Trigonometric Functions of Special Angles

α, degrees	α, radians	$\sin \alpha$	$\cos \alpha$	$\tan \alpha$
0°	0	0	1	0
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90°	$\frac{\pi}{2}$	1	0	undefined

Trigonometric Functions of an Acute Angle of a Right Triangle

$$
\sin \alpha=\frac{\text { opp }}{\text { hyp }}, \quad \cos \alpha=\frac{\text { adj }}{\text { hyp }}, \quad \tan \alpha=\frac{\text { opp }}{\text { adj }}
$$

Pythagorean Identity

$$
\sin ^{2} \alpha+\cos ^{2} \alpha=1
$$

Sum and Difference Identities

$$
\begin{array}{ll}
\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta & \cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta \\
\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta & \sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta
\end{array}
$$

Double Angle Identities

$$
\sin 2 x=2 \sin x \cos x
$$

$$
\cos 2 x=\cos ^{2} x-\sin ^{2} x=2 \cos ^{2} x-1=1-2 \sin ^{2} x
$$

Complex Numbers

A complex number z is a number of the form $z=x+i y$, where x and y are real numbers and $i^{2}=-1$. The numbers x and y are called the real part and imaginary part of z, denoted by $\operatorname{Re} z$ and $\operatorname{Im} z$.

Complex Conjugates

The complex conjugate (or just conjugate) of a number $z=x+i y$ is the number $\bar{z}=x-i y$. The following hold:

$$
\overline{z_{1} \pm z_{2}}=\bar{z}_{1} \pm \bar{z}_{2} \quad \overline{z_{1} z_{2}}=\bar{z}_{1} \bar{z}_{2} \quad \overline{\left(\frac{z_{1}}{z_{2}}\right)}=\frac{\bar{z}_{1}}{\bar{z}_{2}} \quad \operatorname{Re} z=\frac{z+\bar{z}}{2} \quad \operatorname{Im} z=\frac{z-\bar{z}}{2 i}
$$

Modulus of a Complex Number

The modulus (or absolute value) of a number $z=x+i y$ is the real number $|z|=\sqrt{x^{2}+y^{2}}$. The following hold:

$$
\begin{gathered}
|z|^{2}=z \bar{z} \quad\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right| \quad|\bar{z}|=|z| \quad\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right| \\
\left| \pm z_{1} \pm z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right| \quad\left| \pm z_{1} \pm z_{2}\right| \geq\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \quad\left|\sum_{k=1}^{n} z_{k}\right| \leq \sum_{k=1}^{n}\left|z_{k}\right|
\end{gathered}
$$

Argument of a Complex Number

For any complex number $z=x+i y$, there exist real numbers $r \geq 0$ and $p h i$ such that

$$
z=x+i y=r(\cos \phi+i \sin \phi) .
$$

This is sometimes called the polar form of z. The radian value ϕ is an argument of z, denoted by $\phi=\arg z$. Note the following:

- If ϕ is an argument of z, then so is $\phi+2 \pi n$ for any integer n.
- The value of ϕ (there is only one) such that $-\pi<\phi \leq \pi$ is called the principal $\operatorname{argument}$ of z, denoted by $\operatorname{Arg} z$.
- $r=|z|$

Euler's Formula and Exponential Form

- For any real number ϕ we define $e^{i \phi}=\cos \phi+i \sin \phi$. This is called Euler's formula.
- Using Euler's formula, for any complex number z there exists a real number ϕ such that

$$
z=r(\cos \phi+i \sin \phi)=r e^{i \phi} .
$$

$r e^{i \phi}$ is called the exponential form of z.

Topology of the Complex Plane

In all of the following and throughout our course, it is understood that a set S under discussion is a subset of the complex plane.

- For $z_{0} \in \mathbb{C}$ and $\varepsilon>0$ the set $D_{\varepsilon}\left(z_{0}\right)=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<\varepsilon\right.$ is called an ε neighborhood of z_{0}.
- A point z_{0} is an interior point of S if there is an ε neighborhood of z_{0} that contains only points of S.
- A point z_{0} is an exterior point of S if there is an ε neighborhood of z_{0} that contains no points of S.
- A point z_{0} is a boundary point of S if every ε neighborhood of z_{0} contains points of S and points not in S.
- A set S is open if every point of S is an interior point.
- A set S is closed if S contains all of its boundary points.
- The set of all boundary points of S is called the boundary of S, denoted by ∂S.
- The closure of a set S is the union of S with all its boundary. The closure of S is denoted \bar{S} or ∂S.
- An open set S is connected if any two points of S can be joined by a polygonal line segment.
- A point z_{0} is called an accumulation point of a set S if every ε neighborhood of z_{0} contains some point in S other than z_{0}.
- A point $z_{0} \in S$ is called an isolated point if there exists an ε neighborhood of z_{0} containing no points of S other than z_{0}.

