- 1. (a) Do one round of integration by parts for $\int x^5 e^x dx$.
 - (b) Use integration by parts to compute $\int_0^{\frac{\pi}{2}} x \cos x \, dx$, given that $\sin(0) = \cos(\frac{\pi}{2}) = 0$ and $\cos(0) = \sin(\frac{\pi}{2}) = 1$.
 - (c) Do one round of integration by parts for $\int_0^\infty x^n e^{-x} dx$, using the fact that for any positive constant n, $\lim_{x\to\infty} x^n e^{-x} = 0$.
- 2. Convert each integral by applying the given substitution. Be sure to convert the limits of integration.
 - (a) $\int_{-1}^{3} (4x+12) dx$, x = u 3(b) $\int_{\frac{1}{4}}^{\frac{1}{2}} \frac{1}{x^2} dx$, $u = \frac{1}{x}$ (c) $\int_{0}^{1} e^{-4x^2} dx$, u = 2x
- 3. Define a function f by $f(n) = \int_0^2 x^n dx$. Find f(0), f(1) and f(2) labelling each clearly as what it is.

Math 465 ASSIGNMENT 5, WINTER 2017 Due at the start of class on Wed, Feb 22nd

- 1. (a) Do one round of integration by parts for $\int x^5 e^x dx$.
 - (b) Use integration by parts to compute $\int_0^{\frac{\pi}{2}} x \cos x \, dx$, given that $\sin(0) = \cos(\frac{\pi}{2}) = 0$ and $\cos(0) = \sin(\frac{\pi}{2}) = 1$.
 - (c) Do one round of integration by parts for $\int_0^\infty x^n e^{-x} dx$, using the fact that for any positive constant n, $\lim_{x\to\infty} x^n e^{-x} = 0$.
- 2. Convert each integral by applying the given substitution. Be sure to convert the limits of integration.

(a)
$$\int_{-1}^{3} (4x+12) dx$$
, $x = u - 3$
(b) $\int_{\frac{1}{4}}^{\frac{1}{2}} \frac{1}{x^2} dx$, $u = \frac{1}{x}$
(c) $\int_{0}^{1} e^{-4x^2} dx$, $u = 2x$

3. Define a function f by $f(n) = \int_0^2 x^n dx$. Find f(0), f(1) and f(2) labelling each clearly as what it is.