This assignment is due at the start of class on Wednesday, February 8th
I once read the following in Time magazine: "Research from the National Highway Traffic Safety Administration shows that up to 80% of crashes can be attributed to driver inattentiveness."

1. Assume that whether or not a crash is caused by inattentiveness is a Bernoulli process, with probability 0.80 as implied above. For each of the probabilities asked for, give the following, connected by equal signs:

- A probability statement of the form $P($ something about $X)$ for the desired probability
- an expression (which might be a summation) involving the probability distribution function b that gives the desired probability
- an expression involving the cumulative probability function B that gives the desired probability
- the probability, as a decimal rounded correctly to four places past the decimal

You can/should use your calculator, Excel or some other assistance to find the last of these. For the first three, use the notation given in the book.
(a) The probability that 7 of ten recent crashes were due to inattentiveness.
(b) The probability that 3 or 4 of five crashes are due to inattentiveness.
(c) The probability that 10 or fewer of 15 crashes are due to inattentiveness.
(d) the probability that 5 or more of eight crashes are due to inattentiveness.
2. In one year there are 427 crashes in a town. How many of those would we expect to be due to inattentiveness? What concept that we've studied does this illustrate?
3. Suppose that 100Ω (ohm) resistors from a certain manufacturer actually have a mean of 99.92Ω and standard deviation of 0.17Ω. For each question below, give each of the following, connected by equal signs:

- probability statement of the form $P($ something about X), followed by
- an expression involving the cumulative normal distribution N with the above parameters that gives the desired probability, followed by
- an equivalent expression involving the cumulative standard normal distribution $N(z ; 0,1)$ that gives the desired probability, followed by
- the desired probability, to four places past the decimal.

Find the probability that a randomly selected resistor has resistance
(a) over 100Ω.
(b) less than 99.7Ω.
(c) between 99.8 and 100.2Ω.
4. Here is a typical sort of problem that we will run into: Suppose that five resistors are to be selected from a very large batch of resistors. Because the batch is large we can treat this as a Bernoulli experiment, even though we are drawing without replacement. Find the probability that two of the five have resistances under 99.75Ω. Indicate clearly, using appropriate notation, how you obtain your answer. Hint: You first need to apply the normal distribution to find the probability of any randomly selected resistor having a resistance of less than 99 ohms, then apply the binomial distribution with that probability

