Math 411, Complex Analysis DEFINITIONS, FORMULAS AND THEOREMS Winter 2014

Trigonometric Functions of Special Angles
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Trigonometric Functions of an Acute Angle of a Right Triangle
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Pythagorean Identity
sin?a +cos?a =1
Sum and Difference Identities
cos(a + ) = cosacos 8 — sinasin 8 cos(aw — B) = cosawcos 8 + sinasin 8
sin(a + ) = sinacos 8 + cos asin 8 sin(a — ) = sinacos 8 — cos asin 8

Double Angle Identities

sin2x = 2sinx cosx

cos2z =cos’z —sin?x = 2cos’zr —1=1—2sin’z



Complex Numbers

A complex number z is a number of the form z = x + iy, where x and y are
real numbers and 2 = —1. The numbers x and y are called the real part and
imaginary part of z, denoted by Rez and Imz.

Complex Conjugates

The complex conjugate (or just conjugate) of a number z = x + 4y is the number
zZ =z —iy. The following hold:
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Modulus of a Complex Number
The modulus (or absolute value) of a number z = x + iy is the real number
|z| = v/2% + y2. The following hold:
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Argument of a Complex Number

For any complex number z = x + iy, there exist real numbers r > 0 and phi such
that
z=x+1iy = r(cosgp + isin @).

This is sometimes called the polar form of z. The radian value ¢ is an argument
of z, denoted by ¢ = argz. Note the following:

o If ¢ is an argument of z, then sois ¢+ 27n for any integer n.

e The value of ¢ (there is only one) such that —7 < ¢ < 7 is called the principal
argument of z, denoted by Argz.

o« r=|

Euler’s Formula and Exponential Form

e For any real number ¢ we define €' = cos¢ + isin¢. This is called Euler’s
formula.

e Using Euler’s formula, for any complex number z there exists a real number
¢ such that

z = r(cos ¢ + isin @) = re'®.

re'® is called the exponential form of z.




Topology of the Complex Plane

In all of the following and throughout our course, it is understood that a set S under
discussion is a subset of the complex plane.

For zp € C and £ >0 theset D.(29) ={z€ C : |z — 20| <& iscalled an &
neighborhood of z.

A point zp is an interior point of S if there is an ¢ neighborhood of 2y that
contains only points of S.

A point zp is an exterior point of S if there is an € neighborhood of 2y that
contains no points of S.

A point zp is a boundary point of S if every € neighborhood of 2y contains
points of S and points not in S.

A set S is open if every point of S is an interior point.
A set S isclosed if S contains all of its boundary points.

The set of all boundary points of S is called the boundary of S, denoted by
0S.

The closure of a set S is the union of S with all its boundary. The closure of
S is denoted S or 0S.

An open set S is connected if any two points of S can be joined by a polygonal
line segment.

A point 2z is called an accumulation point of a set S if every € neighborhood
of zp contains some point in S other than zj.

A point zg € S is called an isolated point if there exists an € neighborhood of
zp containing no points of S other than z.

Deleted Neighborhood

A deleted neighborhood of a point zy is a set of the form

{zeC:0<|z—20| <&}

for some € > 0. Given this, an accumulation point zy of a set S is a point such that
every deleted neighborhood of zy contains at least one point in S.

Function

A function f is a rule that assigns to each z € G, where G is some subset of C,
a unique complex number w. We indicate this by writing w = f(z).

We sometimes say that z is mapped to w by f, and that f is a mapping
from the complex numbers to the complex numbers.

The number w is called the image of z.

The set G is called the domain of f, and the range of f is the set

{w e C : w= f(z) for some z € G}.




DEFINITION 2.1: Limit of a Function (Churchill and Brown)

Suppose a function f is defined at all points in a deleted neighborhood of a point
zo. We say that the limit of f as z approaches zy is a number wy if, for every
€ >0, there exists a & > 0 such that

|f(z) —wo| <&  whenever 0 < |z— 20| <.

We write lim f(z) = wo.
Z—20

DEFINITION 2.1: Limit of a Function (Beck, Marchesi, Pixton, Sabalka)

Suppose f is a complex function with domain G and zg is an accumulation point

of G. Suppose there is a complex number wq such that for every € > 0, we can find

a & >0 sothat for all z € G satisfying 0 < |z — 29| < § we have |f(z) —wo| < e.

