
Math 411, Complex Analysis Definitions, Formulas and Theorems Winter 2014

Trigonometric Functions of Special Angles

α, degrees α, radians sinα cosα tanα
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x = cosα

y = sinα

Trigonometric Functions of an Acute Angle of a Right Triangle

sinα =
opp

hyp
, cosα =

adj

hyp
, tanα =

opp

adj
,

adj

opphy
p

α

Pythagorean Identity

sin2 α+ cos2 α = 1

Sum and Difference Identities

cos(α+ β) = cosα cosβ − sinα sinβ cos(α − β) = cosα cosβ + sinα sinβ

sin(α+ β) = sinα cosβ + cosα sinβ sin(α− β) = sinα cosβ − cosα sinβ

Double Angle Identities

sin 2x = 2 sinx cos x

cos 2x = cos2 x− sin2 x = 2 cos2 x− 1 = 1− 2 sin2 x
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Complex Numbers

A complex number z is a number of the form z = x + iy, where x and y are
real numbers and i2 = −1. The numbers x and y are called the real part and
imaginary part of z, denoted by Re z and Im z.

Complex Conjugates

The complex conjugate (or just conjugate) of a number z = x + iy is the number
z̄ = x− iy. The following hold:

z1 ± z2 = z̄1 ± z̄2 z1z2 = z̄1z̄2

(

z1

z2

)

=
z̄1

z̄2
Re z =

z + z̄

2
Im z =

z − z̄

2i

Modulus of a Complex Number

The modulus (or absolute value) of a number z = x + iy is the real number

|z| =
√

x2 + y2. The following hold:

|z|2 = zz̄ |z1z2| = |z1||z2| |z̄| = |z| |z1 + z2| ≤ |z1|+ |z2|

| ± z1 ± z2| ≤ |z1|+ |z2| | ± z1 ± z2| ≥ ||z1| − |z2||
∣

∣

∣

∣

∣

n
∑

k=1

zk

∣

∣

∣

∣

∣

≤
n
∑

k=1

|zk|

Argument of a Complex Number

For any complex number z = x + iy, there exist real numbers r ≥ 0 and phi such
that

z = x+ iy = r(cosφ + i sinφ).

This is sometimes called the polar form of z. The radian value φ is an argument
of z, denoted by φ = arg z. Note the following:

• If φ is an argument of z, then so is φ+ 2πn for any integer n.

• The value of φ (there is only one) such that −π < φ ≤ π is called the principal
argument of z, denoted by Arg z.

• r = |z|

Euler’s Formula and Exponential Form

• For any real number φ we define eiφ = cosφ + i sinφ. This is called Euler’s
formula.

• Using Euler’s formula, for any complex number z there exists a real number
φ such that

z = r(cosφ+ i sinφ) = reiφ.

reiφ is called the exponential form of z.

2



Topology of the Complex Plane

In all of the following and throughout our course, it is understood that a set S under
discussion is a subset of the complex plane.

• For z0 ∈ C and ε > 0 the set Dε(z0) = {z ∈ C : |z − z0| < ε is called an ε

neighborhood of z0.

• A point z0 is an interior point of S if there is an ε neighborhood of z0 that
contains only points of S.

• A point z0 is an exterior point of S if there is an ε neighborhood of z0 that
contains no points of S.

• A point z0 is a boundary point of S if every ε neighborhood of z0 contains
points of S and points not in S.

• A set S is open if every point of S is an interior point.

• A set S is closed if S contains all of its boundary points.

• The set of all boundary points of S is called the boundary of S, denoted by
∂S.

• The closure of a set S is the union of S with all its boundary. The closure of
S is denoted S or ∂S.

• An open set S is connected if any two points of S can be joined by a polygonal
line segment.

• A point z0 is called an accumulation point of a set S if every ε neighborhood
of z0 contains some point in S other than z0.

• A point z0 ∈ S is called an isolated point if there exists an ε neighborhood of
z0 containing no points of S other than z0.

Deleted Neighborhood

A deleted neighborhood of a point z0 is a set of the form

{z ∈ C : 0 < |z − z0| < ε}

for some ε > 0. Given this, an accumulation point z0 of a set S is a point such that
every deleted neighborhood of z0 contains at least one point in S.

