Do Exercises 1 and 2 on additional paper. Exercise 3 is on the back, and should be done on this paper.

1. For each of the following, sketch the graph (a separate sketch for each situation) of a function on the interval $[a, b]$ meeting the given conditions. If one is not possible, just say " not possible."
(a) f is continuous on $[a, b], f(a)$ and $f(b)$ are both negative, and f has no root in $[a, b]$.
(b) f is continuous on $[a, b], f(a)$ is positive and $f(b)$ is negative, f has no root in $[a, b]$.
(c) $f(a)$ is positive and $f(b)$ is negative, f has no root in $[a, b]$.
(d) f is continuous on $[a, b], f(a)$ and $f(b)$ are both positive, and f has exactly one root in $[a, b]$.
(e) f is continuous on $[a, b], f(a)$ is positive and $f(b)$ is negative, f has more than one root in $[a, b]$.
2. Consider the function $f(x)=x^{2}-2.6 x-2.31$.
(a) What three things tell us that the function has a root in the interval $[3,4]$?
(b) Find the derivative $f^{\prime}(x)$, and use it to determine the values of x for which the function is increasing, and the values of x for which the function is decreasing. What is the function doing on the interval $[3,4]$?
(c) Let the interval $\left[a_{1}, b_{1}\right]$ be the interval $[3,4]$. Give the next two intervals obtained using the bisection method, showing clearly all values computed and tests done to determine new endpoints.
(d) Let $x_{1}=3$ and perform the next two iterations of Newton's method to obtain x_{3}, showing how you do it. Round to five places past the decimal at the end of each computation.
(e) Use the quadratic formula to compute the root of f in the interval $[3,4]$.
3. Do the following on the picture to the right, using a straightedge to draw all lines, to illustrate/understand how Newton's method works. The curve is the graph of a function $f(x)$.
(a) Draw a vertical line from x_{1} to the curve, and label the point where it intersects the curve with its coordinates.
(b) Draw a tangent line to the curve at the point you obtained in (a). Its x-intercept is x_{2}; label it.
(c) Repeat two more times to show how x_{3} and x_{4} are found.
