1. An experiment consists of drawing a single card from a standard deck of cards (no jokers). We'll use an abbreviation system like this: 3D is the three of diamonds, QH is the queen of hearts, and so on.
(a) How many outcomes are there? What do we call the set of all outcomes?
(b) Give the event E_{1} of drawing a black face card, using the abbreviation system described. Remember that an event is a set - use appropriate notation.
(c) Give the event E_{2} of drawing a card that is red and a number that is a multiple of five.
(d) Give the event E_{3} of drawing a card that is red or a number that is a multiple of five, using ... where clear and appropriate to save some writing.
(e) Give $P\left(E_{1}\right), P\left(E_{2}\right)$ and $P\left(E_{3}\right)$, the probabilities of events E_{1}, E_{2} and E_{3}.
2. You are going to create a (not very secure!) password consisting of one of the digits $1,2,3,4,5$ followed by one of the letters $\mathrm{A}, \mathrm{B}, \mathrm{C}$.
(a) How many such passwords are there?
(b) Thinking of the act of creating such a password as an experiment, give the sample space S.
(c) Give the event E_{1} of creating a password that begins with an even digit.
(d) Give the event E_{2} of creating a password that begins with a number less than or equal to three or whose letter is a vowel. (Remember what a vowel is?)
(e) Give the event E_{2} of creating a password that begins with a number less than or equal to three and whose letter is a vowel.
(f) Give $P\left(E_{1}\right), P\left(E_{2}\right)$ and $P\left(E_{3}\right)$.
3. A password is to consist of a letter of the alphabet followed by two of the digits zero through 9 , then followed by three more letters of the alphabet, and ending with one of the characters $\#, \$, \%$ or $\&$. With regards to the letters, assume that the password is case sensitive.
(a) How many such passwords are there?
(b) What is the probability of creating a password beginning with a capital letter, followed by a digit that is a multiple of three, and whose three other letters are lower case abc, in that order.
(c) Should the probability of creating a password beginning with a capital letter, followed by a digit that is a multiple of three, and whose three other letters are lower case a, b, and c, in any order be greater, or less, than the probability you found in (b)?
(d) Find the actual probability for the sort of password described in (c).