Deleted Neighborhood

A deleted neighborhood of a point z_{0} is a set of the form

$$
\left\{z \in \mathbb{C}: 0<\left|z-z_{0}\right|<\varepsilon\right\}
$$

for some $\varepsilon>0$. Given this, an accumulation point z_{0} of a set S is a point such that every deleted neighborhood of z_{0} contains at least one point in S.

Function

A function f is a rule that assigns to each $z \in G$, where G is some subset of \mathbb{C}, a unique complex number w. We indicate this by writing $w=f(z)$.

- We sometimes say that z is mapped to w by f, and that f is a mapping from the complex numbers to the complex numbers.
- The number w is called the image of z.
- The set G is called the domain of f, and the range of f is the set

$$
\{w \in \mathbb{C}: w=f(z) \text { for some } z \in G\}
$$

Definition 2.1: Limit of a Function (Churchill and Brown)

Suppose a function f is defined at all points in a deleted neighborhood of a point z_{0}. We say that the limit of f as z approaches z_{0} is a number w_{0} if, for every $\varepsilon>0$, there exists a $\delta>0$ such that

$$
\left|f(z)-w_{0}\right|<\varepsilon \quad \text { whenever } \quad 0<\left|z-z_{0}\right|<\delta
$$

We write $\lim _{z \rightarrow z_{0}} f(z)=w_{0}$.

Definition 2.1: Limit of a Function (Beck, Marchesi, Pixton, Sabalka)

Suppose f is a complex function with domain G and z_{0} is an accumulation point of G. Suppose there is a complex number w_{0} such that for every $\varepsilon>0$, we can find a $\delta>0$ so that for all $z \in G$ satisfying $0<\left|z-z_{0}\right|<\delta$ we have $\left|f(z)-w_{0}\right|<\varepsilon$. Then w_{0} is the limit of f as z approaches z_{0}, and we write $\lim _{z \rightarrow z_{0}} f(z)=w_{0}$.

Lemma 2.4: Limit Rules

Let f and g be complex functions and let c and z_{0} be complex numbers. If $\lim _{z \rightarrow z_{0}} f(z)$ and $\lim _{z \rightarrow z_{0}} g(z)$ exist, then
($\left.\mathrm{a}_{1}\right) \lim _{z \rightarrow z_{0}}[f(z)+g(z)]=\lim _{z \rightarrow z_{0}} f(z)+\lim _{z \rightarrow z_{0}} g(z)$
(a_{2}) $\lim _{z \rightarrow z_{0}}[c g(z)]=c \lim _{z \rightarrow z_{0}} g(z)$
(b) $\lim _{z \rightarrow z_{0}}[f(z) \cdot g(z)]=\left[\lim _{z \rightarrow z_{0}} f(z)\right] \cdot\left[\lim _{z \rightarrow z_{0}} g(z)\right]$
(c) If $\lim _{z \rightarrow z_{0}} g(z) \neq 0$, then $\lim _{z \rightarrow z_{0}}\left[\frac{f(z)}{g(z)}\right]=\frac{\lim _{z \rightarrow z_{0}} f(z)}{\lim _{z \rightarrow z_{0}} g(z)}$

Definition 2.7: Derivative of a Function

Suppose $f: G \rightarrow \mathbb{C}$ is a complex function and z_{0} is an interior point of G. The derivative of f at z_{0} is defined as

$$
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

when the limit exists. In this case we say that f is differentiable at z_{0}.

Holomorphic and Entire Functions

We say that f is holomorphic at z_{0} if it is differentiable at all points in some open disk centered at z_{0}, and f is holomorphic on an open set G if it is differentiable at all points in G. A function that is differentiable at all points in \mathbb{C} is called entire.

Lemma 2.11: Derivative Rules

Suppose that f and g are differentiable at $z \in \mathbb{C}, c \in \mathbb{C}$ and $n \in \mathbb{Z}$ and h is differentiable at $g(z)$. Then
(a) $[c f(z)]^{\prime}=c f^{\prime}(z)$ and $[f(z)+g(z)]^{\prime}=f^{\prime}(z)+g^{\prime}(z) \quad$ (linearity)
(b) $[f(z) \cdot g(z)]^{\prime}=f(z) g^{\prime}(z)+g(z) f^{\prime}(z) \quad$ (product rule)
(c) $\left[\frac{f(z)}{g(z)}\right]^{\prime}=\frac{g(z) f^{\prime}(z)-f(z) g^{\prime}(z)}{[g(z)]^{2}} \quad$ (quotient rule)
(d) $(c)^{\prime}=0,(z)^{\prime}=1$ and $\left(z^{n}\right)^{\prime}=n z^{n-1} \quad$ (power rule)
(e) $\left[h(g(z)]^{\prime}=h^{\prime}(g(z)) \cdot g^{\prime}(z) \quad\right.$ (chain rule)