Function

A function f is a rule that assigns to each z ∈ G, where G is some subset of C,
a unique complex number w. We indicate this by writing w = f(z).

• We sometimes say that z is mapped to w by f , and that f is a mapping
from the complex numbers to the complex numbers.

• The number w is called the image of z.

• The set G is called the domain of f , and the range of f is the set

{w ∈ C : w = f(z) for some z ∈ G}.
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Definition 2.1: Limit of a Function (Churchill and Brown)

Suppose a function f is defined at all points in a deleted neighborhood of a point
z0. We say that the limit of f as z approaches z0 is a number w0 if, for every
ε > 0, there exists a δ > 0 such that

|f(z)− w0| < ε whenever 0 < |z − z0| < δ.

We write lim
z→z0

f(z) = w0.

Definition 2.1: Limit of a Function (Beck, Marchesi, Pixton, Sabalka)

Suppose f is a complex function with domain G and z0 is an accumulation point
of G. Suppose there is a complex number w0 such that for every ε > 0, we can find
a δ > 0 so that for all z ∈ G satisfying 0 < |z − z0| < δ we have |f(z)− w0| < ε.
Then w0 is the limit of f as z approaches z0, and we write lim

z→z0
f(z) = w0.

Lemma 2.4: Limit Rules

Let f and g be complex functions and let c and z0 be complex numbers. If
lim
z→z0

f(z) and lim
z→z0

g(z) exist, then

(a1) lim
z→z0

[f(z) + g(z)] = lim
z→z0

f(z) + lim
z→z0

g(z)

(a2) lim
z→z0

[c g(z)] = c lim
z→z0

g(z)

(b) lim
z→z0

[f(z) · g(z)] =
[

lim
z→z0

f(z)

]

·
[

lim
z→z0

g(z)

]

(c) If lim
z→z0

g(z) 6= 0, then lim
z→z0

[

f(z)

g(z)

]

=
lim
z→z0

f(z)

lim
z→z0

g(z)

Definition 2.7: Derivative of a Function

Suppose f : G → C is a complex function and z0 is an interior point of G. The
derivative of f at z0 is defined as

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0

when the limit exists. In this case we say that f is differentiable at z0.

Holomorphic and Entire Functions

We say that f is holomorphic at z0 if it is differentiable at all points in some open
disk centered at z0, and f is holomorphic on an open set G if it is differentiable at
all points in G. A function that is differentiable at all points in C is called entire.
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Lemma 2.11: Derivative Rules

Suppose that f and g are differentiable at z ∈ C, c ∈ C and n ∈ Z and h is
differentiable at g(z). Then

(a) [cf(z)]′ = c f ′(z) and [f(z) + g(z)]′ = f ′(z) + g′(z) (linearity)

(b) [f(z) · g(z)]′ = f(z)g′(z) + g(z)f ′(z) (product rule)

(c)

[

f(z)

g(z)

]′

=
g(z)f ′(z)− f(z)g′(z)

[g(z)]2
(quotient rule)

(d) (c)′ = 0, (z)′ = 1 and (zn)′ = nzn−1 (power rule)

(e) [h(g(z)]′ = h′(g(z)) · g′(z) (chain rule)

Theorem 2.15: Cauchy-Riemann Equations

(a) Suppose that f(z) = f(x+iy) = u(x, y)+iv(x, y) is differentiable at z0 = x0+iy0.
Then

ux(x0, y0) = vy(x0, y0) and uy(x0, y0) = −vx(u0, y0) (1)

(b) Suppose that f(z) = f(x+ iy) = u(x, y) + iv(x, y) is a complex valued function
such that the first partial derivatives of u and v with respect to both x and
y exist in an open disk centered at z0 and are continuous at z0. If (1) holds at
z0, then f is differentiable at z0.

In both cases the derivative is given by f ′(z0) = ux(x0, y0) + ivx(x0, y0)

Definition 3.15: The Complex Exponential Function

The complex exponential function ez or exp(z) is defined for z = x+ iy by

exp(z) = ex(cos y + i sin y) = exeiy

Lemma 3.16: Properties of the Complex Exponential Function

For all z, z1, z2 ∈ C,

(a) exp(z1) exp(z2) = exp(z1 + z2)

(b) exp(−z) =
1

exp(z)

(c) exp(z + 2πi) = exp(z)

(d) | exp(z)| = exp(Re z)

(e) exp(z) 6= 0

(f)
d

dz
exp(z) = exp(z)
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Definition 3.17: The Complex Sine and Cosine Functions

The complex sine and cosine functions are defined for all z ∈ C by

sin z =
exp(iz)− exp(−iz)

2i
and cos z =

exp(iz) + exp(−iz)

2

Definition 3.20(a): The Multiple-Valued Complex Logarithm Function

For the complex number z 6= 0 with any particular argument θ we define

log z = ln |z|+ i(θ + 2nπ), n ∈ Z.

