parametrization** of the path. We also have the following:

- The path (arc) is called **smooth** if it is differentiable.
- The path is called a closed curve If $\gamma(a) = \gamma(b)$. It is a simple closed curve if $\gamma(s) = \gamma(t)$ only for s = a and t = b.
- A path is called **piecewise smooth** if there exist $c_1 < c_2 < \cdots ... < c_n$ in the interval (a, b) such that γ is smooth on each of the intervals $[a, c_1], [c_1, c_2], ..., [c_n, b]$. A piecewise smooth curve is sometimes called a **contour**.

DEFINITION 4.1: Complex Integration

Suppose γ is a smooth curve (arc) parameterized by $\gamma(t)$, $a \leq t \leq b$, and f is a complex function that is continuous on γ . Then we define the integral of f on γ by

$$\int_{\gamma} f = \int_{\gamma} f(z) \, dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) \, dt.$$

If $\gamma(t)$, $a \leq t \leq b$ is a piecewise smooth curve (contour) that is differentiable on the intervals $[a, c_1], [c_1, c_2], [c_2, c_3], ..., [c_{n-1}, c_n], [c_n, b]$, then

$$\int_{\gamma} f = \int_{a}^{c_{1}} f(\gamma(t))\gamma'(t) \, dt + \int_{c_{1}}^{c_{2}} f(\gamma(t))\gamma'(t) \, dt + \dots + \int_{c_{n}}^{b} f(\gamma(t))\gamma'(t) \, dt.$$

PROPOSITION 4.3: Independence of Parametrization

Suppose γ is a smooth curve parameterized in the same direction by both

$$\gamma_1(t), a \le t \le b$$
 and $\gamma_2(s), c \le s \le ds$

If f is a complex function that is continuous on γ then

$$\int_{\gamma} f = \int_a^b f(\gamma_1(t))\gamma_1'(t) \, dt = \int_c^d f(\gamma_2(s))\gamma_2'(s) \, ds$$

DEFINITION 4.4: Length of a Curve

The length of a smooth curve γ is

$$\operatorname{length}(\gamma) = \int_{a}^{b} |\gamma'(t)| dt$$

for any parametrization $\gamma(t)$, $a \le t \le b$ of γ .

PROPOSITION 4.7: **Properties of the Integral** Suppose that γ is a smooth curve, f and g are complex functions that are continuous on γ , and $c \in \mathbb{C}$. (a) $\int_{\gamma} cf = c \int_{\gamma} f$ and $\int_{\gamma} (f+g) = \int_{\gamma} f + \int_{\gamma} g$ (b) If γ is parameterized by $\gamma(t)$, $a \leq t \leq b$, define the curve $-\gamma$ by $-\gamma(t) = \gamma(a+b-t)$, $a \leq t \leq b$. Then $\int_{-\gamma} f = -\int_{\gamma} f$. (c) If γ_1 and γ_2 are curves so that γ_2 starts where γ_1 ends, define $\gamma_1 \gamma_2$ by following γ_1 to its end, then continuing on γ_2 to its end. Then $\int_{\gamma_1 \gamma_2} f = \int_{\gamma_1} f + \int_{\gamma_2} f$. (d) $\left| \int_{\gamma} f \right| \leq \max_{z \in \gamma} |f(z)| \cdot \operatorname{length}(\gamma)$

G-Homotopic Curves

Let $G \subseteq \mathbb{C}$ be open and suppose that γ_0 and γ_1 are curves in G parameterized by

$$\gamma_0(t), \ 0 \le t \le 1$$
 and $\gamma_1(t), \ 0 \le t \le 1$.

We say that γ_0 is *G*-homotopic to γ_1 if there exists a continuous function h: $[0,1] \times [0,1] \rightarrow G$ such that $h(t,0) = \gamma_0(t)$ and $h(t,1) = \gamma_1(t)$ for all $t \in [0,1]$. We denote this by $\gamma_0 \sim_G \gamma_1$, and the function h is called a homotopy.