Theorem 2.15: Cauchy-Riemann Equations

(a) Suppose that $f(z)=f(x+i y)=u(x, y)+i v(x, y)$ is differentiable at $z_{0}=x_{0}+i y_{0}$. Then

$$
\begin{equation*}
u_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right) \quad \text { and } \quad u_{y}\left(x_{0}, y_{0}\right)=-v_{x}\left(u_{0}, y_{0}\right) \tag{1}
\end{equation*}
$$

(b) Suppose that $f(z)=f(x+i y)=u(x, y)+i v(x, y)$ is a complex valued function such that the first partial derivatives of u and v with respect to both x and y exist in an open disk centered at z_{0} and are continuous at z_{0}. If (1) holds at z_{0}, then f is differentiable at z_{0}.

In both cases the derivative is given by $f^{\prime}\left(z_{0}\right)=u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right)$

Definition 3.15: The Complex Exponential Function

The complex exponential function e^{z} or $\exp (z)$ is defined for $z=x+i y$ by

$$
\exp (z)=e^{x}(\cos y+i \sin y)=e^{x} e^{i y}
$$

Lemma 3.16: Properties of the Complex Exponential Function

For all $z, z_{1}, z_{2} \in \mathbb{C}$,
(a) $\exp \left(z_{1}\right) \exp \left(z_{2}\right)=\exp \left(z_{1}+z_{2}\right)$
(b) $\exp (-z)=\frac{1}{\exp (z)}$
(c) $\exp (z+2 \pi i)=\exp (z)$
(d) $|\exp (z)|=\exp (\operatorname{Re} z)$
(e) $\exp (z) \neq 0$
(f) $\frac{d}{d z} \exp (z)=\exp (z)$

Definition 3.17: The Complex Sine and Cosine Functions

The complex sine and cosine functions are defined for all $z \in \mathbb{C}$ by

$$
\sin z=\frac{\exp (i z)-\exp (-i z)}{2 i} \quad \text { and } \quad \cos z=\frac{\exp (i z)+\exp (-i z)}{2}
$$

Definition 3.20(A): The Multiple-Valued Complex Logarithm Function

For the complex number $z \neq 0$ with any particular argument θ we define

$$
\log z=\ln |z|+i(\theta+2 n \pi), \quad n \in \mathbb{Z}
$$

It is then the case that $e^{\log z}=z$ and $\log e^{z}=z+2 n \pi i, \quad n \in \mathbb{Z}$.

Definition 3.20(b): The Principal Value Complex Logarithm Function

For any complex number $z \in D^{*}=\left\{z: z \neq r e^{i \pi}, r \geq 0\right\}$ we define

$$
\log z=\ln |z|+i \operatorname{Arg} z
$$

Then $e^{\log z}=z, \log e^{z}=z$ and $\frac{d}{d z} \log z=\frac{1}{z}$ for all $z \in D^{*}$.

Definition 1.14: Paths, Arcs, Contours

A path (or curve, or arc) in \mathbb{C} is the image of a continuous function $\gamma:[a, b] \rightarrow \mathbb{C}$, where $[a, b]$ is a closed interval in \mathbb{R}. The function γ is the parametrization of the path. We also have the following:

- The path (arc) is called smooth if it is differentiable.
- The path is called a closed curve If $\gamma(a)=\gamma(b)$. It is a simple closed curve if $\gamma(s)=\gamma(t)$ only for $s=a$ and $t=b$.
- A path is called piecewise smooth if there exist $c_{1}<c_{2}<\ldots \ldots<c_{n}$ in the interval (a, b) such that γ is smooth on each of the intervals $\left[a, c_{1}\right],\left[c_{1}, c_{2}\right], \ldots,\left[c_{n}, b\right]$. A piecewise smooth curve is sometimes called a contour.

Definition 4.1: Complex Integration

Suppose γ is a smooth curve (arc) parameterized by $\gamma(t), a \leq t \leq b$, and f is a complex function that is continuous on γ. Then we define the integral of f on γ by

$$
\int_{\gamma} f=\int_{\gamma} f(z) d z=\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t
$$

If $\gamma(t), a \leq t \leq b$ is a piecewise smooth curve (contour) that is differentiable on the intervals $\left[a, c_{1}\right],\left[c_{1}, c_{2}\right],\left[c_{2}, c_{3}\right], \ldots,\left[c_{n-1}, c_{n}\right],\left[c_{n}, b\right]$, then

$$
\int_{\gamma} f=\int_{a}^{c_{1}} f(\gamma(t)) \gamma^{\prime}(t) d t+\int_{c_{1}}^{c_{2}} f(\gamma(t)) \gamma^{\prime}(t) d t+\cdots+\int_{c_{n}}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t
$$

Proposition 4.3: Independence of Parametrization

Suppose γ is a smooth curve parameterized in the same direction by both

$$
\gamma_{1}(t), a \leq t \leq b \quad \text { and } \quad \gamma_{2}(s), c \leq s \leq d s
$$

If f is a complex function that is continuous on γ then

$$
\int_{\gamma} f=\int_{a}^{b} f\left(\gamma_{1}(t)\right) \gamma_{1}^{\prime}(t) d t=\int_{c}^{d} f\left(\gamma_{2}(s)\right) \gamma_{2}^{\prime}(s) d s
$$

Definition 4.4: Length of a Curve

The length of a smooth curve γ is

$$
\text { length }(\gamma)=\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t
$$

for any parametrization $\gamma(t), a \leq t \leq b$ of γ.