It is then the case that elog z = z and log ez = z + 2nπi, n ∈ Z.

Definition 3.20(b): The Principal Value Complex Logarithm Function

For any complex number z ∈ D∗ = {z : z 6= reiπ , r ≥ 0} we define

Logz = ln |z|+ iArgz.

Then elog z = z, Logez = z and
d

dz
Logz =

1

z
for all z ∈ D∗.

Definition 1.14: Paths, Arcs, Contours

A path (or curve, or arc) in C is the image of a continuous function γ : [a, b] → C,
where [a, b] is a closed interval in R. The function γ is the parametrization of
the path. We also have the following:

• The path (arc) is called smooth if it is differentiable.

• The path is called a closed curve If γ(a) = γ(b). It is a simple closed curve
if γ(s) = γ(t) only for s = a and t = b.

• A path is called piecewise smooth if there exist c1 < c2 < · · · ... < cn in the in-
terval (a, b) such that γ is smooth on each of the intervals [a, c1], [c1, c2], ..., [cn, b].
A piecewise smooth curve is sometimes called a contour.

Definition 4.1: Complex Integration

Suppose γ is a smooth curve (arc) parameterized by γ(t), a ≤ t ≤ b, and f is a
complex function that is continuous on γ. Then we define the integral of f on γ by

∫

γ

f =

∫

γ

f(z) dz =

∫ b

a

f(γ(t))γ′(t) dt.

If γ(t), a ≤ t ≤ b is a piecewise smooth curve (contour) that is differentiable on the
intervals [a, c1], [c1, c2], [c2, c3], ..., [cn−1, cn], [cn, b], then

∫

γ

f =

∫ c1

a

f(γ(t))γ′(t) dt+

∫ c2

c1

f(γ(t))γ′(t) dt+ · · ·+
∫ b

cn

f(γ(t))γ′(t) dt.
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Proposition 4.3: Independence of Parametrization

Suppose γ is a smooth curve parameterized in the same direction by both

γ1(t), a ≤ t ≤ b and γ2(s), c ≤ s ≤ ds

If f is a complex function that is continuous on γ then

∫

γ

f =

∫ b

a

f(γ1(t))γ
′
1(t) dt =

∫ d

c

f(γ2(s))γ
′
2(s) ds

Definition 4.4: Length of a Curve

The length of a smooth curve γ is

length(γ) =

∫ b

a

|γ′(t)|dt

for any parametrization γ(t), a ≤ t ≤ b of γ.

Proposition 4.7: Properties of the Integral

Suppose that γ is a smooth curve, f and g are complex functions that are continuous
on γ, and c ∈ C.

(a)

∫

γ

cf = c

∫

γ

f and

∫

γ

(f + g) =

∫

γ

f +

∫

γ

g

(b) If γ is parameterized by γ(t), a ≤ t ≤ b, define the curve −γ by

−γ(t) = γ(a+ b− t), a ≤ t ≤ b. Then

∫

−γ

f = −
∫

γ

f .

(c) If γ1 and γ2 are curves so that γ2 starts where γ1 ends, define γ1γ2 by following

γ1 to its end, then continuing on γ2 to its end. Then

∫

γ1γ2

f =

∫

γ1

f +

∫

γ2

f .

(d)

∣

∣

∣

∣

∫

γ

f

∣

∣

∣

∣

≤ max
z∈γ

|f(z)| · length(γ)

G-Homotopic Curves

Let G ⊆ C be open and suppose that γ0 and γ1 are curves in G parameterized by

γ0(t), 0 ≤ t ≤ 1 and γ1(t), 0 ≤ t ≤ 1.