THEOREM 4.9: Cauchy's Theorem

Suppose that $G \subseteq \mathbb{C}$ is open, f is holomorphic in G. If γ_0 and γ_1 are closed curves in G with $\gamma_0 \sim_G \gamma_1$ via a homotopy h with continuous second partial derivatives, then

$$\int_{\gamma_0} f = \int_{\gamma_1} f.$$

G-Contractible Curve

Let $G \subseteq \mathbb{C}$ be open. A closed curve γ is said to be *G*-contractible if γ is *G*-homotopic to a point. This is denoted by $\gamma \sim_G 0$.

Corollary 4.10:

Suppose that $G \subseteq \mathbb{C}$ is open, f is holomorphic in G, and $\gamma \sim_G 0$ via a homotopy with continuous second partial derivatives. Then

$$\int_{\gamma} f = 0.$$

Corollary 4.11:

If f is entire and γ is any smooth closed curve, then

$$\int_{\gamma} f = 0.$$

ANOTHER COROLLARY: Independence of Path

Suppose that $G \subseteq \mathbb{C}$ is open and f is holomorphic in G. If γ_0 and γ_1 are curves in G parameterized by

$$\gamma_0(t), \ 0 \le t \le 1$$
 and $\gamma_1(t), \ 0 \le t \le 1$

with $\gamma_0 \sim_G \gamma_1$, $\gamma_0(0) = \gamma_1(0)$ and $\gamma_0(1) = \gamma_1(1)$, then

$$\int_{\gamma_0} f = \int_{\gamma_1} f.$$

Positively Oriented Curve

A simple closed curve γ is **positively oriented** if it is parameterized so that the inside of the curve is on the left of γ .

THEOREM 4.12: Cauchy's Integral Formula for a Circle

Let $C_r(z_0)$ be the counterclockwise oriented circle centered at z_0 and with radius r. If f is holomorphic at each point of the closed disk bounded by $C_r(z_0)$, then

$$f(z_0) = \frac{1}{2\pi i} \int_{C_r(z_0)} \frac{f(z)}{z - z_0} \, dz.$$

THEOREM 4.13: Cauchy's Integral Formula

Suppose f is holomorphic on the region G, $z_0 \in G$ and γ is a positively oriented, simple closed curve that is G-contractible and such that z_0 is enclosed by γ . Then

$$f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z_0} dz$$

Corollary 4.14:

Suppose f is holomorphic on and inside the circle $C_r(z_0)$ parameterized by $\gamma(\theta) = z_0 + re^{i\theta}$ for $0 \le \theta \le 2\pi$, then

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) \, d\theta.$$

Theorem 5.1:

Suppose f is holomorphic on the region G, $z_0 \in G$ and γ is a positively oriented, simple closed curve that is G-contractible and such that z_0 is enclosed by γ . Then

$$f'(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-z_0)^2} dz \quad \text{and} \quad f''(z_0) = \frac{1}{\pi i} \int_{\gamma} \frac{f(z)}{(z-z_0)^3} dz$$

Corollary 5.2:

If f is differentiable in the region G, then f is infinitely differentiable in G.

Lemma 5.6:

Suppose p(z) is a polynomial of degree n with leading coefficient a_n . Then there is a real number R_0 such that

$$\frac{1}{2}|a_n||z|^n \le |p(z)| \le 2|a_n||z|^n$$

for all z with $|z| \ge R_0$.

Every non-constant polynomial has a root in \mathbb{C} .

COROLLARY 5.9: Liouville's Theorem

Every bounded entire function is constant.

DEFINITION 5.11: Antiderivative of a Function

Let $G \subset \mathbb{C}$ be open and connected. For any functions $f, F : G \to \mathbb{C}$, if F is holomorphic on G and F'(z) = f(z) for all $z \in G$, then F is an **antiderivative** of F on G. An antiderivative of f on G will also sometimes be referred to as a **primitive** of f on G.