Proposition 4.7: Properties of the Integral

Suppose that γ is a smooth curve, f and g are complex functions that are continuous on γ, and $c \in \mathbb{C}$.
(a) $\int_{\gamma} c f=c \int_{\gamma} f$ and $\int_{\gamma}(f+g)=\int_{\gamma} f+\int_{\gamma} g$
(b) If γ is parameterized by $\gamma(t), a \leq t \leq b$, define the curve $-\gamma$ by $-\gamma(t)=\gamma(a+b-t), a \leq t \leq b$. Then $\int_{-\gamma} f=-\int_{\gamma} f$.
(c) If γ_{1} and γ_{2} are curves so that γ_{2} starts where γ_{1} ends, define $\gamma_{1} \gamma_{2}$ by following γ_{1} to its end, then continuing on γ_{2} to its end. Then $\int_{\gamma_{1} \gamma_{2}} f=\int_{\gamma_{1}} f+\int_{\gamma_{2}} f$.
(d) $\left|\int_{\gamma} f\right| \leq \max _{z \in \gamma}|f(z)| \cdot$ length (γ)

G-Homotopic Curves

Let $G \subseteq \mathbb{C}$ be open and suppose that γ_{0} and γ_{1} are curves in G parameterized by

$$
\gamma_{0}(t), 0 \leq t \leq 1 \quad \text { and } \quad \gamma_{1}(t), 0 \leq t \leq 1
$$

We say that γ_{0} is G-homotopic to γ_{1} if there exists a continuous function h : $[0,1] \times[0,1] \rightarrow G$ such that $h(t, 0)=\gamma_{0}(t)$ and $h(t, 1)=\gamma_{1}(t)$ for all $t \in[0,1]$. We denote this by $\gamma_{0} \sim_{G} \gamma_{1}$, and the function h is called a homotopy.

Theorem 4.9: Cauchy's Theorem

Suppose that $G \subseteq \mathbb{C}$ is open, f is holomorphic in G. If γ_{0} and γ_{1} are closed curves in G with $\gamma_{0} \sim_{G} \gamma_{1}$ via a homotopy h with continuous second partial derivatives, then

$$
\int_{\gamma_{0}} f=\int_{\gamma_{1}} f
$$

G-Contractible Curve

Let $G \subseteq \mathbb{C}$ be open. A closed curve γ is said to be G-contractible if γ is G-homotopic to a point. This is denoted by $\gamma \sim_{G} 0$.

Corollary 4.10:

Suppose that $G \subseteq \mathbb{C}$ is open, f is holomorphic in G, and $\gamma \sim_{G} 0$ via a homotopy with continuous second partial derivatives. Then

$$
\int_{\gamma} f=0
$$

Corollary 4.11:

If f is entire and γ is any smooth closed curve, then

$$
\int_{\gamma} f=0 .
$$

Another Corollary: Independence of Path

Suppose that $G \subseteq \mathbb{C}$ is open and f is holomorphic in G. If γ_{0} and γ_{1} are curves in G parameterized by

$$
\gamma_{0}(t), 0 \leq t \leq 1 \quad \text { and } \quad \gamma_{1}(t), 0 \leq t \leq 1
$$

with $\gamma_{0} \sim_{G} \gamma_{1}, \quad \gamma_{0}(0)=\gamma_{1}(0)$ and $\gamma_{0}(1)=\gamma_{1}(1)$, then

$$
\int_{\gamma_{0}} f=\int_{\gamma_{1}} f
$$

Positively Oriented Curve

A simple closed curve γ is positively oriented if it is parameterized so that the inside of the curve is on the left of γ.