We say that γ0 is G-homotopic to γ1 if there exists a continuous function h :
[0, 1]× [0, 1] → G such that h(t, 0) = γ0(t) and h(t, 1) = γ1(t) for all t ∈ [0, 1]. We
denote this by γ0 ∼G γ1, and the function h is called a homotopy.
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Theorem 4.9: Cauchy’s Theorem

Suppose that G ⊆ C is open, f is holomorphic in G. If γ0 and γ1 are closed curves
in G with γ0 ∼G γ1 via a homotopy h with continuous second partial derivatives,
then

∫

γ0

f =

∫

γ1

f.

G-Contractible Curve

Let G ⊆ C be open. A closed curve γ is said to be G-contractible if γ is
G-homotopic to a point. This is denoted by γ ∼G 0.

Corollary 4.10:

Suppose that G ⊆ C is open, f is holomorphic in G, and γ ∼G 0 via a homotopy
with continuous second partial derivatives. Then

∫

γ

f = 0.

Corollary 4.11:

If f is entire and γ is any smooth closed curve, then

∫

γ

f = 0.

Another Corollary: Independence of Path

Suppose that G ⊆ C is open and f is holomorphic in G. If γ0 and γ1 are curves
in G parameterized by

γ0(t), 0 ≤ t ≤ 1 and γ1(t), 0 ≤ t ≤ 1

with γ0 ∼G γ1, γ0(0) = γ1(0) and γ0(1) = γ1(1), then

∫

γ0

f =

∫

γ1

f.

Positively Oriented Curve

A simple closed curve γ is positively oriented if it is parameterized so that the inside
of the curve is on the left of γ.
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Theorem 4.12: Cauchy’s Integral Formula for a Circle

Let Cr(z0) be the counterclockwise oriented circle centered at z0 and with radius r.
If f is holomorphic at each point of the closed disk bounded by Cr(z0), then

f(z0) =
1

2πi

∫

Cr(z0)

f(z)

z − z0
dz.

Theorem 4.13: Cauchy’s Integral Formula

Suppose f is holomorphic on the region G, z0 ∈ G and γ is a positively oriented,
simple closed curve that is G-contractible and such that z0 is enclosed by γ. Then

f(z0) =
1

2πi

∫

γ

f(z)

z − z0
dz.

Corollary 4.14:

Suppose f is holomorphic on and inside the circle Cr(z0) parameterized by γ(θ) =
z0 + reiθ for 0 ≤ θ ≤ 2π, then

f(z0) =
1

2π

∫ 2π

0

f(z0 + reiθ) dθ.

Theorem 5.1:

Suppose f is holomorphic on the region G, z0 ∈ G and γ is a positively oriented,
simple closed curve that is G-contractible and such that z0 is enclosed by γ. Then

f ′(z0) =
1

2πi

∫

γ

f(z)

(z − z0)2
dz and f ′′(z0) =

1

πi

∫

γ

f(z)

(z − z0)3
dz

Corollary 5.2:

If f is differentiable in the region G, then f is infinitely differentiable in G.

Lemma 5.6:

Suppose p(z) is a polynomial of degree n with leading coefficient an. Then there is
a real number R0 such that

1
2 |an||z|

n ≤ |p(z)| ≤ 2|an||z|n

for all z with |z| ≥ R0.
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Theorem 5.7: Fundamental Theorem of Algebra

Every non-constant polynomial has a root in C.

Corollary 5.9: Liouville’s Theorem

Every bounded entire function is constant.

Definition 5.11: Antiderivative of a Function

Let G ⊂ C be open and connected. For any functions f, F : G → C, if F is
holomorphic on G and F ′(z) = f(z) for all z ∈ G, then F is an antiderivative
of F on G. An antiderivative of f on G will also sometimes be referred to as a
primitive of f on G.

Theorem 5.13: Second Fundamental Theorem of Calculus

Suppose that G ⊂ C is open and connected, and F is an antiderivative of f on G.
If γ ∈ G is a smooth curve with parametrization γ(t), a ≤ t ≤ b, then

∫

γ

f(z)dz = F (γ(b))− F (γ(a))

Corollary 5.14: Independence of Path

If f is holomorphic on a simply connected open set G, then
∫

γ
f is independent of

of the path γ ∈ G between z1 = γ(a) and z2 = γ(b).

Corollary 5.15:

Suppose G ⊆ C is open, γ is a smooth closed curve in G, and f has an antiderivative
on G. Then

∫

γ
f = 0.