Then wqy is the limit of f as z approaches zy, and we write Zli_gl f(z) = wo.
0

LEMMA 2.4: Limit Rules
Let f and ¢ be complex functions and let ¢ and 29 be complex numbers. If

lim f(z) and lim g(z) exist, then
z—20 Z—20

(1) lim [£(z) +g(2)] = lim f(2)+ lim g(2)

Z—20 Z—20

(ag) lim [cg(2)] = ¢ lim g(2)

zZ—20 zZ—20

®) Tl gt = | 7| - | 1w o0

zZ—20 zZ—2z0 Z—rZ0

zZ—20

lim f(z)
(c) If lim g(z) #0, then lim B(z)} = Tm 900

Z) zZ—20

DEFINITION 2.7: Derivative of a Function

Suppose f : G — C is a complex function and zp is an interior point of G. The
derivative of f at 2z is defined as

Fo) — 1 TGV = IC0)

zZ—20 zZ— 20

when the limit exists. In this case we say that f is differentiable at zg.

Holomorphic and Entire Functions

We say that f is holomorphic at z if it is differentiable at all points in some open
disk centered at zy, and f is holomorphic on an open set G if it is differentiable at
all points in G. A function that is differentiable at all points in C is called entire.




LEMMA 2.11: Derivative Rules

Suppose that f and g are differentiable at 2z € C, ¢ € C and n € Z and h is
differentiable at ¢(z). Then

(a) [cf(2)]' =cf'(2) and [f(2) +9(2)] = f'(2) +¢'(z)  (linearity)
(b) [F(2)-9(2))" = f(2)g'(2) + 9(2)f'(2)  (product rule)

)}' _9(a)f'(2) = f(2)d'(2)
[9(2)]?

(d) (¢)) =0, (2))=1 and (2") =nz""! (power rule)
(

(&) [h(g(=)) = (g()-g/(z) (chain rule)

(quotient rule)

THEOREM 2.15: Cauchy-Riemann Equations

(a) Suppose that f(z) = f(z+iy) = u(z,y)+iv(z,y) is differentiable at zg = xo+iyo.
Then

U;n($07y0) = Uy(ﬂfoa yo) and uy(ﬂfo, yo) = —Um(uo, yo) (1)

(b) Suppose that f(z) = f(z +iy) = u(x,y) + iv(z,y) is a complex valued function
such that the first partial derivatives of w and v with respect to both x and
y exist in an open disk centered at 29 and are continuous at zp. If (1) holds at
zp, then f is differentiable at z.

In both cases the derivative is given by f'(20) = u (20, yo0) + vz (0, yo)

DEFINITION 3.15: The Complex Exponential Function
The complex exponential function e* or exp(z) is defined for z =z +1iy by

exp(z) = e®(cosy +isiny) = e"e®

LEMMA 3.16: Properties of the Complex Exponential Function

For all z, 21,20 € C,
(a) exp(z1)exp(z2) = exp(z1 + 22)

1
(b) eXp(_Z) = exp(z)

(c) exp(z+ 2mi) = exp(z)
(d) |exp(z)| = exp(Rez)
(e) exp(z) #0

(1) L exp(z) = exp(2)




DEFINITION 3.17: The Complex Sine and Cosine Functions

The complex sine and cosine functions are defined for all z € C by

R exp(iz) — exp(—iz) and cos 5 — exp(iz) + exp(—iz)

24 2

DEFINITION 3.20(A): The Multiple-Valued Complex Logarithm Function

For the complex number z # 0 with any particular argument 6 we define
logz =In|z| +i(0 4 2nmw), necZ.

It is then the case that e'°8* =z and loge* = z + 2nmi, n € Z.

DEFINITION 3.20(B): The Principal Value Complex Logarithm Function

For any complex number z € D* = {2z : z # re'™, r > 0} we define

Logz = In|z| + iArgz.

: d 1
Then e!°8% = z, Loge* = z and d—Logz = — forall z € D*.
z z

DEFINITION 1.14: Paths, Arcs, Contours

A path (or curve, or arc) in C is the image of a continuous function = : [a,b] — C,
where [a,b] is a closed interval in R. The function 7 is the parametrization of
the path. We also have the following:

e The path (arc) is called smooth if it is differentiable.

e The path is called a closed curve If ~(a) =(b). It is a simple closed curve
if v(s)=~(t) only for s=a and t=0».

e A path is called piecewise smooth if there exist ¢; < ¢y < --- ... < ¢, in the in-
terval (a,b) such that ~ is smooth on each of the intervals [a, ¢1], [e1, c2], ..., [en, b].
A piecewise smooth curve is sometimes called a contour.

