The eventual goal of this assignment is to determine the polynomial of least degree that passes though a given set of points in the $x y$-plane. Such a polynomial is called a Lagrange polynomial. Look them up in Wikipedia and see if you can understand anything written there abut them. In this assignment we'll make sense of all the messy stuff you see there.

NOTE: We will be working throughout with polynomial functions in factored form. Leave then in that form DO NOT multiply them out.

1. Go to the web page www.desmos.com and click Launch Calculator.
(a) Enter the function $f(x)=(x+3)(x-1)(x-2)$ and adjust the window (the little wrench icon in the upper right) so that you get a good view of the function. Draw: Sketch what you see - don't put a scale on either axis, but label the x-intercepts with their values.
(b) Write: Determine $f(-1)$ from the equation given, showing the result and exactly how it is obtained. Does the graph support your result?
(c) Now Suppose that we wanted to alter our function so that the x-intercepts remain the same, but so that $f(-1)=1$. This can easily be done: Just divide the current form of the function by $f(-1)$. Add a second function in the Desmos window that is $y=f(x) / f(-1)$. Adjust the window as needed to see that it has the same x-intercepts as f, but that it has value 1 at $x=-1$.
(d) Write: Using what you have just discovered/seen, give a polynomial of the form

$$
\begin{equation*}
P(x)=\frac{\left(x-a_{1}\right)\left(x-a_{2}\right)\left(x-a_{3}\right) \cdots}{\left(x_{0}-a_{1}\right)\left(x_{0}-a_{2}\right)\left(x_{0}-a_{3}\right) \cdots} \tag{1}
\end{equation*}
$$

that has x-intercepts at 1,2 , and 4 , and for which $P(3)=1$. Note that x is the variable, a_{1}, a_{2}, a_{3}, \ldots are the roots, and x_{0} is the x value where we want the polynomial to have value one. Plot your answer with Desmos and alter it as needed if it doesn't do what it is supposed to. Draw: Sketch what you see.
(e) Keep $P(x)$ but get rid of the other functions by clicking the \times to the right of each - we don't need them any more. Add a subscript to get $P_{3}(x)$ by putting the cursor where you want the subscript, holding down the shift key and pressing the minus/underscore key.
2. (a) Create a polynomials P_{1} that has x-intercepts at $2,3,4$ and so that $P_{1}(1)=1$. Plot it to make sure you succeeded. Draw: Sketch the graph.
(b) Create polynomials $P_{j}, j=2,4$ for which $P_{j}(j)=1$ and x-intercepts at all of $x=1,2,3,4$ except j. Draw: Plot all of them and sketch the graph of each.
(c) Write: Consider $y=3 P_{2}(x)$. What value should y have at each of $x=1,2,3,4$? Give your answers using function notation.
3. (a) Write: What is the degree of each of your polynomials $P_{j}, j=1,2,3,4$? If you added them all together, what degree would the degree of the resulting polynomial be?
(b) Suppose that we let

$$
\begin{equation*}
f(x)=4 P_{1}(x)+3 P_{2}(x)+3 P_{3}(x)+5 P_{4}(x) \tag{2}
\end{equation*}
$$

Write: What should $f(x)$ be for $x=1,2,3,4$? Give your answers using correct function notation, of course.
(c) Draw: Plot f with Desmos - you can simply enter (2) and it will use the previously entered $P_{j}(x)$ functions to create the graph. Sketch what you see.
4. Write: Give a polynomial $g(x)$ that is a "blend" of the forms (2) and (1) that passes through $(1,5)$, $(2,3)$ and $(3,7)$. Check it with Desmos.
5. Go back to the Wikipedia page on Lagrange polynomials and see if it make any more sense now. The third line of mathematics there is pretty much our (1); the symbol \prod is like \sum, but means product rather than sum. The second line of mathematics is our (2).