Theorem 4.12: Cauchy's Integral Formula for a Circle

Let $C_{r}\left(z_{0}\right)$ be the counterclockwise oriented circle centered at z_{0} and with radius r. If f is holomorphic at each point of the closed disk bounded by $C_{r}\left(z_{0}\right)$, then

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{C_{r}\left(z_{0}\right)} \frac{f(z)}{z-z_{0}} d z
$$

Theorem 4.13: Cauchy's Integral Formula

Suppose f is holomorphic on the region $G, z_{0} \in G$ and γ is a positively oriented, simple closed curve that is G-contractible and such that z_{0} is enclosed by γ. Then

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z-z_{0}} d z
$$

Corollary 4.14:

Suppose f is holomorphic on and inside the circle $C_{r}\left(z_{0}\right)$ parameterized by $\gamma(\theta)=$ $z_{0}+r e^{i \theta}$ for $0 \leq \theta \leq 2 \pi$, then

$$
f\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+r e^{i \theta}\right) d \theta
$$

Theorem 5.1:

Suppose f is holomorphic on the region $G, z_{0} \in G$ and γ is a positively oriented, simple closed curve that is G-contractible and such that z_{0} is enclosed by γ. Then

$$
f^{\prime}\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z \quad \text { and } \quad f^{\prime \prime}\left(z_{0}\right)=\frac{1}{\pi i} \int_{\gamma} \frac{f(z)}{\left(z-z_{0}\right)^{3}} d z
$$

Corollary 5.2:

If f is differentiable in the region G, then f is infinitely differentiable in G.

Lemma 5.6:

Suppose $p(z)$ is a polynomial of degree n with leading coefficient a_{n}. Then there is a real number R_{0} such that

$$
\frac{1}{2}\left|a_{n}\right||z|^{n} \leq|p(z)| \leq 2\left|a_{n}\right||z|^{n}
$$

for all z with $|z| \geq R_{0}$.

Theorem 5.7: Fundamental Theorem of Algebra
Every non-constant polynomial has a root in \mathbb{C}.

Corollary 5.9: Liouville's Theorem
Every bounded entire function is constant.

Definition 5.11: Antiderivative of a Function

Let $G \subset \mathbb{C}$ be open and connected. For any functions $f, F: G \rightarrow \mathbb{C}$, if F is holomorphic on G and $F^{\prime}(z)=f(z)$ for all $z \in G$, then F is an antiderivative of F on G. An antiderivative of f on G will also sometimes be referred to as a primitive of f on G.

Theorem 5.13: Second Fundamental Theorem of Calculus

Suppose that $G \subset \mathbb{C}$ is open and connected, and F is an antiderivative of f on G. If $\gamma \in G$ is a smooth curve with parametrization $\gamma(t), a \leq t \leq b$, then

$$
\int_{\gamma} f(z) d z=F(\gamma(b))-F(\gamma(a))
$$

Corollary 5.14: Independence of Path

If f is holomorphic on a simply connected open set G, then $\int_{\gamma} f$ is independent of of the path $\gamma \in G$ between $z_{1}=\gamma(a)$ and $z_{2}=\gamma(b)$.

Corollary 5.15:

Suppose $G \subseteq \mathbb{C}$ is open, γ is a smooth closed curve in G, and f has an antiderivative on G. Then $\int_{\gamma} f=0$.

Theorem 5.17: First Fundamental Theorem of Calculus

Suppose $G \subseteq \mathbb{C}$ is a connected open set, and fix some basepoint $z_{0} \in G$. For each $z \in G$, let γ_{z} denote a smooth curve in G from z_{0} to z. Let $f: G \rightarrow \mathbb{C}$ be a holomorphic function such that, for any simple closed curve $\gamma \in G, \int_{\gamma} f=0$. Then the function $F: G \rightarrow \mathbb{C}$ defined at any point $z \in G$ by

$$
F(z):=\int_{\gamma_{z}} f
$$

is holomorphic in G with $F^{\prime}(z)=f(z)$. (The notation $:=$ means "defined by.")

Definition 5.18: Simply Connected

A connected, open $G \subseteq \mathbb{C}$ is called simply connected if every simple closed curve in G is G-contractible. That is, for any simple closed curve $\gamma \subseteq G$, the interior of γ is completely contained in G.

Corollary 5.19

Every holomorphic function on a simply connected open set has a primitive.

Corollary 5.20: Morera's Theorem

Suppose f is continuous in a connected open set G and

$$
\int_{\gamma} f=0
$$

for all smooth closed paths $\gamma \subseteq G$. Then f is holomorphic in G.

Definition 7.1: Convergent and Divergent Sequences

Suppose $\left(a_{n}\right)$ is a sequence of complex numbers. If $a \in \mathbb{C}$ is such that for all $\varepsilon>0$ there is an integer N for which $\left|a_{n}-a\right|<\varepsilon$ whenever $n \geq N$, then we say the sequence $\left(a_{n}\right)$ is convergent with limit a. We write

$$
\lim _{n \rightarrow \infty} a_{n}=a .
$$

If no such a exists, then we say that $\left(a_{n}\right)$ is divergent.