Theorem 5.17: First Fundamental Theorem of Calculus

Suppose G ⊆ C is a connected open set, and fix some basepoint z0 ∈ G. For each
z ∈ G, let γz denote a smooth curve in G from z0 to z. Let f : G → C be a
holomorphic function such that, for any simple closed curve γ ∈ G,

∫

γ
f = 0. Then

the function F : G → C defined at any point z ∈ G by

F (z) :=

∫

γz

f

is holomorphic in G with F ′(z) = f(z). (The notation := means “defined by.”)
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Definition 5.18: Simply Connected

A connected, open G ⊆ C is called simply connected if every simple closed curve in
G is G-contractible. That is, for any simple closed curve γ ⊆ G, the interior of γ is
completely contained in G.

Corollary 5.19

Every holomorphic function on a simply connected open set has a primitive.

Corollary 5.20: Morera’s Theorem

Suppose f is continuous in a connected open set G and

∫

γ

f = 0

for all smooth closed paths γ ⊆ G. Then f is holomorphic in G.

Definition 7.1: Convergent and Divergent Sequences

Suppose (an) is a sequence of complex numbers. If a ∈ C is such that for all
ε > 0 there is an integer N for which |an − a| < ε whenever n ≥ N , then we say
the sequence (an) is convergent with limit a. We write

lim
n→∞

an = a.

If no such a exists, then we say that (an) is divergent.

Lemma 7.4

Let (an) and (bn) be convergent sequences and let c be any complex number. Then

(a) lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn and lim
n→∞

can = c lim
n→∞

an

(b) lim
n→∞

(an · bn) = lim
n→∞

an · lim
n→∞

bn

(c) If lim bn 6= 0 and bn 6= 0 for any n, then lim
n→∞

(

an

bn

)

=
lim
n→∞

an

lim
n→∞

bn

(d) If f is continuous at a, every an is in the domain of f and lim
n→∞

an = a,

then lim
n→∞

f(an) = f(a).

Definition: Monotone Sequence

A sequence (xn) of real numbers is non-decreasing if xk+1 ≥ xk for all k = 1, 2, 3, ...,
or non-increasing if xk+1 ≤ xk for k = 1, 2, 3, .... A sequence that is either non-
decreasing or non-increasing is called a monotone sequence.
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Axiom: Monotone Sequence Property

Any bounded monotone sequence converges.

Theorem 7.6: Archimedean Property

If x is any real number, then there is an integer N that is greater than x.

Lemma 7.7

Suppose a, b ∈ C and p is a complex polynomial. Then

• lim
n→∞

p(n)

an
= 0 • lim

n→∞

bn

n!
= 0

Lemma 7.9

If bk are nonnegative real numbers then
∞
∑

k=1

bk converges if and only if the partial

sums are bounded.

Lemma 7.10

If

∞
∑

k=1

bk converges, then lim
k→∞

bk = 0.

Lemma 7.11: (Test for Divergence)

If lim
k→∞

bk 6= 0, then

∞
∑

k=1

bk diverges.

Absolute Convergence

A series

∞
∑

k=1

ck is absolutely convergent if

∞
∑

k=1

|ck| converges.

Theorem 7.13

If a series converges absolutely, then it converges.

Lemma 7.16: p-series

∞
∑

k=1

1

kp
converges if p > 1 and diverges if p ≤ 1.
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Convergence of Sequences of Functions

Let (fn) be a sequence of functions defined on a set G. If, for each z ∈ G, the
sequence (fn(z)) converges, then we say that the sequence (fn) converges pointwise
on G. Suppose that (fn) and f are functions defined on G. If for any ε > 0 there
is an N such that for all z ∈ G and n ≥ N we have

|fn(z)− f(z)| < ε,

then (fn) converges uniformly to f on G.

Proposition 7.18

Suppose (fn) is a sequence of functions that converges uniformly to a function f on
a set G. Then f is continuous on G.

Proposition 7.19

Suppose fn are continuous on the smooth curve γ and converge uniformly on γ to
a function f . Then

lim
n→∞

∫

γ

fn =

∫

γ

f.

Lemma 7.20

If (fn) is a sequence of functions and Mn is a sequence of constants so that Mn con-
verges to zero and |fn(z)| ≤ Mn for all z ∈ G, then (fn) converges uniformly to
zero on G.