THEOREM 5.13: Second Fundamental Theorem of Calculus

Suppose that $G \subset \mathbb{C}$ is open and connected, and F is an antiderivative of f on G. If $\gamma \in G$ is a smooth curve with parametrization $\gamma(t)$, $a \leq t \leq b$, then

$$\int_{\gamma} f(z) \, dz = F(\gamma(b)) - F(\gamma(a))$$

COROLLARY 5.14: Independence of Path

If f is holomorphic on a simply connected open set G, then $\int_{\gamma} f$ is independent of of the path $\gamma \in G$ between $z_1 = \gamma(a)$ and $z_2 = \gamma(b)$.

COROLLARY 5.15:

Suppose $G \subseteq \mathbb{C}$ is open, γ is a smooth closed curve in G, and f has an antiderivative on G. Then $\int_{\gamma} f = 0$.

THEOREM 5.17: First Fundamental Theorem of Calculus

Suppose $G \subseteq \mathbb{C}$ is a connected open set, and fix some basepoint $z_0 \in G$. For each $z \in G$, let γ_z denote a smooth curve in G from z_0 to z. Let $f: G \to \mathbb{C}$ be a holomorphic function such that, for any simple closed curve $\gamma \in G$, $\int_{\gamma} f = 0$. Then the function $F: G \to \mathbb{C}$ defined at any point $z \in G$ by

$$F(z) := \int_{\gamma_z} f$$

is holomorphic in G with F'(z) = f(z). (The notation := means "defined by.")

DEFINITION 5.18: Simply Connected

A connected, open $G \subseteq \mathbb{C}$ is called **simply connected** if every simple closed curve in G is G-contractible. That is, for any simple closed curve $\gamma \subseteq G$, the interior of γ is completely contained in G.

Corollary 5.19

Every holomorphic function on a simply connected open set has a primitive.

COROLLARY 5.20: Morera's Theorem

Suppose f is continuous in a connected open set G and

$$\int_{\gamma} f = 0$$

for all smooth closed paths $\gamma \subseteq G$. Then f is holomorphic in G.

DEFINITION 7.1: Convergent and Divergent Sequences

Suppose (a_n) is a sequence of complex numbers. If $a \in \mathbb{C}$ is such that for all $\varepsilon > 0$ there is an integer N for which $|a_n - a| < \varepsilon$ whenever $n \ge N$, then we say the sequence (a_n) is **convergent** with limit a. We write

$$\lim_{n \to \infty} a_n = a.$$

If no such a exists, then we say that (a_n) is **divergent**.

Lemma 7.4

- Let (a_n) and (b_n) be convergent sequences and let c be any complex number. Then
 - (a) $\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$ and $\lim_{n \to \infty} ca_n = c \lim_{n \to \infty} a_n$

(b)
$$\lim_{n \to \infty} (a_n \cdot b_n) = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n$$

- (c) If $\lim b_n \neq 0$ and $b_n \neq 0$ for any n, then $\lim_{n \to \infty} \left(\frac{a_n}{b_n}\right) = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}$
- (d) If f is continuous at a, every a_n is in the domain of f and $\lim_{n \to \infty} a_n = a$, then $\lim_{n \to \infty} f(a_n) = f(a)$.

DEFINITION: Monotone Sequence

A sequence (x_n) of real numbers is **non-decreasing** if $x_{k+1} \ge x_k$ for all k = 1, 2, 3, ..., or **non-increasing** if $x_{k+1} \le x_k$ for k = 1, 2, 3, ... A sequence that is either non-decreasing or non-increasing is called a **monotone** sequence.

AXIOM: Monotone Sequence Property

Any bounded monotone sequence converges.

THEOREM 7.6: Archimedean Property

If x is any real number, then there is an integer N that is greater than x.