LEMMA 7.4

Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be convergent sequences and let c be any complex number. Then
(a) $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n}$ and $\lim _{n \rightarrow \infty} c a_{n}=c \lim _{n \rightarrow \infty} a_{n}$
(b) $\lim _{n \rightarrow \infty}\left(a_{n} \cdot b_{n}\right)=\lim _{n \rightarrow \infty} a_{n} \cdot \lim _{n \rightarrow \infty} b_{n}$
(c) If $\lim b_{n} \neq 0$ and $b_{n} \neq 0$ for any n, then $\lim _{n \rightarrow \infty}\left(\frac{a_{n}}{b_{n}}\right)=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}}$
(d) If f is continuous at a, every a_{n} is in the domain of f and $\lim _{n \rightarrow \infty} a_{n}=a$, then $\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f(a)$.

Definition: Monotone Sequence

A sequence $\left(x_{n}\right)$ of real numbers is non-decreasing if $x_{k+1} \geq x_{k}$ for all $k=1,2,3, \ldots$, or non-increasing if $x_{k+1} \leq x_{k}$ for $k=1,2,3, \ldots$. A sequence that is either nondecreasing or non-increasing is called a monotone sequence.

Axiom: Monotone Sequence Property

Any bounded monotone sequence converges.

Theorem 7.6: Archimedean Property

If x is any real number, then there is an integer N that is greater than x.

Lemma 7.7

Suppose $a, b \in \mathbb{C}$ and p is a complex polynomial. Then

- $\lim _{n \rightarrow \infty} \frac{p(n)}{a^{n}}=0$
- $\lim _{n \rightarrow \infty} \frac{b^{n}}{n!}=0$

Lemma 7.9

If b_{k} are nonnegative real numbers then $\sum_{k=1}^{\infty} b_{k}$ converges if and only if the partial sums are bounded.

Lemma 7.10
If $\sum_{k=1}^{\infty} b_{k}$ converges, then $\lim _{k \rightarrow \infty} b_{k}=0$.
Lemma 7.11: (Test for Divergence)
If $\lim _{k \rightarrow \infty} b_{k} \neq 0$, then $\sum_{k=1}^{\infty} b_{k}$ diverges.

Absolute Convergence

A series $\sum_{k=1}^{\infty} c_{k}$ is absolutely convergent if $\sum_{k=1}^{\infty}\left|c_{k}\right|$ converges.
Theorem 7.13
If a series converges absolutely, then it converges.

Lemma 7.16: p-series
$\sum_{k=1}^{\infty} \frac{1}{k^{p}}$ converges if $p>1$ and diverges if $p \leq 1$.

Convergence of Sequences of Functions

Let $\left(f_{n}\right)$ be a sequence of functions defined on a set G. If, for each $z \in G$, the sequence $\left(f_{n}(z)\right)$ converges, then we say that the sequence $\left(f_{n}\right)$ converges pointwise on G. Suppose that $\left(f_{n}\right)$ and f are functions defined on G. If for any $\varepsilon>0$ there is an N such that for all $z \in G$ and $n \geq N$ we have

$$
\left|f_{n}(z)-f(z)\right|<\varepsilon
$$

then $\left(f_{n}\right)$ converges uniformly to f on G.

Proposition 7.18

Suppose $\left(f_{n}\right)$ is a sequence of functions that converges uniformly to a function f on a set G. Then f is continuous on G.

Proposition 7.19

Suppose f_{n} are continuous on the smooth curve γ and converge uniformly on γ to a function f. Then

$$
\lim _{n \rightarrow \infty} \int_{\gamma} f_{n}=\int_{\gamma} f
$$

Lemma 7.20

If $\left(f_{n}\right)$ is a sequence of functions and M_{n} is a sequence of constants so that M_{n} converges to zero and $\left|f_{n}(z)\right| \leq M_{n}$ for all $z \in G$, then $\left(f_{n}\right)$ converges uniformly to zero on G.

Lemma 7.21

If $\left(f_{n}\right)$ is a sequence of functions that converges uniformly to zero on G and z_{n} is any sequence in G, then the sequence $\left(f_{n}\left(z_{n}\right)\right)$ converges to zero.

Proposition 7.22
Suppose $\left(f_{k}\right)$ are continuous on the region $G,\left|f_{k}(z)\right| \leq M_{k}$ for all $z \in G$, and $\sum_{k=1}^{\infty} M_{k}$ converges. Then $\sum_{k=1}^{\infty} f_{k}$ converges absolutely and uniformly in G.

Definition 7.24: Power Series

A power series centered at z_{0} is a series of functions of the form $\sum_{k=0}^{\infty} c_{k}\left(z-z_{0}\right)^{k}$.

Lemma 7.25: Geometric Power Series
The series $\sum_{k=0}^{\infty} z^{k}$ (which is a power series centered at zero, with all c_{k} equal to one) converges absolutely for $|z|<1$ to the function $\frac{1}{1-z}$. The convergence is uniform on any set of the form $\{z \in \mathbb{C}:|z| \leq r<1\}$.