Lemma 7.21

If (fn) is a sequence of functions that converges uniformly to zero on G and zn is
any sequence in G, then the sequence (fn(zn)) converges to zero.

Proposition 7.22

Suppose (fk) are continuous on the region G, |fk(z)| ≤ Mk for all z ∈ G, and
∞
∑

k=1

Mk converges. Then
∞
∑

k=1

fk converges absolutely and uniformly in G.

Definition 7.24: Power Series

A power series centered at z0 is a series of functions of the form

∞
∑

k=0

ck(z − z0)
k.
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Lemma 7.25: Geometric Power Series

The series

∞
∑

k=0

zk (which is a power series centered at zero, with all ck equal to one)

converges absolutely for |z| < 1 to the function
1

1− z
. The convergence is uniform

on any set of the form {z ∈ C : |z| ≤ r < 1}.

Theorem 7.26: Radius of Convergence

Any power series

∞
∑

k=0

ck(z − z0)
k has a radius of convergence R, with 0 ≤ R ≤ ∞,

such that

(a) if r < R, then

∞
∑

k=0

ck(z− z0)
k converges absolutely and uniformly on the closed

disk Dr(z0) = {z ∈ C : |z − z0| ≤ r}.

(b) if |z − z0| > R then the sequence of terms ck(z − z0)
k is unbounded and

∞
∑

k=0

ck(z − z0)
k diverges.

Corollary 7.27

Suppose the power series

∞
∑

k=0

ck(z−z0)
k has a radius of convergence R. Then the series

represents a function that is continuous on the disk DR(z0) = {z ∈ C : |z − z0| < R}.

Corollary 7.28

Suppose the power series

∞
∑

k=0

ck(z − z0)
k has a radius of convergence R and γ is a

smooth curve in DR(z0) = {z ∈ C : |z − z0| < R}. Then

∫

γ

∞
∑

k=0

ck(z − z0)
k dz =

∞
∑

k=0

ck

∫

γ

(z − z0)
k dz

In particular, if γ is closed, then

∫

γ

∞
∑

k=0

ck(z − z0)
k dz = 0.
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Theorem 7.30: Determining Radius of Convergence

For the power series

∞
∑

k=0

ck(z − z0)
k, the radius of convergence R is given by

R = lim
k→∞

∣

∣

∣

∣

ck

ck+1

∣

∣

∣

∣

or R = lim
k→∞

1

|ck|1/k

These are the ratio test and root test for determining radius of convergence.

Theorem 8.1

Suppose f(z) =

∞
∑

k=0

ck(z − z0)
k has positive radius of convergence R. Then f is

holomorphic in DR(z0) = {z ∈ C : |z − z0| < R}.

Theorem 8.2

Suppose f(z) =

∞
∑

k=0

ck(z − z0)
k has positive radius of convergence R. Then

f ′(z) =
∞
∑

k=1

kck(z − z0)
k−1

and the radius of convergence of this power series is also R.

Corollary 8.5: Taylor Series Expansion

Suppose f(z) =

∞
∑

k=0

ck(z − z0)
k has positive radius of convergence. Then

ck =
f (k)(z0)

k!
.

Corollary 8.6: Uniqueness of Power Series

If

∞
∑

k=0

ck(z − z0)
k and

∞
∑

k=0

bk(z − z0)
k are two power series that both converge to the

same function f(z) on an open disk centered at z0, then ck = bk for all k.
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Theorem 8.7

Suppose f is a function that is holomorphic in DR(z0) = {z ∈ C : |z − z0| < R}.
Then f can be represented in DR(z0) as a power series centered at z0 (with a radius
of convergence of at least R):

f(z) =

∞
∑

k=0

ck(z − z0)
k with ck =

1

2πi

∫

γ

f(w)

(w − z0)k+1
dw.

Here γ is any positively oriented, simple, closed, smooth curve in DR(z0) for which
z0 is inside γ.

Corollary 8.8

Suppose f is holomorphic on the region G, w ∈ G and γ is a positively oriented
simple, closed, smooth, g-contractible curve such that z0 is inside γ, Then

f (k)(z0) =
k!

2πi

∫

γ

f(z)

(z − z0)k+1
dz.

