1. What value must c have so that

$$
\begin{array}{rcccc}
x: & 2 & 3 & 4 & 6 \\
f(x): & c & 2 c & 3 c & 4 c
\end{array}
$$

is a discrete probability distribution?
2. Consider the experiment of flipping a coin until a heads is obtained, and let X be the random variable that assigns to each outcome the number of the flip on which the heads is obtained. Sketch graphs of the probability distribution function f and the cumulative probability function F.
3. The clock in a classroom has hour, minute and second hands. It is completely analog, so the second hand moves smoothly around the clock. A bored student sitting in the classroom glances at the clock every so often, in a random manner. What is the probability that on a given glance the second hand will be
(a) between the one and the two (going clockwise, for this question and all others) on the clock?
(b) between zero (12) and 4?
(c) between 4 and 12 (again, going clockwise)?
(d) on exactly 4 ?

