1. (a) Do one round of integration by parts for $\int x^{5} e^{x} d x$.
(b) Use integration by parts to compute $\int_{0}^{\frac{\pi}{2}} x \cos x d x$, given that $\sin (0)=\cos \left(\frac{\pi}{2}\right)=0$ and $\cos (0)=$ $\sin \left(\frac{\pi}{2}\right)=1$.
(c) Do one round of integration by parts for $\int_{0}^{\infty} x^{n} e^{-x} d x$, using the fact that for any positive constant $n, \lim _{x \rightarrow \infty} x^{n} e^{-x}=0$.
2. Convert each integral by applying the given substitution. Be sure to convert the limits of integration.
(a) $\int_{-1}^{3}(4 x+12) d x, x=u-3$
(b) $\int_{\frac{1}{4}}^{\frac{1}{2}} \frac{1}{x^{2}} d x, u=\frac{1}{x}$
(c) $\int_{0}^{1} e^{-4 x^{2}} d x, u=2 x$
3. Define a function f by $f(n)=\int_{0}^{2} x^{n} d x$. Find $f(0), f(1)$ and $f(2)$ labelling each clearly as what it is.
4. (a) Do one round of integration by parts for $\int x^{5} e^{x} d x$.
(b) Use integration by parts to compute $\int_{0}^{\frac{\pi}{2}} x \cos x d x$, given that $\sin (0)=\cos \left(\frac{\pi}{2}\right)=0$ and $\cos (0)=$ $\sin \left(\frac{\pi}{2}\right)=1$.
(c) Do one round of integration by parts for $\int_{0}^{\infty} x^{n} e^{-x} d x$, using the fact that for any positive constant $n, \lim _{x \rightarrow \infty} x^{n} e^{-x}=0$.
5. Convert each integral by applying the given substitution. Be sure to convert the limits of integration.
(a) $\int_{-1}^{3}(4 x+12) d x, x=u-3$
(b) $\int_{\frac{1}{4}}^{\frac{1}{2}} \frac{1}{x^{2}} d x, u=\frac{1}{x}$
(c) $\int_{0}^{1} e^{-4 x^{2}} d x, u=2 x$
6. Define a function f by $f(n)=\int_{0}^{2} x^{n} d x$. Find $f(0), f(1)$ and $f(2)$ labelling each clearly as what it is.