DEFINITION 4.1: Complex Integration

Suppose ~ is a smooth curve (arc) parameterized by ~(t), a <t <b, and f is a
complex function that is continuous on ~. Then we define the integral of f on ~ by

A f = / feyaz= [ " Fa) ()

If ~v(t), a <t <b isa piecewise smooth curve (contour) that is differentiable on the
intervals [a, c1], [c1, c2], [e2, €3], .., [en—1, cn], [cn, 0], then

/7f=/;f(v( dt+/ F OO () dit + - /f




PRroOPOSITION 4.3: Independence of Parametrization

Suppose « is a smooth curve parameterized in the same direction by both
71(t), a<t<b and (s), c<s<ds

If f is a complex function that is continuous on - then

b d
/ ;= / Fon (&) (t) dt = / F(a(8))7h (5) ds

DEFINITION 4.4: Length of a Curve

The length of a smooth curve ~ is

b
length(’y)Z/ 17/ (t)|dt

for any parametrization y(t), a <t <b of ~.

PROPOSITION 4.7: Properties of the Integral

Suppose that v is a smooth curve, f and g are complex functions that are continuous
on 7, and c € C.

(a) [ycf:c/vf and /7(f+g)=/7f+/vg

(b) If ~ is parameterized by ~(¢), a <t <b, define the curve —vy by
—v({t)=v(a+b—1), a <t <b. Then/ f:—/f.
- v

(¢) If 41 and 7o are curves so that o starts where v, ends, define 17y, by following

71 to its end, then continuing on v, to its end. Then f= / f+ f
Y172 71 72

(d)

[ 1] < maxra) tengine)
¥ ey

G-Homotopic Curves

Let G C C be open and suppose that 7y and 7 are curvesin G parameterized by
(), 0<t<1 and (), 0<t <1

We say that -y is G-homotopic to ~; if there exists a continuous function A :

[0,1] x [0,1] = G such that h(t,0) =~0(t) and h(t,1) =~1(t) for all ¢ € [0,1]. We
denote this by 7o ~g 71, and the function h is called a homotopy.




THEOREM 4.9: Cauchy’s Theorem

Suppose that G C C is open, f isholomorphicin G. If vy and 7; are closed curves
in G with 9 ~g 71 via a homotopy h with continuous second partial derivatives,

then
IR

G-Contractible Curve

Let G C C be open. A closed curve ~ is said to be G-contractible if ~ is
G-homotopic to a point. This is denoted by ~ ~¢ 0.

COROLLARY 4.10:

Suppose that G C C is open, f is holomorphicin G, and v ~g 0 via a homotopy
with continuous second partial derivatives. Then

sza

COROLLARY 4.11:

If f isentire and < is any smooth closed curve, then

sza

ANOTHER COROLLARY: Independence of Path

Suppose that G C C is open and f is holomorphicin G. If =y and ~; are curves
in G parameterized by

P)/O(t)a Ogtg]- and Pyl(t)a Ogtg]-

with v ~c 71, 70(0) =71(0) and ~o(1) =~1(1), then

/)’Of: 'Ylf.

Positively Oriented Curve

A simple closed curve v is positively oriented if it is parameterized so that the inside
of the curve is on the left of ~.




THEOREM 4.12: Cauchy’s Integral Formula for a Circle

Let C,(z0) be the counterclockwise oriented circle centered at zp and with radius r.
If f is holomorphic at each point of the closed disk bounded by C,(2p), then

fz0) = L/c Md,z.

- 2mi (20) &~ 20

THEOREM 4.13: Cauchy’s Integral Formula
Suppose f is holomorphic on the region G, zp € G and ~ is a positively oriented,
simple closed curve that is G-contractible and such that zy is enclosed by ~. Then

1)

=— | —~dz.
211 Z— 29

f(20)

Y

COROLLARY 4.14:

Suppose f is holomorphic on and inside the circle C.,.(z9) parameterized by ~(0) =
20 +re? for 0 <6< 27, then

1 2

f(z0) = /), f(z0 4 re') db.

THEOREM 5.1:

Suppose [ is holomorphic on the region G, zp € G and ~ is a positively oriented,
simple closed curve that is G-contractible and such that zy is enclosed by ~. Then

P = o [ 5 wa =% [ D

T 2mi ), (2 — 2)? mi )., (z —20)3

COROLLARY 5.2:

If f is differentiable in the region G, then f is infinitely differentiable in G.

