This assignment is due at the start of class on Monday, January 30th

1. A discrete random variable X has the cumulative distribution function $F(x)$ shown below and to the right.

$$
F(x)=\left\{\begin{array}{cl}
0 & \text { for } x<0 \\
\frac{1}{12} & \text { for } 0 \leq x<1 \\
\frac{6}{12} & \text { for } 1 \leq x<2 \\
\frac{10}{12} & \text { for } 2 \leq x<3 \\
1 & \text { for } x \geq 3
\end{array}\right.
$$

(a) Give each of the following probabilities based on F.

$$
P(X \leq 2)=
$$

$$
P(X \geq 2)=
$$

$$
P(X=1)=
$$

\qquad

$$
P\left(X=1 \frac{1}{2}\right)=
$$

$$
P\left(X \leq 1 \frac{1}{2}\right)=
$$

$$
P(1<X \leq 3)=
$$

\qquad
(b) Give the probability distribution function f in the space above and to the left.
2. Give the value of c for which $f(x)=\frac{c}{x^{2}}, x=1,3,5$ is a discrete probability distribution. Show how you obtain it.
3. The probability density function, and its graph, for a continuous random variable X is shown below. Use it to find the things that follow. You can integrate, or simply use some geometry.

$$
f(x)=\left\{\begin{array}{cl}
x & \text { for } 0 \leq x<1 \\
2-x & \text { for } 1 \leq x \leq 2 \\
0 & \text { elsewhere }
\end{array}\right.
$$

(a) $P\left(X>\frac{1}{2}\right)=$ \qquad (b) $P\left(X=\frac{1}{2}\right)=$ \qquad
(c) $P\left(\frac{1}{4}<X<\frac{3}{4}\right)=$ \qquad (d) $F\left(\frac{5}{2}\right)=$
4. An experiment consists of rolling a single die, so $S=\{1,2,3,4,5,6\}$. The random variable X assigns to each outcome the number of letters it has when spelled as a word. For example, $X(5)=4$ since the word five has four letters.
(a) Fill in the blanks: $X(1)=$ \qquad , $X(2)=$ \qquad , $X(3)=$ \qquad
(b) Give the range of X, using appropriate notation:
(c) Give the event A (as a subset of the sample space) corresponding to $X=4$:
(d) Give the event B (as a subset of the sample space) corresponding to $X \geq 4$:
(e) Fill in the blanks: $f(5)=P(X=5)=$ \qquad , $\mathrm{f}(3)=\mathrm{P}($ \qquad) $=$ \qquad ,

$$
f(\ldots)=P(X=4)=\ldots, \quad \mathrm{f}(2)=\mathrm{P}(\ldots)=
$$

(f) Fill in the blanks: $F(4)=P(X \leq 4)=$ \qquad , $\mathrm{F}(7)=\mathrm{P}($ \qquad $)=$ \qquad ,

$$
F(\ldots \quad)=P(X \leq 3.5)=_\quad \mathrm{F}(2)=\mathrm{P}(\ldots)=
$$

(g) Give the probability distribution function f for this random variable on the axes below and to the left. Be sure to label the horizontal axis with all integers from the smallest value in $\operatorname{Ran}(X)$ to the largest value in $\operatorname{Ran}(X)$.

(h) Give the cumulative probability distribution function F on the axes above and to the right.