LEMMA 7.7 Suppose $a, b \in \mathbb{C}$ and p is a complex polynomial. Then • $\lim_{n \to \infty} \frac{p(n)}{a^n} = 0$ • $\lim_{n \to \infty} \frac{b^n}{n!} = 0$

LEMMA 7.10
If
$$\sum_{k=1}^{\infty} b_k$$
 converges, then $\lim_{k \to \infty} b_k = 0$.
LEMMA 7.11: (**Test for Divergence**)
If $\lim_{k \to \infty} b_k \neq 0$, then $\sum_{k=1}^{\infty} b_k$ diverges.

Absolute Convergence A series $\sum_{k=1}^{\infty} c_k$ is absolutely convergent if $\sum_{k=1}^{\infty} |c_k|$ converges. THEOREM 7.13

If a series converges absolutely, then it converges.

LEMMA 7.16: *p*-series $\sum_{k=1}^{\infty} \frac{1}{k^p} \text{ converges if } p > 1 \text{ and diverges if } p \le 1.$

Convergence of Sequences of Functions

Let (f_n) be a sequence of functions defined on a set G. If, for each $z \in G$, the sequence $(f_n(z))$ converges, then we say that the sequence (f_n) converges pointwise on G. Suppose that (f_n) and f are functions defined on G. If for any $\varepsilon > 0$ there is an N such that for all $z \in G$ and $n \geq N$ we have

$$|f_n(z) - f(z)| < \varepsilon,$$

then (f_n) converges uniformly to f on G.

PROPOSITION 7.18

Suppose (f_n) is a sequence of functions that converges uniformly to a function f on a set G. Then f is continuous on G.

Proposition 7.19

Suppose f_n are continuous on the smooth curve γ and converge uniformly on γ to a function f. Then

$$\lim_{n \to \infty} \int_{\gamma} f_n = \int_{\gamma} f.$$

Lemma 7.20

If (f_n) is a sequence of functions and M_n is a sequence of constants so that M_n converges to zero and $|f_n(z)| \leq M_n$ for all $z \in G$, then (f_n) converges uniformly to zero on G.

Lemma 7.21

If (f_n) is a sequence of functions that converges uniformly to zero on G and z_n is any sequence in G, then the sequence $(f_n(z_n))$ converges to zero.

PROPOSITION 7.22 Suppose (f_k) are continuous on the region G, $|f_k(z)| \le M_k$ for all $z \in G$, and $\sum_{k=1}^{\infty} M_k$ converges. Then $\sum_{k=1}^{\infty} f_k$ converges absolutely and uniformly in G.

DEFINITION 7.24: Power Series A power series centered at z_0 is a series of functions of the form $\sum_{k=0}^{\infty} c_k (z-z_0)^k$.

LEMMA 7.25: Geometric Power Series

The series $\sum_{k=0}^{\infty} z^k$ (which is a power series centered at zero, with all c_k equal to one) converges absolutely for |z| < 1 to the function $\frac{1}{1-z}$. The convergence is uniform on any set of the form $\{z \in \mathbb{C} : |z| \le r < 1\}$.

THEOREM 7.26: Radius of Convergence Any power series $\sum_{k=0}^{\infty} c_k (z-z_0)^k$ has a radius of convergence R, with $0 \le R \le \infty$, such that (a) if r < R, then $\sum_{k=0}^{\infty} c_k (z-z_0)^k$ converges absolutely and uniformly on the closed disk $\overline{D}_r(z_0) = \{z \in \mathbb{C} : |z-z_0| \le r\}.$ (b) if $|z-z_0| > R$ then the sequence of terms $c_k (z-z_0)^k$ is unbounded and $\sum_{k=0}^{\infty} c_k (z-z_0)^k$ diverges.

