We propose a novel difference metric, called the graph diffusion distance (GDD), for quantifying the difference between two weighted graphs with the same number of vertices.

- Our metric is based on measuring the average similarity of heat diffusion on each graph by means of the graph Laplacian exponential kernel.
- The GDD is defined as the Frobenius norm of the difference of the diffusion kernels, at the diffusion time yielding the maximum difference.

Proposition

The GDD is a metric in the strict mathematical sense, i.e.

1. For any \(N \times N \) adjacency matrices \(A, B, C \)
 \(d_{gdd}(A, B, C) = 0 \) if \(A = B \)
 \(d_{gdd}(A, B, C) = d_{gdd}(A, B) + d_{gdd}(B, C) \) if \(d_{gdd}(A, B) \leq d_{gdd}(A, B) + d_{gdd}(B, C) \)

Graph Diffusion Distance

Let \(A_1 \) and \(A_2 \) be weighted adjacency matrices for \(N \) vertices, so both \(A_1 \) and \(A_2 \) are symmetric, non-negative, \(N \times N \) real matrices with zeros along the principle diagonal. The Edge Difference Distance (EDD) is defined as

\[
d_{edd}(A_1, A_2) = \| A_1 - A_2 \|_F.
\]

- The (unnormalized) graph Laplacian operator is defined according to \([3]: \) \(L_n = D_n - A_n \) for \(n = 1, 2 \), where \(D_n \) is a diagonal degree matrix for the adjacency \(A_n \), i.e. \((D_n)_{i,i} = \sum_{j=1}^{N} (A_n)_{i,j} \).
- Given two graphs represented by \(L_1 \) and \(L_2 \), the Laplacian exponential kernels are defined as \(\exp(-tL_1) \) and \(\exp(-tL_2) \).

- The GDD

\[
\xi_{gdd}(A_1, A_2; t) = \| \exp(-tL_1) - \exp(-tL_2) \|_F
\]

\[
d_{gdd}(A_1, A_2) = \max \limits_{\xi_{gdd}(A_1, A_2; t)} \| \xi_{gdd}(A_1, A_2; t) \|_F
\]

where \(\| \cdot \|_F \) is the matrix Frobenius norm.

Motivation

The motivating principle behind our approach is the idea that two weighted graphs are similar if they enable similar patterns of information transmission.

Proposition

The GDD is a metric in the strict mathematical sense, i.e.

1. For any \(N \times N \) adjacency matrices \(A, B, C \)
 \(d_{gdd}(A, B, C) = 0 \) if \(A = B \)
 \(d_{gdd}(A, B, C) = d_{gdd}(A, B) + d_{gdd}(B, C) \) if \(d_{gdd}(A, B) \leq d_{gdd}(A, B) + d_{gdd}(B, C) \)

Brain Connectivity Graphs

Brain connectivity graphs are generated from diffusion MRI data using the following steps:

- In each voxel, a fiber orientation distribution (FOD) function is fit to the data using the method in [2].
- Axonal directions are extracted from the FOD by means of the tensor decomposition approach [1].
- A deterministic fiber tracking algorithm is used to integrate the axonal directions and generate brain connectivity map.
- We generate a brain connectivity graph using the procedure described in [4].

Undersampling Experiment

- We create subsets of the fully sampled by successively reducing the number of measurements.
- For each subset, we reconstruct a brain connectivity graph.
- The reconstructed graphs are used for comparison between EDD and GDD.

References

Acknowledgements

This work was funded in part by the NIH/NCRR Center for Integrative Biomedical Computing, P41RR12553