Theorem 7.26: Radius of Convergence

Any power series $\sum_{k=0}^{\infty} c_{k}\left(z-z_{0}\right)^{k}$ has a radius of convergence R, with $0 \leq R \leq \infty$, such that
(a) if $r<R$, then $\sum_{k=0}^{\infty} c_{k}\left(z-z_{0}\right)^{k}$ converges absolutely and uniformly on the closed disk $\bar{D}_{r}\left(z_{0}\right)=\left\{z \in \mathbb{C}:\left|z-z_{0}\right| \leq r\right\}$.
(b) if $\left|z-z_{0}\right|>R$ then the sequence of terms $c_{k}\left(z-z_{0}\right)^{k}$ is unbounded and $\sum_{k=0}^{\infty} c_{k}\left(z-z_{0}\right)^{k}$ diverges.

Corollary 7.27

Suppose the power series $\sum_{k=0}^{\infty} c_{k}\left(z-z_{0}\right)^{k}$ has a radius of convergence R. Then the series represents a function that is continuous on the disk $D_{R}\left(z_{0}\right)=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<R\right\}$.

Corollary 7.28
Suppose the power series $\sum_{k=0}^{\infty} c_{k}\left(z-z_{0}\right)^{k}$ has a radius of convergence R and γ is a smooth curve in $D_{R}\left(z_{0}\right)=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<R\right\}$. Then

$$
\int_{\gamma} \sum_{k=0}^{\infty} c_{k}\left(z-z_{0}\right)^{k} d z=\sum_{k=0}^{\infty} c_{k} \int_{\gamma}\left(z-z_{0}\right)^{k} d z
$$

In particular, if γ is closed, then $\int_{\gamma} \sum_{k=0}^{\infty} c_{k}\left(z-z_{0}\right)^{k} d z=0$.

Theorem 7.30: Determining Radius of Convergence
For the power series $\sum_{k=0}^{\infty} c_{k}\left(z-z_{0}\right)^{k}$, the radius of convergence R is given by

$$
R=\lim _{k \rightarrow \infty}\left|\frac{c_{k}}{c_{k+1}}\right| \quad \text { or } \quad R=\lim _{k \rightarrow \infty} \frac{1}{\left|c_{k}\right|^{1 / k}}
$$

These are the ratio test and root test for determining radius of convergence.

Theorem 8.1

Suppose $f(z)=\sum_{k=0}^{\infty} c_{k}\left(z-z_{0}\right)^{k}$ has positive radius of convergence R. Then f is holomorphic in $D_{R}\left(z_{0}\right)=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<R\right\}$.

Theorem 8.2

Suppose $f(z)=\sum_{k=0}^{\infty} c_{k}\left(z-z_{0}\right)^{k}$ has positive radius of convergence R. Then

$$
f^{\prime}(z)=\sum_{k=1}^{\infty} k c_{k}\left(z-z_{0}\right)^{k-1}
$$

and the radius of convergence of this power series is also R.

Corollary 8.5: Taylor Series Expansion

Suppose $f(z)=\sum_{k=0}^{\infty} c_{k}\left(z-z_{0}\right)^{k}$ has positive radius of convergence. Then

$$
c_{k}=\frac{f^{(k)}\left(z_{0}\right)}{k!}
$$

Corollary 8.6: Uniqueness of Power Series
If $\sum_{k=0}^{\infty} c_{k}\left(z-z_{0}\right)^{k}$ and $\sum_{k=0}^{\infty} b_{k}\left(z-z_{0}\right)^{k}$ are two power series that both converge to the same function $f(z)$ on an open disk centered at z_{0}, then $c_{k}=b_{k}$ for all k.

Theorem 8.7

Suppose f is a function that is holomorphic in $D_{R}\left(z_{0}\right)=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<R\right\}$. Then f can be represented in $D_{R}\left(z_{0}\right)$ as a power series centered at z_{0} (with a radius of convergence of at least R):

$$
f(z)=\sum_{k=0}^{\infty} c_{k}\left(z-z_{0}\right)^{k} \quad \text { with } \quad c_{k}=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{\left(w-z_{0}\right)^{k+1}} d w
$$

Here γ is any positively oriented, simple, closed, smooth curve in $D_{R}\left(z_{0}\right)$ for which z_{0} is inside γ.

Corollary 8.8

Suppose f is holomorphic on the region $G, w \in G$ and γ is a positively oriented simple, closed, smooth, g-contractible curve such that z_{0} is inside γ, Then

$$
f^{(k)}\left(z_{0}\right)=\frac{k!}{2 \pi i} \int_{\gamma} \frac{f(z)}{\left(z-z_{0}\right)^{k+1}} d z
$$

Corollary 8.9: Cauchy's Estimate

Suppose f is holomorphic in $D_{R}\left(z_{0}\right)=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<R\right\}$ and $|f| \leq M$ there. Then

$$
\left|f^{(k)}(z)\right| \leq \frac{k!M}{R^{k}}
$$

for all $z \in \bar{D}_{R}\left(z_{0}\right)=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<R\right\}$.