COROLLARY 7.27 Suppose the power series $\sum_{k=0}^{\infty} c_k (z-z_0)^k$ has a radius of convergence R. Then the series represents a function that is continuous on the disk $D_R(z_0) = \{z \in \mathbb{C} : |z-z_0| < R\}.$

Corollary 7.28

Suppose the power series $\sum_{k=0}^{\infty} c_k (z-z_0)^k$ has a radius of convergence R and γ is a smooth curve in $D_R(z_0) = \{z \in \mathbb{C} : |z-z_0| < R\}$. Then

$$\int_{\gamma} \sum_{k=0}^{\infty} c_k (z - z_0)^k \, dz = \sum_{k=0}^{\infty} c_k \int_{\gamma} (z - z_0)^k \, dz$$

In particular, if γ is closed, then $\int_{\gamma} \sum_{k=0}^{\infty} c_k (z-z_0)^k dz = 0.$

THEOREM 7.30: Determining Radius of Convergence

For the power series $\sum_{k=0}^{\infty} c_k (z-z_0)^k$, the radius of convergence R is given by $R = \lim_{k \to \infty} \left| \frac{c_k}{c_{k+1}} \right| \qquad \text{or} \qquad R = \lim_{k \to \infty} \frac{1}{|c_k|^{1/k}}$

These are the ratio test and root test for determining radius of convergence.

THEOREM 8.1 Suppose $f(z) = \sum_{k=0}^{\infty} c_k (z - z_0)^k$ has positive radius of convergence R. Then f is holomorphic in $D_R(z_0) = \{z \in \mathbb{C} : |z - z_0| < R\}.$

THEOREM 8.2 Suppose $f(z) = \sum_{k=0}^{\infty} c_k (z - z_0)^k$ has positive radius of convergence R. Then $f'(z) = \sum_{k=1}^{\infty} k c_k (z - z_0)^{k-1}$ and the radius of convergence of this power series is also R.

COROLLARY 8.5: **Taylor Series Expansion** Suppose $f(z) = \sum_{k=0}^{\infty} c_k (z - z_0)^k$ has positive radius of convergence. Then $c_k = \frac{f^{(k)}(z_0)}{k!}.$

COROLLARY 8.6: Uniqueness of Power Series If $\sum_{k=0}^{\infty} c_k (z-z_0)^k$ and $\sum_{k=0}^{\infty} b_k (z-z_0)^k$ are two power series that both converge to the same function f(z) on an open disk centered at z_0 , then $c_k = b_k$ for all k. THEOREM 8.7

Suppose f is a function that is holomorphic in $D_R(z_0) = \{z \in \mathbb{C} : |z - z_0| < R\}$. Then f can be represented in $D_R(z_0)$ as a power series centered at z_0 (with a radius of convergence of at least R):

$$f(z) = \sum_{k=0}^{\infty} c_k (z - z_0)^k$$
 with $c_k = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{(w - z_0)^{k+1}} dw.$

Here γ is any positively oriented, simple, closed, smooth curve in $D_R(z_0)$ for which z_0 is inside γ .

Corollary 8.8

Suppose f is holomorphic on the region G, $w \in G$ and γ is a positively oriented simple, closed, smooth, g-contractible curve such that z_0 is inside γ . Then

$$f^{(k)}(z_0) = \frac{k!}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-z_0)^{k+1}} \, dz.$$

COROLLARY 8.9: **Cauchy's Estimate** Suppose f is holomorphic in $D_R(z_0) = \{z \in \mathbb{C} : |z - z_0| < R\}$ and $|f| \le M$ there. Then $\left| f^{(k)}(z) \right| \le \frac{k!M}{R^k}$

for all $z \in \overline{D}_R(z_0) = \{z \in \mathbb{C} : |z - z_0| < R\}.$

Analytic Function

A function f is **analytic** at a point z_0 if f can be represented as a power series centered at z_0 and with radius R > 0. f is analytic in an open region G if it is analytic at every point of G.

THEOREM 8.10: Analytic "Equals" Holomorphic

A function f is analytic at a point z_0 if and only if it is holomorphic at z_0 ; f is analytic on G if and only if it is holomorphic on G.

THEOREM 8.11: Classification of Zeros

Suppose f is a holomorphic function defined on an open set G and suppose that f has a zero at some point $z_0 \in G$. Then there are exactly two possibilities: Either

- (a) f is identically zero on some open disk D centered at z_0 , or
- (b) there is a positive integer m and a holomorphic function g, defined on G, satisfying $f(z) = (z z_0)^m g(z)$ for all $z \in G$, with $g(z_0) = 0$.