LEMMA 5.6:

Suppose p(z) is a polynomial of degree n with leading coefficient a,. Then there is
a real number Ry such that

slan|l2]™ < [p(2)] < 2lan||2|"

for all z with |z| > Ry.




THEOREM 5.7: Fundamental Theorem of Algebra

Every non-constant polynomial has a root in C.

COROLLARY 5.9: Liouville’s Theorem

Every bounded entire function is constant.

DEFINITION 5.11: Antiderivative of a Function

Let G C C be open and connected. For any functions f,F : G — C, if F is
holomorphic on G and F'(z) = f(z) for all z € G, then F is an antiderivative
of F on G. An antiderivative of f on G will also sometimes be referred to as a
primitive of f on G.

THEOREM 5.13: Second Fundamental Theorem of Calculus

Suppose that G C C is open and connected, and F' is an antiderivative of f on G.
If v € G is asmooth curve with parametrization ~(¢), a <t <b, then

/ f(2)dz = F(7(b)) - F(2(a))

COROLLARY 5.14: Independence of Path

If f is holomorphic on a simply connected open set G, then f7 f is independent of
of the path v € G between z; =v(a) and 2o = y(b).

COROLLARY 5.15:

Suppose G C C is open, < is asmooth closed curvein G, and f has an antiderivative
on G. Then fvf:O'

THEOREM 5.17: First Fundamental Theorem of Calculus

Suppose G C C is a connected open set, and fix some basepoint 2y € G. For each
z € G, let ~, denote a smooth curve in G from 2y to z. Let f:G — C bea
holomorphic function such that, for any simple closed curve ~ € G, f7 f=0. Then
the function F : G — C defined at any point z € G by

F(z):= f

Y=

is holomorphic in G with F'(z) = f(z). (The notation := means “defined by.”)

10




DEFINITION 5.18: Simply Connected

A connected, open G C C is called simply connected if every simple closed curve in
G is G-contractible. That is, for any simple closed curve v C G, the interior of v is
completely contained in G.

COROLLARY 5.19

Every holomorphic function on a simply connected open set has a primitive.

COROLLARY 5.20: Morera’s Theorem

Suppose f is continuous in a connected open set G and

fr-

for all smooth closed paths v C G. Then f is holomorphic in G.

DEFINITION 7.1: Convergent and Divergent Sequences

Suppose (a,) is a sequence of complex numbers. If a € C is such that for all
€ > 0 there is an integer N for which |a, —a|] < & whenever n > N, then we say
the sequence (a,) is convergent with limit a. We write

lim a, = a.
n— o0

If no such a exists, then we say that (a,) is divergent.

LEMMA 7.4

Let (an) and (b,) be convergent sequences and let ¢ be any complex number. Then

(a) lim (ay, +0b,) = lim a, + lim b, and lim ca, =c lim a,
n—oo n—oo n—oo n—oo n—oo

(b) 555, (onbn) =[5m0 i b

. . Qp nlgrclo n
(¢) If limb, #0 and b, #0 for any n, then lim | — | =2">"—

n—oo \ by, lim b,
n— o0

(d) If f is continuous at a, every a, isin the domain of f and lim a, = q,

then lm_f(a,) = f(a). .

DEFINITION: Monotone Sequence

A sequence (z,) of real numbers is non-decreasing if 1 > xy forall £ =1,2,3, ..,
or non-increasing if xx11 < zp for k= 1,2,3,.... A sequence that is either non-
decreasing or non-increasing is called a monotone sequence.

11




AxioM: Monotone Sequence Property

Any bounded monotone sequence converges.

THEOREM 7.6: Archimedean Property

If = is any real number, then there is an integer N that is greater than =x.

LEMMA 7.7

Suppose a,b € C and p is a complex polynomial. Then

n
° 1imp(n)=0 e lim — =0
n—oo " n—oo n!
LEmMMA 7.9
(o]
If b, are nonnegative real numbers then Zbk converges if and only if the partial
k=1

sums are bounded.

LEMMA 7.10

If I;bk converges, then khj& b = 0.

LEMMA 7.11: (Test for Divergence)

If klirr;o br # 0, then ;bk diverges.

Absolute Convergence
o o

A series Z ¢ is absolutely convergent if Z lck| converges.
k=1 k=1

THEOREM 7.13

If a series converges absolutely, then it converges.