Analytic Function

A function f is analytic at a point z_{0} if f can be represented as a power series centered at z_{0} and with radius $R>0 . \quad f$ is analytic in an open region G if is analytic at every point of G.

Theorem 8.10: Analytic "Equals" Holomorphic

A function f is analytic at a point z_{0} if and only if it is holomorphic at $z_{0} ; f$ is analytic on G if and only if it is holomorphic on G.

Theorem 8.11: Classification of Zeros

Suppose f is a holomorphic function defined on an open set G and suppose that f has a zero at some point $z_{0} \in G$. Then there are exactly two possibilities: Either
(a) f is identically zero on some open disk D centered at z_{0}, or
(b) there is a positive integer m and a holomorphic function g, defined on G, satisfying $f(z)=\left(z-z_{0}\right)^{m} g(z)$ for all $z \in G$, with $g\left(z_{0}\right)=0$.

The integer m in the second case is uniquely determined by f and z_{0}, and is called the multiplicity of the zero of f at z_{0}.

Theorem 8.12: The Identity Principle

Suppose f and g are holomorphic on the region G and $f\left(z_{k}\right)=g\left(z_{k}\right)$ for a sequence that converges to $w \in G$, with $z_{k} \neq w$ for any k. Then $f(z)=g(z)$ for all $z \in G$.

Theorem 8.13: Maximum-Modulus Theorem

Suppose f is holomorphic and non-constant on the closure of a bounded region G. Then $|f|$ only attains its maximum on the boundary of G.

Theorem 8.15: Maximum-Modulus Theorem

Suppose f is holomorphic and non-constant on the closure of a bounded region G. Then $|f|$ only attains its minimum on the boundary of G.

Definition 8.16: Laurent Series

A Laurent series centered at z_{0} is a series of the form $\sum_{k=-\infty}^{\infty} c_{k}\left(z-z_{0}\right)^{k}$.

Theorem 8.19

Suppose f is a function that is holomorphic in the annulus

$$
A=\left\{z \in \mathbb{C}: R_{1}<\left|z-z_{0}\right|<R_{2}\right\}
$$

Then f can be represented in A as a Laurent series centered at z_{0} :

$$
f(z)=\sum_{k=-\infty}^{\infty} c_{k}\left(z-z_{0}\right)^{k} \quad \text { with } \quad c_{k}=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{\left(w-z_{0}\right)^{k+1}} d w
$$

Here γ is any circle in A that is centered at z_{0} (or any other closed, smooth path that is A-homotopic to such a circle).

Theorem 8.20

For a given function in a given region of convergence, the coefficients of the corresponding Laurent series are uniquely determined.

Definition 9.1: Classification of Singularities

If f is holomorphic in the punctured disk $\left\{z \in \mathbb{C}: 0<\left|z-z_{0}\right|<R\right\}$ for some $R>0$ but not at $z=z_{0}$, then z_{0} is an isolated singularity of f. The singularity z_{0} is called
(a) a removable singularity if there is a function g, that is holomorphic in the set $\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<R\right\}$, such that $f=g$ in the set $\left\{z \in \mathbb{C}: 0<\left|z-z_{0}\right|<R\right\}$,
(b) a pole if $\lim _{z \rightarrow z_{0}}|f(z)|=\infty$,
(c) an essential singularity if z_{0} is neither removable or a pole.

Proposition 9.5

Suppose z_{0} is an isolated singularity of f. Then
(a) z_{0} is removable if and only if $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)=0$;
(b) z_{0} is pole if and only if it is not removable and $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{n+1} f(z)=0$ for some positive integer n. The smallest possible such n is called the order of the pole.

Theorem 9.6; The Casorati-Weierstrass Theorem

If z_{0} is an essential singularity of f and $D=\left\{z \in \mathbb{C}: 0<\left|z-z_{0}\right|<R\right\}$ for some $R>0$, then any $w \in \mathbb{C}$ is arbitrarily close to a point in $f(D)$. That is, for any $w \in \mathbb{C}$ and any $\varepsilon>0$ there exists a $z \in D$ such that $|w-f(z)|<\varepsilon$.

Proposition 9.7

Suppose z_{0} is an isolated singularity of f having Laurent series $\sum_{k=-\infty}^{\infty} c_{k}\left(z-z_{0}\right)^{k}$ that is valid in some set $\left\{z \in \mathbb{C}: 0<\left|z-z_{0}\right|<R\right\}$. Then
(a) z_{0} is removable if and only if there are no negative exponents (that is, the Laurent series is a power series);
(b) z_{0} is pole if and only if there are finitely many negative exponents, and the order of the pole is the largest value of k such that $c_{-k} \neq 0$;
(c) z_{0} is an essential singularity if and only if there are infinitely many negative exponents.