The integer m in the second case is uniquely determined by f and z_0 , and is called the **multiplicity** of the zero of f at z_0 .

THEOREM 8.12: The Identity Principle

Suppose f and g are holomorphic on the region G and $f(z_k) = g(z_k)$ for a sequence that converges to $w \in G$, with $z_k \neq w$ for any k. Then f(z) = g(z) for all $z \in G$.

THEOREM 8.13: Maximum-Modulus Theorem

Suppose f is holomorphic and non-constant on the closure of a bounded region G. Then |f| only attains its maximum on the boundary of G.

THEOREM 8.15: Maximum-Modulus Theorem

Suppose f is holomorphic and non-constant on the closure of a bounded region G. Then |f| only attains its minimum on the boundary of G.

DEFINITION 8.16: Laurent Series

A Laurent series centered at z_0 is a series of the form $\sum_{k=-\infty}^{\infty} c_k (z-z_0)^k$.

Theorem 8.19

Suppose f is a function that is holomorphic in the annulus

$$A = \{ z \in \mathbb{C} : R_1 < |z - z_0| < R_2 \}.$$

Then f can be represented in A as a Laurent series centered at z_0 :

$$f(z) = \sum_{k=-\infty}^{\infty} c_k (z - z_0)^k \quad \text{with} \quad c_k = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{(w - z_0)^{k+1}} \, dw.$$

Here γ is any circle in A that is centered at z_0 (or any other closed, smooth path that is A-homotopic to such a circle).

Theorem 8.20

For a given function in a given region of convergence, the coefficients of the corresponding Laurent series are uniquely determined.

DEFINITION 9.1: Classification of Singularities

If f is holomorphic in the punctured disk $\{z \in \mathbb{C} : 0 < |z - z_0| < R\}$ for some R > 0 but not at $z = z_0$, then z_0 is an **isolated singularity** of f. The singularity z_0 is called

- (a) a **removable singularity** if there is a function g, that is holomorphic in the set $\{z \in \mathbb{C} : |z z_0| < R\}$, such that f = g in the set $\{z \in \mathbb{C} : 0 < |z z_0| < R\}$,
- (b) a **pole** if $\lim_{z \to z_0} |f(z)| = \infty$,
- (c) an essential singularity if z_0 is neither removable or a pole.

Proposition 9.5

Suppose z_0 is an isolated singularity of f. Then

- (a) z_0 is removable if and only if $\lim_{z\to z_0} (z-z_0)f(z) = 0$;
- (b) z_0 is pole if and only if it is not removable and $\lim_{z\to z_0} (z-z_0)^{n+1} f(z) = 0$ for some positive integer n. The smallest possible such n is called the **order** of the pole.

THEOREM 9.6; The Casorati-Weierstrass Theorem

If z_0 is an essential singularity of f and $D = \{z \in \mathbb{C} : 0 < |z - z_0| < R\}$ for some R > 0, then any $w \in \mathbb{C}$ is arbitrarily close to a point in f(D). That is, for any $w \in \mathbb{C}$ and any $\varepsilon > 0$ there exists a $z \in D$ such that $|w - f(z)| < \varepsilon$.

PROPOSITION 9.7

Suppose z_0 is an isolated singularity of f having Laurent series $\sum_{k=-\infty}^{\infty} c_k (z-z_0)^k$ that is valid in some set $\{z \in \mathbb{C} : 0 < |z-z_0| < R\}$. Then

- is value in some set $\{z \in \mathbb{C} : 0 < |z > 20| < 10\}$. Then
- (a) z_0 is removable if and only if there are no negative exponents (that is, the Laurent series is a power series);
- (b) z_0 is pole if and only if there are finitely many negative exponents, and the order of the pole is the largest value of k such that $c_{-k} \neq 0$;
- (c) z_0 is an essential singularity if and only if there are infinitely many negative exponents.