Corollary 8.9: Cauchy’s Estimate

Suppose f is holomorphic in DR(z0) = {z ∈ C : |z − z0| < R} and |f | ≤ M there.
Then

∣

∣

∣
f (k)(z)

∣

∣

∣
≤ k!M

Rk

for all z ∈ DR(z0) = {z ∈ C : |z − z0| < R}.

Analytic Function

A function f is analytic at a point z0 if f can be represented as a power series
centered at z0 and with radius R > 0. f is analytic in an open region G if it is
analytic at every point of G.

Theorem 8.10: Analytic “Equals” Holomorphic

A function f is analytic at a point z0 if and only if it is holomorphic at z0; f is
analytic on G if and only if it is holomorphic on G.
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Theorem 8.11: Classification of Zeros

Suppose f is a holomorphic function defined on an open set G and suppose that
f has a zero at some point z0 ∈ G. Then there are exactly two possibilities: Either

(a) f is identically zero on some open disk D centered at z0, or

(b) there is a positive integer m and a holomorphic function g, defined on G,
satisfying f(z) = (z − z0)

mg(z) for all z ∈ G, with g(z0) = 0.

The integer m in the second case is uniquely determined by f and z0, and is called
the multiplicity of the zero of f at z0.

Theorem 8.12: The Identity Principle

Suppose f and g are holomorphic on the region G and f(zk) = g(zk) for a sequence
that converges to w ∈ G, with zk 6= w for any k. Then f(z) = g(z) for all z ∈ G.

Theorem 8.13: Maximum-Modulus Theorem

Suppose f is holomorphic and non-constant on the closure of a bounded region G.
Then |f | only attains its maximum on the boundary of G.

Theorem 8.15: Maximum-Modulus Theorem

Suppose f is holomorphic and non-constant on the closure of a bounded region G.
Then |f | only attains its minimum on the boundary of G.

Definition 8.16: Laurent Series

A Laurent series centered at z0 is a series of the form

∞
∑

k=−∞

ck(z − z0)
k.

Theorem 8.19

Suppose f is a function that is holomorphic in the annulus

A = {z ∈ C : R1 < |z − z0| < R2}.

Then f can be represented in A as a Laurent series centered at z0:

f(z) =
∞
∑

k=−∞

ck(z − z0)
k with ck =

1

2πi

∫

γ

f(w)

(w − z0)k+1
dw.

Here γ is any circle in A that is centered at z0 (or any other closed, smooth path
that is A-homotopic to such a circle).
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Theorem 8.20

For a given function in a given region of convergence, the coefficients of the corresponding
Laurent series are uniquely determined.

Definition 9.1: Classification of Singularities

If f is holomorphic in the punctured disk {z ∈ C : 0 < |z − z0| < R} for some
R > 0 but not at z = z0, then z0 is an isolated singularity of f . The singularity
z0 is called

(a) a removable singularity if there is a function g, that is holomorphic in the set
{z ∈ C : |z − z0| < R}, such that f = g in the set {z ∈ C : 0 < |z − z0| < R},

(b) a pole if lim
z→z0

|f(z)| = ∞,

(c) an essential singularity if z0 is neither removable or a pole.

Proposition 9.5

Suppose z0 is an isolated singularity of f . Then

(a) z0 is removable if and only if limz→z0(z − z0)f(z) = 0;

(b) z0 is pole if and only if it is not removable and limz→z0(z − z0)
n+1f(z) = 0 for

some positive integer n. The smallest possible such n is called the order of the
pole.

Theorem 9.6; The Casorati-Weierstrass Theorem

If z0 is an essential singularity of f and D = {z ∈ C : 0 < |z − z0| < R} for some
R > 0, then any w ∈ C is arbitrarily close to a point in f(D). That is, for any
w ∈ C and any ε > 0 there exists a z ∈ D such that |w − f(z)| < ε.

Proposition 9.7

Suppose z0 is an isolated singularity of f having Laurent series

∞
∑

k=−∞

ck(z−z0)
k that

is valid in some set {z ∈ C : 0 < |z − z0| < R}. Then

(a) z0 is removable if and only if there are no negative exponents (that is, the Laurent
series is a power series);

(b) z0 is pole if and only if there are finitely many negative exponents, and the order
of the pole is the largest value of k such that c−k 6= 0;

(c) z0 is an essential singularity if and only if there are infinitely many negative
exponents.
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