LEMMA 7.16: p-series

o0

1
Z w converges if p > 1 and diverges if p < 1.
k=1

12




Convergence of Sequences of Functions

Let (fn) be a sequence of functions defined on a set G. If, for each z € G, the
sequence (f,(z)) converges, then we say that the sequence (f,) converges pointwise
on G. Suppose that (f,) and f are functions defined on G. If for any € > 0 there
isan N such that forall z€ G and n > N we have

[fn(z) = f(2)] <e,

then (f,) converges uniformly to f on G.

PROPOSITION 7.18

Suppose (f) is a sequence of functions that converges uniformly to a function f on
aset G. Then f is continuouson G.

PROPOSITION 7.19

Suppose f, are continuous on the smooth curve ~ and converge uniformly on ~ to

a function f. Then
lim [ f,= / /-
n—oo ~ ~

LEMMA 7.20

If (fn) is asequence of functions and M,, is a sequence of constants so that M,, con-
verges to zero and |f,(2)] < M,, for all z € G, then (f,) converges uniformly to
zero on G.

LEMMA 7.21

If (fn) is a sequence of functions that converges uniformly to zero on G and z, is
any sequence in G, then the sequence (f,(z,)) converges to zero.

PROPOSITION 7.22

Suppose (fr) are continuous on the region G, |fi(z)] < M) for all z € G, and

Z M, converges. Then Z fr converges absolutely and uniformly in G.
k=1 k=1

DEFINITION 7.24: Power Series

[ee]
A power series centered at z; is a series of functions of the form g cr(z — 20)".
k=0

13




LEMMA 7.25: Geometric Power Series

o0
The series Z 2® (which is a power series centered at zero, with all ¢; equal to one)
k=0

1
converges absolutely for |z| < 1 to the function 1 The convergence is uniform

on any set of the form {z € C : |z] <r <1}.

THEOREM 7.26: Radius of Convergence

o0
Any power series ch (z — zo)k has a radius of convergence R, with 0 < R < o0,

k=0
such that

(a) if r < R, then Z cx(z—20)F converges absolutely and uniformly on the closed
k=0
disk D,(20) ={2€C : |z — 2| <r}.

(b) if |z — 29| > R then the sequence of terms cp(z — 2)* is unbounded and

o0
Z cr(z — z0)F diverges.
k=0

COROLLARY 7.27

o0
Suppose the power series Z Ck (z—zo)k has a radius of convergence R. Then the series

k=0
represents a function that is continuous on the disk Dg(z9) = {z € C : |z — 20| < R}.

COROLLARY 7.28

o0

Suppose the power series Z cx(z — 20)* has a radius of convergence R and 7 is a
k=0

smooth curve in Dr(zp) = {z € C : |z — 29| < R}. Then

/kick(z—zo)kdz:ick/(z—zo)kdz
Y k=0

k=0 v

In particular, if ~ is closed, then / Z cr(z —z)fdz = 0.
Y k=0

14




THEOREM 7.30: Determining Radius of Convergence

o0
For the power series E cx(z — 20)¥, the radius of convergence R is given by
k=0
. Ck 1
R = lim or R= lim ——
k—00 | Ck41 k—o0 |ck|1/k

These are the ratio test and root test for determining radius of convergence.

THEOREM 8.1

o0
Suppose f(z) = ch(z — 2z)F has positive radius of convergence R. Then f is
k=0

holomorphic in Dg(z9) = {2 €C : |z — 20| < R}.

THEOREM 8.2

o0
Suppose f(z) = Z cx(z — 20)F has positive radius of convergence R. Then
k=0

fl(z) = Z kep(z — z0)F !
k=1

and the radius of convergence of this power series is also R.

COROLLARY 8.5: Taylor Series Expansion

o0
Suppose f(z) = Z cx(z — 20)F has positive radius of convergence. Then
k=0

_ F®)(2)

C !

COROLLARY 8.6: Uniqueness of Power Series

o0 o0
If Z cr(z — z)F and Z bi(z — z)F are two power series that both converge to the
k=0 k=0

same function f(z) on an open disk centered at zg, then c¢p = by for all k.

15




THEOREM 8.7

Suppose f is a function that is holomorphic in Dg(z0) = {z € C : |z — 20| < R}.
Then f can be represented in Dg(z9) as a power series centered at zg (with a radius
of convergence of at least R):

f(z)= Z cr(z — 2z0)" with Ck = Qim /v % dw.

k=0

Here ~ is any positively oriented, simple, closed, smooth curve in Dg(zp) for which
zp is inside .

COROLLARY 8.8

Suppose f is holomorphic on the region G, w € G and < is a positively oriented
simple, closed, smooth, g-contractible curve such that zy is inside -y, Then

f(k)(ZO) _ E/ f(z) dz

2 )., (2 — z)kt1 7

COROLLARY 8.9: Cauchy’s Estimate

Suppose f is holomorphic in Dg(zg) = {2 € C : |z — 29| < R} and |f| < M there.

Then "y
196 <

for all 2z € Dg(z) ={2€C : |z — 2| < R}.

Analytic Function

A function f is analytic at a point zy if f can be represented as a power series
centered at zp and with radius R > 0. f is analytic in an open region G if it is
analytic at every point of G.

THEOREM 8.10: Analytic “Equals” Holomorphic

A function f is analytic at a point 2z if and only if it is holomorphic at zg; f is
analytic on G if and only if it is holomorphic on G.

16




THEOREM &.11: Classification of Zeros

Suppose f is a holomorphic function defined on an open set G and suppose that
f has a zero at some point zg € G. Then there are exactly two possibilities: Either

(a) f is identically zero on some open disk D centered at zp, or

(b) there is a positive integer m and a holomorphic function ¢, defined on G,
satisfying f(z) = (2 — 20)™g(z) for all z € G, with g(z9) =0.

The integer m in the second case is uniquely determined by f and zp, and is called
the multiplicity of the zero of f at z.

THEOREM 8.12: The Identity Principle

Suppose f and g are holomorphic on the region G and f(zr) = g(zx) for a sequence
that converges to w € G, with z # w for any k. Then f(z)=g(z) forall z € G.

THEOREM &.13: Maximum-Modulus Theorem

Suppose f is holomorphic and non-constant on the closure of a bounded region G.
Then |f| only attains its maximum on the boundary of G.

THEOREM &.15: Maximum-Modulus Theorem

Suppose f is holomorphic and non-constant on the closure of a bounded region G.
Then |f| only attains its minimum on the boundary of G.

DEFINITION 8.16: Laurent Series

[ee]
A Laurent series centered at zy is a series of the form g cr(z — 20)k.

k=—o0

THEOREM 8.19

Suppose f is a function that is holomorphic in the annulus
A={z€C: Ry <|z— 2| < Ra}.

Then f can be represented in A as a Laurent series centered at zg:

- 1 f(w)

— k . .
k=—o0 v

Here + is any circle in A that is centered at zp (or any other closed, smooth path

that is A-homotopic to such a circle).

17




THEOREM 8.20

For a given function in a given region of convergence, the coefficients of the corresponding
Laurent series are uniquely determined.

DEFINITION 9.1: Classification of Singularities

If f is holomorphic in the punctured disk {z € C : 0 < |z — 29| < R} for some
R >0 but not at z = 2y, then zy is an isolated singularity of f. The singularity
zo 1is called

(a) a removable singularity if there is a function g, that is holomorphic in the set
{z€C : |z— 20| < R}, such that f=g intheset {z€C:0<|z— 2| <R},

(b) a poleif lim |f(z)| = oo,
Z—20

(c) an essential singularity if zy is neither removable or a pole.

PROPOSITION 9.5

Suppose zg is an isolated singularity of f. Then
(a) zo is removable if and only if lim,_,,,(z — 20)f(z) = 0;

(b) 2o is pole if and only if it is not removable and lim,_,,,(z — 20)" "1 f(2) =0 for
some positive integer n. The smallest possible such n is called the order of the
pole.

THEOREM 9.6; The Casorati-Weierstrass Theorem

If zy is an essential singularity of f and D={z€ C : 0 < |z — 2| < R} for some
R > 0, then any w € C is arbitrarily close to a point in f(D). That is, for any
w € C and any & >0 there exists a z € D such that |w— f(2)| <e.

PROPOSITION 9.7

o0
Suppose z( is an isolated singularity of f having Laurent series Z Ck (z—zo)k that

k=—o0

is valid in some set {z € C : 0 < |z — 29| < R}. Then

(a) zp is removable if and only if there are no negative exponents (that is, the Laurent
series is a power series);
(b) 2o is pole if and only if there are finitely many negative exponents, and the order

of the pole is the largest value of k such that c_g # 0;

(¢) 20 is an essential singularity if and only if there are infinitely many negative
exponents.
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